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Abstract—Collaboration is fundamental to our society, but 
how should we best build teams? We investigate by applying 
optimisation to an agent-based model of collaboration. The model 
takes inspiration from particle swarm optimisation, abstracting a 
shared goal as a shared optimisation task, and modelling the 
personality differences in team members as strategies for moving 
within, interpreting and sharing information about the solution 
space. We update the model and add a genetic algorithm in order 
to investigate the effects of differing initial ideas within teams of 
different personality combinations as they attempt to collaborate 
to achieve their shared task. We run experiments on homogeneous 
teams with similar personalities and heterogeneous teams with 
random personalities and find that increased diversity in team 
members’ initial ideas significantly improves teamwork, and more 
so for teams comprising individuals with similar personalities. 

Keywords—agent-based modelling, genetic algorithm, 
collaboration, teamwork, personality psychology 

I. INTRODUCTION 
Collaboration forms the cornerstone of human society. By 

working together, we achieve extraordinary feats of science, 
engineering, agriculture, medicine – indeed, all our 
advancements throughout human history. Today there is an 
ever-greater need for our teamworking to be effective, and 
increasing attention is being placed on finding the right 
combination of people to work together for a given task. Every 
individual is unique and is shaped by their background – so how 
to choose the right people for a team? Should we pick 
individuals who share similar initial ideas about the task, to 
minimise conflict? (This might be reflected by having similar 
places of education, similar socioeconomic background, or 
similar culture.) Should we pick individuals who all have similar 
personalities, because perhaps they will work together more 
effectively? Or conversely should we choose individuals who 
have completely different backgrounds, and start the task with 
radically differing ideas? Should we pick individuals with 
contrasting personalities, so that they might discuss more and 
generate original ideas? This work investigates these questions 
through the use of a genetic algorithm applied to a 
computational model of human teamwork. 

To study teamwork in this way we consider participants who  

 

have shared goals, but may have varied decision-making 
strategies involving different methods of communication and 
data processing. This can be contrasted with the frequently-
studied notion of cooperation, where it is assumed that 
participants have separate goals and all make decisions using the 
same information. For example, a prisoner may make a rational 
choice to cooperate with a police officer despite having a 
different goal. In contrast, two police officers collaborate 
together because they have shared goals, but they may do so 
ineffectively if their backgrounds differ or decision-making 
strategies (personalities) conflict [1].  

To understand how best to optimise human teams, we study 
collaboration, and in order to model different decision-making 
strategies, we use an agent-based model of collaboration, taking 
inspiration from particle swarm optimisation, that abstracts a 
shared goal as a shared optimisation task, and models the 
personality differences in team members as strategies for 
moving within, interpreting and sharing information about the 
solution space. In previous work we used the model to explore 
how teams with different personalities work together when the 
shared optimisation task has different levels of noise [1]. In this 
work, we modify the model in order to improve its speed, and 
add optimisation in the form of a genetic algorithm (GA) in 
order to investigate the effects of differing initial ideas within 
teams of different personality combinations as they attempt to 
collaborate to achieve their shared task. 

This paper is organised as follows. Section II describes 
related work. Section III describes the model, Section IV 
describes the genetic algorithm used to find the best and worst 
starting positions of teams, Section V describes the experiments, 
Section VI discusses the results and Section VIII concludes. 

II. BACKGROUND 
The use of agent-based modelling for human behaviour 

focussing on the effects of personalities has been performed by 
a handful of researchers so far. GAs have also been used to 
optimise agent-based models in general. The following two 
sections describe some examples of such work. To date there has 
been no work that applies a GA to an agent-based model of 
human teamwork that incorporates personalities in order to 
optimise teams based on their backgrounds. 



A. Agent-based Models of Personality in Collaboration 
  Salvit and Sklar [2] used the Myers-Briggs Type Indicator 

(MBTI) to model termites gathering food. The MBTI is a widely 
used personality inventory based the theory of psychological 
types by Jung [3] that classifies individuals based on their 
attitude (Extraverted vs. Introverted), perception (Sensing vs. 
Intuition) and judgment (Thinking vs. Feeling). In the termite 
model, Sensing agents focus on food that is close by and return 
to the place they last saw food if they cannot see food, while 
Intuitive agents prefer bigger clusters of food and explore new 
areas when they cannot see food. Thinking agents go straight for 
their targeted food, while Feeling agents avoid food that their 
neighbours are targeting.  

Campos et al. [4] simulated a firefighting scenario where a 
building is on fire and a person is in danger. Firefighter agents 
with different MBTI personality types can either put a safety-net 
in place for the person to jump on it or enter the building to bring 
the person out. They found that Sensing agents prefer to use the 
safety-net and Intuitive agents prefer to enter the building. 

Ahrndt et al. [5] used the five-factor model (FFM) to model 
ants in a colony working together to collect food and defend 
themselves. The FFM consists of five personality traits: 
openness to experience, conscientiousness, extraversion, 
agreeableness and neuroticism, and is widely used in personality 
research [6]. In the ant colony model, agreeableness and 
extraversion influence an agent’s preference to commit to selfish 
or altruistic goals, and variations on conscientiousness influence 
an agent’s preference to change their intentions.  

Durupinar [7] extended the High-Density Autonomous 
Crowds system using the FFM. They provided each agent with 
personalities that are associated with an existing behaviour in the 
system and found that specifying an agent’s personality leads to 
an automation of low-level parameter tuning. In their model, 
people with low conscientiousness and agreeableness cause 
congestion and neurotic people display panic behaviour. 

B. Optimising Agent-based Models with Genetic Algorithms 
Knoester et al. [8] used the AVIDA platform [9] to study the 

evolution of consensus, a cooperative behaviour in which 
members agree on information sensed in their environment. 
They used a form of evolutionary computation where a 
population of digital organisms is subject to instruction-level 
mutations and natural selection and placed them into groups 
whose fitness relied upon their ability to perform consensus. 
They then tested different degrees and types of genetic variation 
present in the population, based on biologically inspired models 
of gene flow. Their experiments found that while genetic 
heterogeneity within groups increases the difficulty of the 
consensus task, a surprising number of groups were able to 
overcome these obstacles and evolve this cooperative behaviour. 

Heppenstall et al. [10] used a genetic algorithm to optimise 
an agent-based model for simulating a retail market. They model 
individual petrol stations as agents and integrated important 
additional system behaviour through the use of established 
methