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Abstract. Recent works about ecumenical systems, where connectives from
classical and intuitionistic logics can co-exist in peace, warmed the discussion
of proof systems for combining logics. This discussion has been extended to
alethic K-modalities: using Simpson’s meta-logical characterization, necessity is
independent of the viewer, while possibility can be either intuitionistic or classical.
In this work, we propose an internal pure calculus for ecumenical modalities, nEK,
where every basic object of the calculus can be read as a formula in the language
of the ecumenical modal logic EK. We prove that nEK is sound and complete w.r.t.
the ecumenical birrelational semantics, and study fragments and modal extensions.

1 Introduction

Ecumenism can be seen as the search for unicity, where different thoughts, ideas
or points of view can harmonically co-exist. In mathematical logic, ecumenical ap-
proaches for a peaceful coexistence of different logical systems have been studied deeply,
e.g. [Gir93,LM11].

More recently, Prawitz proposed a natural deduction system sharing classical and
intuitionistic connectives [Pra15]. The fundamental question he addressed was: what
makes a connective classical or intuitionistic? We will illustrate, with a simple example,
some ways of answering this. Consider the following statement, where x, y, z ∈ R and
z ≥ 0:

if x + y = 2z then x ≥ z or y ≥ z.
How should we interpret “if then” and “or” in this sentence, so that it will be valid? The
answer is: it depends! We could certainly interpret both classically, and this would satisfy
a classical mathematician (CM), but it would rule out intuitionistic mathematicians (IM).
Since intuitionists can see classical tautologies through the lens of double negation, we
could embed this classical interpretation in the intuitionistic setting as:

not (not (if x + y = 2z then x ≥ z or y ≥ z)).
This would indeed make CM and IM happy.

But a finer analysis shows that, while the disjunction should definitely be classical for
guaranteeing the validity of the sentence, the implication can have a perfect intuitionistic
interpretation. That is, the statement can be understood by CM and IM as:

if x + y = 2z then not (not (x ≥ z or y ≥ z)).
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Prawitz’ ecumenism can be summarized as: pinpoint the exact places where classical and
intuitionistic world’s views differ and add there ecumenical glasses. The example above
shows that CM and IM consider, in fact, different connectives for disjunction: ∨c and
∨i, respectively. Now, what about the other first-order connectives? Prawitz answered
this question by presenting an ecumenical natural deduction system.

In [PPdP19], we justified some of Prawitz’ choices via pure proof theoretical reason-
ing, using sequent based systems. Consider the well known classical and intuitionistic
sequent systems G3c and G3i [TS96]. Since all rules in G3c are invertible, no choices
have to be made during a pure classical proof: one can apply any rule in any order. This
is not the case in G3i: choices may have to be made for disjunction, implication, and
existential quantifier. This suggests that CM and IM would share the universal quan-
tifier, conjunction, and the constant for the absurd (hence also negation) – the neutral
connectives, but they would each have their own existential quantifier, disjunction, and
implication, with different meanings.

Under this discussion, our simple statement is ecumenically translated as
(x + y = 2z)→i x ≥ z ∨c y ≥ z.

Now the classical mathematician would see everything just fine (since she cannot
differ classical from intuitionistic), while the intuitionistic mathematician would put her
ecumenical glasses only when it comes to see the disjunction. And they would both be
happy and agree on the statement. This is the essence of ecumenism!

In [MPPS20], we have extended this discussion to modalities. Since alethic modal-
ities are interpreted as “necessity” and “possibility”, with this extension of the notion
of truth, how would CM and IM view such concepts? Using Simpson’s meta-logical
characterization [Sim94], the answer is that, if something is necessarily true, then it is
independent of the viewer. Possibility, on the other hand, can be either intuitionistic:
in the sense that one should have a guarantee that something will eventually be true;
or classical: in the sense that it is not the case that necessarily something will not be
true. Hence CM and IM share the necessity connective �, but each would have its own
possibility views, represented by ♦c and ♦i, respectively.

But our solution was not entirely satisfactory since the ecumenical calculi presented
so far are not pure: the introduction rules for some connectives heavily depend on
negation and other connectives. Moreover, the ecumenical modal systems in [MPPS20]
are external: the basic objects are formulas of a more expressive language which imports
or partially encodes the logic’s semantics.

This paper is devoted to tackle these problems, proposing an internal pure calculus
for ecumenical modalities, where every basic object of the calculus can be read as a
formula in the language of the logic. For that, we will use nested systems [Brü09,Pog09]
with a stoup [Gir91], together with a notion of polarized ecumenical formulas. Nested
systems are extensions of the sequent framework where each sequent is replaced by
a tree of sequents. The stoup is a distinguished context containing a single formula.
Finally, polarized formulas can be negative if the main connective is classical or the
negation, or positive otherwise. The idea is that negative formulas are stored in the
classical context, while positive formulas are decomposed in the stoup. This not only
allows for establishing the meaning of modalities via the rules that determine their
correct use (logical inferentialism), but it also places ecumenical systems as unifying
frameworks for modalities, where well known modal systems appear as fragments.



A pure view of ecumenical modalities 3

Organization and contributions. Sec. 2 presents the notation for modal formulas, the
labeled system labEK and the ecumenical birelational semantics; Sec 3 introduces
the ecumenical nested system nEK and its normalization procedure; in Secs. 4 and 5
soundness and completeness of nEK w.r.t. the ecumenical birelational semantics are
proved; Sec. 6 identifies the classical and intuitionistic fragments of nEK; Sec 7 presents
modal extensions; and Sec. 8 concludes the paper. Appendices A, B and C show all the
proof systems addressed in this paper, the key cases of the proof of cut-elimination, and
an alternative proof of soundness based on an internal interpretation of nestings.

2 Preliminaries

In [MPPS20] we have proposed an ecumenical version of normal modal logic, where
classical and intuitionistic modalities co-exist in the same system. The system adopts
Simpson’s approach [Sim94], where a modal logic is characterized by the respective
interpretation of the modal model in the (first-order) meta-theory, called meta-logical
characterization. Hence modalities are translated into the (ecumenical) first-order logic
LE [Pra15,PPdP19], justified by the interpretation of alethic modalities in a Kripke model.
The interesting aspect of this ecumenical interpretation is that the presence of classical
and intuitionistic existential connectives in LE induces two possibility modalities, while
the neutral universal quantifier in LE entails a neutral necessity modality.

The languageA used for ecumenical modal systems is described as follows. Formu-
las are generated by the following grammar:

A ::= pi | pc | ⊥ | ¬A | A ∧ A | A ∨i A | A ∨c A | A→i A | A→c A | �A | ♦iA | ♦cA
We will use a subscript c for the classical meaning and i for the intuitionistic one, drop-
ping such subscripts when formulas/connectives can have either meaning. Classical
and intuitionistic propositional variables (pc, pi, . . .) co-exist in A but have different
meanings. The neutral logical connectives {⊥,¬,∧,�} are common for classical and
intuitionistic fragments, while {→i,∨i, ♦i} and {→c,∨c, ♦c} are restricted to intuitionis-
tic and classical interpretations, respectively. A formula is called negative if its main
connective is classical or the negation, and positive otherwise.

The meta-logical characterization naturally induces a labeled proof system [Sim94].
The language L of labeled modal formulas is determined by labeled formulas of the
form x : A with A ∈ A or relational atoms of the form xRy, where x, y range over a set of
variables. Labeled sequents have the form Γ ⇒ x : A, where Γ is a multiset containing
labeled modal formulas and relational atoms. In what follows, if L is a sequent based
calculus, we use `L Γ ⇒ A to denote that there is an L-proof of Γ ⇒ A. The labeled
ecumenical system labEK [MPPS20] is presented in Figure 1 in Appendix A.

Example 1. Below the derivation in labEK of the distributivity of the diamond w.r.t the
disjunction (see axiom k2 in Section 5).

xRy, y : A⇒ y : A init

xRy, y : A⇒ x : ♦iA
♦iR

xRy, y : A⇒ x : ♦iA ∨i ♦iB
∨iR

xRy, y : B⇒ y : B init

xRy, y : B⇒ x : ♦iB
♦iR

xRy, y : B⇒ x : ♦iA ∨i ♦iB
∨iR

xRy, y : A ∨i B⇒ x : ♦iA ∨i ♦iB
∨iL

x : ♦i(A ∨i B)⇒ x : ♦iA ∨i ♦iB
♦iL

⇒ x : ♦i(A ∨i B)→i (♦iA ∨i ♦iB)
→i R
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2.1 Ecumenical birelational models

The ecumenical birelational Kripke semantics, which is an extension of the proposal
in [PR17] to modalities, was presented in [MPPS20].

Definition 1. A birelational Kripke model is a quadruple M = (W,≤,R,V) where
(W,R,V) is a Kripke model such that W is partially ordered with order ≤, R ⊂ W ×W is
a binary relation, the satisfaction function V : 〈W,≤〉 → 〈2P,⊆〉 is monotone and:
F1. For all worlds w, v, v′, if wRv and v ≤ v′, there is a w′ such that w ≤ w′ and w′Rv′;
F2. For all worlds w′,w, v, if w ≤ w′ and wRv, there is a v′ such that w′Rv′ and v ≤ v′.

An ecumenical modal Kripke model is a birelational Kripke model such that truth of
an ecumenical formula at a point w is the smallest relation |=E satisfying
M,w |=E pi iff pi ∈ V(w);
M,w |=E A ∧ B iff M,w |=E A andM,w |=E B;
M,w |=E A ∨i B iff M,w |=E A orM,w |=E B;
M,w |=E A→i B iff for all v such that w ≤ v,M, v |=E A impliesM, v |=E B;
M,w |=E ¬A iff for all v such that w ≤ v,M, v 6|=E A;
M,w |=E ⊥ never holds;
M,w |=E �A iff for all v,w′ such that w ≤ w′ and w′Rv,M, v |=E A.
M,w |=E ♦iA iff there exists v such that wRv andM, v |=E A.
M,w |=E pc iff M,w |=E ¬(¬pi);
M,w |=E A ∨c B iff M,w |=E ¬(¬A ∧ ¬B);
M,w |=E A→c B iff M,w |=E ¬(A ∧ ¬B).
M,w |=E ♦cA iff M,w |=E ¬�¬A.

We say that a formula A is valid in a modelM = (W,≤,R,V) if for all w ∈ W we
have w |=E A. A formula A is valid in a frame 〈W,≤,R〉 if, for all valuations V, A is valid
in the model (W,≤,R,V). Finally, we say a formula is valid, if it is valid in all frames.

Since, restricted to intuitionistic and neutral connectives, |=E is the usual birelational
interpretation |= for IK [Sim94], and since the classical connectives are interpreted via
the neutral ones using the double-negation translation, an ecumenical modal Kripke
model coincides with the standard birelational Kripke model for intuitionistic modal
logic IK. Hence the following result easily holds from the similar result for IK.

Theorem 1 ([MPPS20]). The system labEK is sound and complete w.r.t. the ecumenical
modal Kripke semantics, that is, `labEK x : A iff |=E A.

Remark 1. It is interesting to note that the Kripke semantics for the classical connectives
is more complex than the respective intuitionistic ones. In fact, the definition of |=E for
the classical diamond is equivalent to

w

v

v0
w0

u

M,w |=E ⌃cA i↵ 8v � w.9u.v ( �R � ) u, M, u |=E A
w

v

v0
w0

u

M,w |=E ⌃cA i↵ 8v � w.9u.v( �R � )u

where v (≤ ◦R ◦ ≤) u represents that there exist v′,w′ ∈ W such that v ≤ v′, v′Rw′ and
w′ ≤ u. Although intriguing, this kind of two-level semantics also appears in the Kripke
model for classical logic in [ILH10], where the forcing relation is defined on the top of
the primitive notion of “strong refutation”.
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3 A nested system for ecumenical modal logic

The two main criticisms that can be done regarding the system labEK are: (i) it is
external, in the sense that it includes some semantics in the technical machinery, hence
deriving statements that are not always purely logical formulas; and (ii) it is not pure, in
the sense that negation still plays an important role on interpreting classical connectives.
For example, the introduction of the classical diamond (rule ♦cR in Figure 1) depends on
its boxed negated version.

This section is devoted to tackle all such points and propose an internal pure calculus
for ecumenical modalities, where every basic object of the calculus can be read as a
formula in the language of the logic, with no use of auxiliary negations.

The inspiration comes from Girard’s notion of stoup [Gir91] and Straßburger’s nested
system for IK [Str13]. The main idea is to pass sequent systems of the form Σ ⇒ Π , with
Σ,Π multisets of formulas, through a two-phase refinement: the first one is to separate
the succedent Π into two parts: one that is essentially classical; and another containing
a single formula, the stoup. The second one is to add nested layers to sequents, which
intuitively corresponds to worlds in the Kripke structure [Fit14].

The structure of a nested sequent for ecumenical modal logics is hence a tree whose
nodes are multisets of formulas, just like in [Str13,CMS16]. The difference is that the
ecumenical formulas can be left inputs (in the left contexts – marked with a full circle •),
right inputs (in the classical right contexts – marked with a triangle O) or a single right
output (the stoup – marked with a white circle ◦).

Definition 2. Ecumenical nested sequents are defined in terms of a grammar of input
sequents (written Λ) and full sequents (written Γ) where the left/right input formulas are
denoted by A• and AO, respectively, and A◦ denote output formulas. When the distinction
between input and full sequents is not essential or cannot be made explicit, we will use
∆ to stand for either case. The relationship between parent and child in the tree will be
represented using bracketing [·].

Λ B ∅ | A•, Λ | AO, Λ | [Λ] Γ B A◦, Λ | [Γ], Λ ∆ B Λ | Γ

We write Γ⊥
◦

for the result of replacing an output formula from Γ by ⊥◦, while Λ⊥
◦

represents the result of adding anywhere of the input context Λ the output formula ⊥◦.
Finally, ∆∗ is the result of erasing an output formula (if any) from ∆.

Example 2. The nested sequent ♦cAO, [¬A◦] represents a tree of sequents where ♦cA is
in the right (classical) input context of the root sequent, while ¬A is in the output context
(stoup), in the leaf sequent.

Observe that full sequents Γ necessarily have exactly one output-like formula, having
the form

Λ1,
[
Λ2,

[
. . . ,

[
Λn, A◦

]]
. . .

]
As usual, we allow sequents to be empty, and we consider sequents to be equal modulo
associativity and commutativity of the comma.

The next definition (of contexts) allows for identifying subtrees, necessary for intro-
ducing inference rules for nested sequents.
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Definition 3. An n-ary context ∆
{

1
}
· · ·

{n }
is like a sequent but contains n pairwise

distinct numbered holes { } wherever a formula may otherwise occur.
Given n sequents ∆1, . . . , ∆n, we write ∆{∆1} · · · {∆n} for the sequent where the i-th

hole in ∆
{

1
}
· · ·

{n }
has been replaced by ∆i (for 1 ≤ i ≤ n), assuming that the result is

well-formed, i.e., there is at most one output formula. If ∆i = ∅ the hole is removed.
A full context is a context of the form Γ

{
1
}
· · ·

{n }
, while an input context is of the

form Λ
{

1
}
· · ·

{n }
.

Given two nested sequents with a hole Γi{} = ∆i
1,

[
∆i

2,
[
. . . ,

[
∆i

n, {}
]]
. . .

]
, i ∈ {1, 2},

their merge is the nested sequent with a hole5

Γ1 ⊗ Γ2{} = ∆1
1, ∆

2
1,

[
∆1

2, ∆
1
2,

[
. . . ,

[
∆1

n, ∆
2
n, {}

]]
. . .

]
Figure 2 in Appendix A presents the system nEK, a nested sequent system for the
ecumenical modal logic EK.

Example 3. Below left is the nested derivation corresponding to the labeled derivation
in Example 1.

[A•, A◦] init

♦iA◦, [A•]
♦◦i

♦iA ∨i ♦iB◦, [A•]
∨◦i

[B•, B◦] init

♦iB◦, [B•]
♦◦i

♦iA ∨i ♦iB◦, [B•]
∨◦i

♦iA ∨i ♦iB◦, [A ∨i B•]
∨•i

♦i(A ∨i B)•, ♦iA ∨i ♦iB◦
♦•i

♦i(A ∨i B)→i (♦iA ∨i ♦iB)◦
→◦i

[
A•, AO,⊥◦] initc[
AO,¬A◦

] ¬◦
♦cAO, [¬A◦]

♦Oc

�¬A◦, ♦cAO �
◦

¬�¬A•, ♦cAO,⊥◦ ¬
•

¬�¬A•, ♦cA◦ store

The derivation above right shows part of the proof that ♦c can be defined from �
(♦cA ≡ ¬�¬A). Note the instance of the classical general version of the initial axiom,
initc (see Theorem 2 in the next section). It also illustrates well the relationship between
nestings, classical inputs, and Kripke structures: reading the proof bottom-up, the store
rule is a delay on applying rules over classical connectives. It corresponds to moving the
formula up w.r.t. ≤ in the Kripke birrelational semantics. The rule �◦, on the other hand,
slides the formula to a fresh new world, related to the former one through the relation R.
Finally, rule ¬◦ also moves up the formula w.r.t. ≤. Compare this description with the
image in Remark 1. In this paper, we will not explore formally the relationship between
delays/negations/nestings and the Kripke semantics.

We prove next that nEK is harmonic, that is, it has the identity expansion and
cut-elimination properties.

3.1 Harmony

A logical connective is called harmonious in a certain proof system if there exists a
certain balance between the rules defining it. For example, in natural deduction based

5 As observed in [Lel19], the merge is a “zipping” of the two nested sequents along the path from
the root to the hole.
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systems, harmony is ensured when introduction/elimination rules do not contain insuf-
ficient/excessive amounts of information [DD20]. In sequent calculus, this property is
often guaranteed by the admissibility of a general initial axiom (identity-expansion) and
the cut rule (cut-elimination) [MP13]. In the following, we will prove harmony, together
with some intermediate results. We start with a proof theoretical result in nEK, which
has a standard proof (see [PPdP19] and [MPPS20] for similar results).

Lemma 1. In nEK, the rules ∨•c ,∨Oc ,→•c ,→Oc ,¬•,¬◦, p•c , pOc , ♦
•
c , ♦
O
c and D are invertible,

that is, in any application of such rules, if the conclusion is a provable nested sequent
so are the premises. The rules ∧•,∧◦,∨•i ,→◦i , ♦•i ,�•,�◦ and store are totally invertible,
that is, they are invertible and do not have restrictions over contexts.

Observe that the invertible but not totally invertible rules in nEK concern negative
formulas, hence they can only be applied in the presence of empty (⊥◦) stoups. Note
also that the rules W,∨◦i , and ♦◦i are not invertible, while→•i is invertible only w.r.t. the
right premise.

Theorem 2. The following rules are admissible in nEK

Λ{A•, A◦} initg
Γ⊥

◦ {A•, AO} initc
Γ

Λ ⊗ Γ Wc
Λ ⊗ Λ ⊗ Γ
Λ ⊗ Γ Cc

Proof. The proofs are by standard induction on the height of derivations. The proof
of admissibility of Wc does not depend on any other result, while the admissibility
of Cc depends on invertibility results (Lemma 1). The proof of admissibility of the
general initial axioms is by mutual induction. Bellow we show the modal cases where,
by inductive hypothesis, instances of the axioms hold for the premises.

Γ⊥
◦ {[

A•, AO
]} initc

Γ⊥
◦ {♦cAO, [A•]} ♦

O
c

Γ⊥
◦ {♦cA•, ♦cAO} ♦

•
c

Λ{[A•, A◦]} initg

Λ{�A•, [A◦]} �
•

Λ{�A•,�A◦} �
◦
ut

Proving admissibility of cut rules in sequent based systems with multiple contexts is
often tricky, since the cut formulas can change contexts during cut reductions. This is
the case for nEK. The output cut rules shown bellow are admissible in nEK.

Theorem 3. The following intuitionistic and classical cut rules are admissible in nEK

Λ{P◦} Γ{P•}
Λ ⊗ Γ{∅} cut◦

Λ⊥
◦ {NO} Γ{N•}
Λ ⊗ Γ{∅} cutO

Proof. The dynamic of the proof is the following: cut applications either move up in the
proof, or are substituted by simpler cuts of the same kind, as in usual cut-elimination
reductions. The cut applications swing from intuitionistic to classical and vice-versa
in the principal cases, when the polarity of the subformulas flip. All such moves either
decrease the height of the application of the cut rule (called cut-height) or the complexity
of the formula under cut (called ecumenical weight of the cut-formula). When the cut
instance touches a leave, it is eliminated. The definition of ecumenical weight and the
proofs for some critical cases are shown in Appendix B. ut
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4 Soundness

In this section we will show that all rules presented in Figure 2 are sound w.r.t. the
ecumenical birelational Kripke model.

The idea is to prove that the rules of the system nEK preserves validity, in the
sense that if the interpretation of the premises is valid, so is the interpretation of the
conclusion. The first step is to determine the interpretation of ecumenical nested sequents.
As shown in the Appendix C, it is possible to interpret nested sequents as ecumenical
modal formulas, and hence prove soundness in the same way as in [Str13]. This is
really interesting, since it shows a direct interpretation of nested sequents as ecumenical
formulas, which reveals that nEK is an internal proof system.

In this section, we will rather present the translation of nestings to labeled sequents,
hence establishing, at the same time, soundness of nEK and the relation between this
system with labEK.

First of all, we observe that the entailment in ecumenical systems is intrinsically
intuitionistic, in the sense that Γ ⇒ B in LE iff `LEci

∧
Γ →i B (see [PPdP19]). Moreover,

the classical connectives are defined via the intuitionistic ones by sporadic double-
negation. Another interesting aspect is that, in the labelled ecumenical modal system
labEK, fresh world labels can be created (bottom-up) by the box operator in succedents
and both diamond connectives in antecedents. Yet, once this new world is created, it is
shared by all modal formulas, independently of the intuitionistic or classical nature.

This suggests the following interpretation of nested into labeled ecumenical sequents.

Definition 4. Let Π•, ΠO, Π◦ represent that all formulas in the respective contexts are
input left, right, or output formulas, respectively. The underlying multisetΠ will represent
the formulas inA corresponding to the respective unmarked formula. The translation
[[·]]x from nested into labeled sequents is defined recursively by

[[Π•1 , Π
O
2 , Π

◦
3 , [∆1], . . . , [∆n]]]x B ({xRxi}i, x : Π1, x : ¬Π2 ⇒ x : Π3) ⊗x

{
[[∆i]]xi

}
i

where 1 ≤ i ≤ n, xi are fresh, and the merge operation on labeled sequents is defined as

(Σ1 ⇒ Π1) ⊗x (Σ2 ⇒ Π2) B Σ1, Σ2 ⇒ Π1, Π2

Given R a set of relational formulas, we will denote by xR∗z the fact that there is a path
from x to z in R, i.e., there are y j ∈ R for 0 ≤ j ≤ k such that x = y0, y j−1Ry j and yk = z.

That is, right input formulas are translated as negated left input formulas, and nestings
correspond to worlds in the Kripke structure. The next result shows that, in fact, this
interpretation is correct.

Theorem 4. If `nEK Γ then `labEK [[Γ]]x.

Proof. The proof is by standard induction on the proof π of Γ. We will illustrate a
classical and a modal case.

– If the last rule applied in π is (∨Oc ), by inductive hypothesis,

[[Γ⊥
◦ {

AO, BO
}
]]x = R, Σ, z : ¬A, z : ¬B⇒ x : ⊥
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is provable for a set R and a multiset Σ of relational and labeled formulas, respec-
tively, translating the context Γ⊥

◦
, where xR∗z. Hence:

R, Σ, z : ¬A, z : ¬B⇒ z : ⊥
R, Σ ⇒ z : A ∨c B

∨cR

R, Σ, z : ¬(A ∨c B)⇒ x : ⊥ ¬L

Observe that, due to the rule W in labEK, the label of right ⊥ is irrelevant.
– If the last rule applied in π is (♦Oc ), by inductive hypothesis,

[[∆⊥
◦

1

{
♦cAO,

[
AO, ∆⊥

◦
2

]}
]]x = R, zRy, Σ, z : ¬(♦cA), y : ¬A⇒ x : ⊥

is provable for a set R and a multiset Σ of relational and labelled formulas, respec-
tively, translating the contexts ∆⊥

◦
1 , ∆⊥

◦
2 , where xR∗z. Hence:

R, zRy, Σ, z : ¬(♦cA), z : �¬A, y : ¬A⇒ z : ⊥
R, zRy, Σ, z : ¬(♦cA), z : �¬A⇒ z : ⊥ �L

R, zRy, Σ, z : ¬(♦cA)⇒ z : ♦cA
♦cR

R, zRy, Σ, z : ¬(♦cA)⇒ x : ⊥ ¬L ut

The proof above also establishes the relationship between proofs in nEK and labEK: the
right input context stores negative formulas, which are in fact negated positive formulas
(as in Girard’s LC [Gir91]), and the decision rule D in nEK is mimicked in labEK by
applications of the left rule for negation. In this way, the use of nestings together with
decision and store rules imposes a discipline on rule applications in labeled systems.

Theorems 1 and 4 immediately imply the following.

Corollary 1. The nested system nEK is sound w.r.t. ecumenical modal Kripke semantics.

Finally, we observe that translating sequents and proofs from labeled to nested systems
is not a simple task, sometimes even impossible. Hence the method described above
often does not work for proving completeness of the system. We will show completeness
with respect to the Hilbert system.

5 Completeness

Classical modal logic K is characterized as propositional classical logic, extended with
the necessitation rule (presented in Hilbert style) A/�A and the distributivity axiom
k : �(A→ B)→ (�A→ �B).

In the intuitionistic case, however, the discussion is more interesting, since there are
many variants of axiom k that induces classically, but not intuitionistically, equivalent
systems (see [PS86,Sim94]). In fact, the following axioms classically follow from k and
the De Morgan laws, but not in an intuitionistic setting

k1 : �(A→ B)→ (♦A→ ♦B) k2 : ♦(A ∨ B)→ (♦A ∨ ♦B)
k3 : (♦A→ �B)→ �(A→ B) k4 : ♦⊥ → ⊥
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Combining axiom k with axioms k1−k4 characterizes intuitionistic modal logic IK [PS86].
In the ecumenical setting, this discussion is even more interesting, since there are

many more variants of k, depending on the classical or intuitionistic interpretation of
implications and diamonds.

The theorems in ecumenical modal logic EK are defined as being the formulas that
are derivable from the axioms of intuitionistic propositional logic plus the definitions of
classical operators using negation, and the intuitionistic versions of the axioms k − k4.
It is easy to see that a formula is derivable in EK iff it is valid in all birelational Kripke
frames (see [MPPS20]).

Also, it is a trivial matter to check that the EK axioms are provable in nEK (see e.g.
Example 3). Hence, in the presence of cut-elimination (Section 3.1), the completeness
result is valid for nEK.

Theorem 5. Every theorem of the logic EK is provable in nEK.

6 Extracting fragments

In this section, we will study pure classical and intuitionistic fragments of nEK. For the
sake of simplicity, negation will not be considered a primitive connective, it will rather
take its respective intuitionistic or classical form.

Definition 5. An ecumenical modal formula C is classical (intuitionistic) if it is built
from classical (intuitionistic) atomic propositions using only neutral and classical
(intuitionistic) connectives but negation, which will be replaced by A→c ⊥ (A→i ⊥).

The first thing to observe is that, when only pure fragments are concerned, weakening
is admissible. Observe that this is not the case for the whole system nEK. In fact,
A ∨c ¬AO,C◦ is provable in nEK for any formula C, but the proof necessarily starts with
an application of the rule W if, e.g., C is an atomic formula pi.

Proposition 1. Let nEKi (nEKc) be the system obtained from nEK −W by restricting
the rules to the intuitionistic (classical) case (see Figures 3 and 4 in Appendix A). The
rule W is admissible in nEKi and nEKc.

Proof. For the intuitionistic fragment, the proof is standard, by induction on the height
of derivations (considering all possible rule applications). The classical case is more
involved. The idea is that classical formulas in the stoup are eagerly decomposed
until either an axiom is applied, or the formula is stored in the classical input context
and the stoup becomes empty. This is only possible because the rules ∧◦ and �◦ are
totally invertible and all the other rules in nEKc are invertible (Lemma 1). Formally, the
following discipline is complete for nEKc, when proving a nested sequent Γ:

i. Apply the rules ∧•,∧◦,�•,�◦ and store eagerly, obtaining leaves of the form Λ{⊥◦}.
ii. Apply any rule of nEKc eagerly, until either finishing the proof with an axiom

application or obtaining leaves of the form Λ{P◦}, where P is a positive formula in
nEKc, that is, having as main connective ∧ or �. Start again from step (i).
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Axiom Condition First-Order Formula
D : �A→ ♦A Seriality ∀x∃y.R(x, y)

T : �A→ A ∧ A→ ♦A Reflexivity ∀x.R(x, x)
B : A→ �♦A ∧ ♦�A→ A Symmetry ∀x, y.R(x, y)→ R(y, x)

4 : �A→ ��A ∧ ♦♦A→ ♦A Transitivity ∀x, y, z.(R(x, y) ∧ R(y, z))→ R(x, z)
5 : �A→ �♦A ∧ ♦�A→ ♦A Euclideaness ∀x, y, z.(R(x, y) ∧ R(x, z))→ R(y, z)

Table 1. Axioms and corresponding first-order conditions on R.

Observe that weakening is never applied, since a positive classical formula P◦ is totally
decomposable into negative subformulas of the form N◦, which are stored in the classical
input context as NO, or ⊥◦. ut

This result clarifies the role of weakening in nEK: it serves as a bridge between intuition-
istic and classical parts of a derivation and its application can be restricted to just below
classical rules.

Since weakening is not present, nEKi matches exactly the system NIK in [Str13].

Fact 6 The intuitionistic fragment of nEK is Straßburger’s system NIK.

For the classical fragment, the discipline presented in the proof of Proposition 1 is
interesting per se, since it induces a focused flavor to nEKc: neutral connectives are
handled in the stoup, while rules on classical connectives are applied in classical context.

But this discipline does not match the focusing defined in [CMS16], since in that
work the diamond is considered positive and the box negative, while the ecumenical
system forces the opposite polarity assignment. For providing a fully focused system,
we should adopt a fully polarized syntax, with polarized versions of conjunction and
disjunction, as done e.g. in [LM11,CMS16]. This will be left for a future work.

7 Extensions

Depending on the application, several further modal logics can be defined as extensions
of EK by simply restricting the class of frames we consider or, equivalently, by adding
axioms over modalities. Many of the restrictions one can be interested in are definable
as formulas of first-order logic, where the binary predicate R(x, y) refers to the corre-
sponding accessibility relation. Table 1 summarizes some of the most common logics,
the corresponding frame property, together with the modal axiom capturing it [Sah75].

Since the intuitionistic fragment of nEK coincides with NIK, intuitionistic versions
for the rules for the axioms d, t, b, 4, and 5 match the rules (•) and (◦) presented in [Str13],
and are depicted in Figure 5, Appendix A.

For completing the ecumenical view, the classical (O) rules for extensions are justified
via translation to the labeled system labEK. For example, the labeled derivation on the
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left justifies the classical rule in the middle.

xRx,R, Σ, x : ¬A⇒ x : ⊥
xRx,R, Σ, x : �¬A⇒ x : ⊥ �L

R, Σ, x : �¬A⇒ x : ⊥ T

R, Σ ⇒ x : ♦cA
♦cR

R, Σ, x : ¬♦cA⇒ z : ⊥ ¬L
Γ⊥

◦ {AO}
Γ⊥

◦ {♦cAO} tO xRx, Γ ` z : C
Γ ` z : C T

The rule T above right is the labeled rule corresponding to the axiom t [Sim94]. The
rules dO, bO, 4O and 5O, shown in Figure 5, are obtained in the same manner. In this
way, we have proposed ecumenical modal systems for all the logics in the S5 modal
cube [BRV01].

8 Conclusion and future work

In this paper, we have presented a pure, nested proof system nEK for the ecumenical
modal logic EK, together with pure fragments, and the modal cube extensions. We proved
soundness of nEK w.r.t. the ecumenical birelational Kripke model via a translation to the
labeled ecumenical modal system labEK. For completeness, we used the fact that EK
axioms are provable in nEK, and we proved cut-elimination for nEK. Finally, having an
ecumenical nested system allowed for extracting well known systems as fragments.

First of all, it should be noted that combining classical and intuitionistic modalities in
the same logical internal system, which is a conservative extension of both, is not trivial.
In fact, the labeled system presented in [MPPS20] makes an extensive use of negations
in order to keep classical information persistent. This can be mimicked by adding an
extra classical context for storing negative formulas, as done in Girard’s classical system
LC [Gir91], thus solving the “purity” part. On the other hand, there seems to be no
trivial solution for removing labels from intuitionistic modal sequent systems where
the distributivity of the diamond w.r.t. the disjunction holds. The solution adopted here
was to extend the framework to nested sequents, where the tree structure describes the
corresponding path in the Kripke structure, and labels can be eliminated.

It turns out that this mix of extra context, polarities, and nestings can be implosive,
in the sense that adding a cut rule may lead to a collapse of the system to classical modal
logic. For controlling the implosion, the cut rules should have a restrict use of polarities
which, in turn, makes the cut-elimination proof non trivial.

There are many interesting ideas that can be proposed for the systems, axioms, and
semantics, as indicated throughout the text, and many lines to be pursued in this research
direction. First of all, we have proposed a proof discipline for nEK, which does not
correspond to focusing in the modal systems presented in [CMS16]. In fact, the presence
of weakening breaks down focusing, and we should investigate alternative ways of
having a fully focused system. Moreover, it should be really interesting to study typing
in ecumenical systems, obtaining as fragments well known typed modal systems. Finally,
we plan to implement ecumenical provers, as well as to automate the cut-elimination
proof in the L-Framework [OPR21].
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A Proof systems

x : pi, Γ ⇒ x : pi
init x : ⊥, Γ ⇒ z : C

⊥L
Γ ⇒ y : ⊥
Γ ⇒ x : A W

x : pi, Γ ⇒ z : ⊥
x : pc, Γ ⇒ z : ⊥ Lc

x : pi, Γ ⇒ x : ⊥
Γ ⇒ x : pc

Rc

x : A, x : B, Γ ⇒ z : C
x : A ∧ B, Γ ⇒ z : C ∧L

Γ ⇒ x : A Γ ⇒ x : B
Γ ⇒ x : A ∧ B ∧R

x : ¬A, Γ ⇒ z : A
x : ¬A, Γ ⇒ z : ⊥ ¬L

x : A, Γ ⇒ x : ⊥
Γ ⇒ x : ¬A ¬R

x : A, Γ ⇒ z : C x : B, Γ ⇒ z : C
x : A ∨i B, Γ ⇒ z : C

∨iL
Γ ⇒ x : A j

Γ ⇒ x : A1 ∨i A2
∨iR j

x : A, Γ ⇒ z : ⊥ x : B, Γ ⇒ z : ⊥
x : A ∨c B, Γ ⇒ z : ⊥ ∨cL

Γ, x : ¬A, x : ¬B⇒ x : ⊥
Γ ⇒ x : A ∨c B

∨cR

x : A→i B, Γ ⇒ x : A x : B, Γ ⇒ z : C
x : A→i B, Γ ⇒ z : C

→i L
x : A, Γ ⇒ x : B
Γ ⇒ x : A→i B

→i R

x : A→c B, Γ ⇒ x : A x : B, Γ ⇒ z : ⊥
x : A→c B, Γ ⇒ z : ⊥ →c L

x : A, x : ¬B, Γ ⇒ x : ⊥
Γ ⇒ x : A→c B

→c R

xRy, y : A, x : �A, Γ ⇒ z : C
xRy, x : �A, Γ ⇒ z : C �L

xRy, Γ ⇒ y : A
Γ ⇒ x : �A �R

xRy, y : A, Γ ⇒ z : C
x : ♦iA, Γ ⇒ z : C

♦iL

xRy, Γ ⇒ y : A
xRy, Γ ⇒ x : ♦iA

♦iR
xRy, y : A, Γ ⇒ z : ⊥

x : ♦cA, Γ ⇒ z : ⊥ ♦cL
x : �¬A, Γ ⇒ x : ⊥

Γ ⇒ x : ♦cA
♦cR

Fig. 1. Ecumenical modal system labEK. In rules �R, ♦iL, ♦cL, the eigenvariable y does not occur
free in any formula of the conclusion. In the rule W, either A , ⊥ or x , y.

Λ
{
p•i , p◦i

} init
Γ{⊥•} ⊥

• Γ⊥
◦

Γ
W

Γ⊥
◦ {

p•i
}

Γ⊥
◦ {

p•c
} p•c

Γ⊥
◦ {

pOi
}

Γ⊥
◦ {

pOc
} pOc

Γ{A•, B•}
Γ{A ∧ B•} ∧

• Λ{A◦} Λ{B◦}
Λ{A ∧ B◦} ∧◦

Γ∗{¬A•, A◦}
Γ⊥

◦ {¬A•} ¬
• Γ⊥

◦ {A•}
Γ⊥

◦ {¬AO} ¬
O

Γ{A•} Γ{B•}
Γ{A ∨i B•} ∨•i

Λ
{
A◦j

}
Λ
{
A1 ∨i A◦2

} ∨◦i j

Γ⊥
◦ {A•} Γ⊥

◦ {B•}
Γ⊥

◦ {A ∨c B•}
∨•c

Γ⊥
◦ {AO, BO}

Γ⊥
◦ {A ∨c BO} ∨

O
c

Γ∗{A→i B•, A◦} Γ{B•}
Γ{A→i B•} →•i

Λ{A•, B◦}
Λ{A→i B◦} →

◦
i

Γ∗{A→c B•, A◦} Γ⊥
◦ {B•}

Γ⊥
◦ {A→c B•}

→•c

Γ⊥
◦ {A•, BO}

Γ⊥
◦ {A→c BO} →

O
c

∆1{�A•, [A•, ∆2]}
∆1{�A•, [∆2]} �

• Λ{[A◦]}
Λ{�A◦} �

◦ Γ{[A•]}
Γ{♦iA•}

♦•i
Λ1{[A◦, Λ2]}
Λ1{♦iA◦, [Λ2]} ♦

◦
i

Γ⊥
◦ {[A•]}

Γ⊥
◦ {♦cA•}

♦•c
∆⊥
◦

1

{
♦cAO,

[
AO, ∆⊥

◦
2

]}
∆⊥
◦

1

{
♦cAO,

[
∆⊥
◦

2

]} ♦Oc
Γ∗{PO, P◦}
Γ⊥

◦ {PO} D
Λ{NO,⊥◦}
Λ{N◦} store

Fig. 2. Nested ecumenical modal system nEK. P is a positive formula, N is a negative formula.
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Λ
{
p•i , p◦i

} init
Γ{⊥•} ⊥

• Γ{A•, B•}
Γ{A ∧ B•} ∧

• Λ{A◦} Λ{B◦}
Λ{A ∧ B◦} ∧◦

Γ{A•} Γ{B•}
Γ{A ∨i B•} ∨•i

Λ
{
A◦j

}
Λ
{
A1 ∨i A◦2

} ∨◦i j
Γ∗{A→i B•, A◦} Γ{B•}

Γ{A→i B•} →•i
Λ{A•, B◦}
Λ{A→i B◦} →

◦
i

∆1{�A•, [A•, ∆2]}
∆1{�A•, [∆2]} �

• Λ{[A◦]}
Λ{�A◦} �

◦ Γ{[A•]}
Γ{♦iA•}

♦•i
Λ1{[A◦, Λ2]}
Λ1{♦iA◦, [Λ2]} ♦

◦
i

Fig. 3. Intuitionistic fragment nEKi.

Γ
{
p•c , pOc

} init
Γ{⊥•} ⊥

• Γ{A•, B•}
Γ{A ∧ B•} ∧

• Λ{A◦} Λ{B◦}
Λ{A ∧ B◦} ∧◦

Γ⊥
◦ {A•} Γ⊥

◦ {B•}
Γ⊥

◦ {A ∨c B•}
∨•c

Γ⊥
◦ {AO, BO}

Γ⊥
◦ {A ∨c BO} ∨

O
c

Γ∗{A→c B•, A◦} Γ⊥
◦ {B•}

Γ⊥
◦ {A→c B•}

→•c

Γ⊥
◦ {A•, BO}

Γ⊥
◦ {A→c BO} →

O
c

∆1{�A•, [A•, ∆2]}
∆1{�A•, [∆2]} �

• Λ{[A◦]}
Λ{�A◦} �

◦

Γ⊥
◦ {[A•]}

Γ⊥
◦ {♦cA•}

♦•c
∆⊥
◦

1

{
♦cAO,

[
AO, ∆⊥

◦
2

]}
∆⊥
◦

1

{
♦cAO,

[
∆⊥
◦

2

]} ♦Oc
Γ∗{PO, P◦}
Γ⊥

◦ {PO} D
Λ{NO,⊥◦}
Λ{N◦} store

Fig. 4. Classical fragment nEKc.

Γ{�A•, [A•]}
Γ{�A•} d•

Λ{[A◦]}
Λ{♦iA◦} d◦

Γ⊥
◦ {[AO]}

Γ⊥
◦ {♦cAO} dO

Γ{�A•, A•}
Γ{�A•} t•

Λ{A◦}
Λ{♦iA◦} t◦

Γ⊥
◦ {AO}

Γ⊥
◦ {♦cAO} tO

∆1{[∆2,�A•], A•}
∆1{[∆2,�A•]} b•

Λ1{[Λ2], A◦}
Λ1{[Λ2, ♦iA◦]} b◦

∆⊥
◦

1

{[
∆⊥
◦

2

]
, AO

}
∆⊥
◦

1

{[
∆⊥
◦

2 , ♦cAO
]} bO ∆1{[∆2,�A•],�A•}

∆1{[∆2],�A•} 4•

Λ1{[Λ2, ♦iA◦]}
Λ1{[Λ2], ♦iA◦} 4◦

∆⊥
◦

1

{[
∆⊥
◦

2 , ♦iA◦
]}

∆⊥
◦

1

{[
∆⊥
◦

2

]
, ♦cAO

} 4O Γ{[�A•][�A•]}
Γ{[�A•][∅]} 5•

Λ{[∅][♦iA◦]}
Λ{[♦iA◦][∅]} 5◦

Γ⊥
◦ {[∅][♦cAO]}

Γ⊥
◦ {[♦cAO][∅]} 5O

Fig. 5. Ecumenical modal extensions for axioms d, t, b, 4 and 5.

B Proof of Theorem 3

The proof is by mutual induction, with inductive measure (n,m) where m is the cut-height
and n is the ecumenical weight of the cut-formula, defined as

ew(Pi) = ew(⊥) = 0 ew(A ? B) = ew(A) + ew(B) + 1 if ? ∈ {∧,→i,∨i}
ew(Pc) = 4 ew(♥A) = ew(A) + 1 if ♥ ∈ {¬, ♦i,�}
ew(♦cA) = ew(A) + 4 ew(A ◦ B) = ew(A) + ew(B) + 4 if ◦ ∈ {→c,∨c}
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Intuitively, the ecumenical weight measures the amount of extra information needed (the
negations added) in order to define the classical connectives from the intuitionistic and
neutral ones. We will sketch next the most important cut-reductions.

– Base cases. Consider the derivation below left
π

Λ
{
p◦i

}
Γ
{
p•i

} init

Λ ⊗ Γ{∅} cut◦

π
Λ
{
p◦i

}
Λ ⊗ Γ∗

{
p◦i

} Wc

If p•i is principal, then Γ
{
p•i

}
= Γ∗

{
p◦i , p•i

}
and the reduction is the one above right.

If p•i is not principal, then {p◦i , p•i } ∈ Λ ⊗ Γ{∅} and the reduction is the trivial one.
Similar analyses hold for cutO, when the left premise is an instance of init, and for
the other axioms.

– Non-principal cases. In all the cases where the cut-formula is not principal in one of
the premises, the cut moves upwards. We illustrate the most significant case, where
a decide rule is applied, as in the derivation below left.

π1
Λ{NO, PO, P◦}
Λ⊥

◦ {NO, PO} D π2
Γ{N•}

Λ ⊗ Γ{PO}{∅} cutO

π1
Λ{NO, PO, P◦}

π2
Γ⊥

◦ {N•}
Λ ⊗ Γ∗{PO, P◦}{∅} cutO

Λ ⊗ Γ⊥◦ {PO}{∅} D

If N• is principal in π2, then Γ = Γ⊥
◦

and D moves downwards the cut, obtaining
the derivation above right. Otherwise, the cut moves upwards in the right premise.

– Principal cases. If the cut formula is principal in both premises, then we need to be
extra-careful with the polarities. We illustrate below the reduction for case where
N = A→c B, with A, B positive.

π1
Λ⊥

◦ {A•, BO}
Λ⊥

◦ {A→c BO} →
O
c

π2
Γ∗{A→c B•, A◦}

π3
Γ⊥

◦ {B•}
Γ⊥

◦ {A→c B•} →•c
Λ ⊗ Γ⊥◦ {∅} cutO0

reduces to

π3

Γ⊥
◦ {B•}

Γ⊥
◦ {¬BO} ¬

O

π1

Λ⊥
◦ {A•, BO}

Λ⊥
◦ {A→c BO} →

O
c

π2
Γ∗{A→c B•, A◦}

Λ ⊗ Γ⊥◦ {A◦} cutO2
π≡1

Λ⊥
◦ {A•,¬B•}

Λ2 ⊗ Γ⊥◦ {¬B•} cut◦

Λ2 ⊗ Γ∗ ⊗ Γ⊥◦ {∅} cutO1

Λ ⊗ Γ⊥◦ {∅} Cc

where π≡1 is the same as π1 where every application of the rule decide D over BO is
substituted by an application of ¬• over B•. Observe that the cut-formula of cutO1
has lower ecumenical weight than cutO0 , while the cut-height of cutO2 is smaller than
cutO0 . Finally, observe that this is a non-trivial cut-reduction: usually, the cut over
the implication is replaced by a cut over B first. Due to polarities, if B is positive,
then ¬B is negative and cutting over it will add to the left context the classical
information B, hence mimicking the behavior of formulas in the right input context.
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C Alternative proof of soundness

In this section we will sketch an alternative proof of soundness of nEK w.r.t. the ecumeni-
cal birelational Kripke model. We start by interpreting nested sequents as ecumenical
formulas.

Definition 6. The formula translation et(·) for ecumenical nested sequents is given by

et(∅) B > et(A•, Λ) B A ∧ et(Λ)
et(AO, Λ) B ¬A ∧ et(Λ) et([Λ1], Λ2) B ♦iet(Λ1) ∧ et(Λ2)
et(Λ, A◦) B et(Λ)→i A et(Λ, [Γ]) B et(Λ)→i �et(Γ)

where all occurrences of A ∧ > and > →i A are simplified to A. We say a sequent is
valid if its corresponding formula is valid.

The following technical lemma holds in nEK, adapting the proof from NIK.

Lemma 2. [Str13, Lemmas 4.3 and 4.4] Let ∆ and Σ be input (resp. full) sequents, and
Γ{ } be a full context (resp. Λ{ } be an input context). If et(∆)→i et(Σ) is valid, then

et(Γ{Σ})→i et(Γ{∆}) is valid. et(Λ{∆})→i et(Λ{Σ}) is valid.

The next theorem shows that the rules of nEK preserve validity in ecumenical modal
frames w.r.t. the formula interpretation et(·).
Theorem 7. Let

Γ1 . . . Γn

Γ
r n ∈ {0, 1, 2}

be an instance of the rule r in the system nEK. Then et(Γ1) ∧ . . . ∧ et(Γn) →i et(Γ) is
valid in the birrelational ecumenical semantics.

Proof. The proof for the intuitionistic propositional and modal connectives follows the
same lines as in [Str13]. For the other cases, due to Lemma 2, it is sufficient to show that
the following formulas are valid

1. for W: ⊥ →i A
2. for ¬•: (¬A→i A)→i (¬¬A)
3. for ¬O: ¬A→i ¬A
4. for ∨•c : (¬A ∧ ¬B)→i (¬(A ∨c B))
5. for ∨Oc : (¬(¬A ∧ ¬B))→i (A ∨c B)
6. for→•c : (((A→c B)→i A) ∧ (¬B))→i (¬(A→c B))
7. for→Oc : (¬(A ∧ ¬B))→i (A→c B)
8. for p•c : (¬pi)→i (¬pc)
9. for pOc : (¬¬pi)→i pc

10. for ♦•c : (¬♦iA)→i (¬♦cA)
11. for ♦Oc : (�¬A)→i (¬♦cA)

But all such proofs are straightforward.
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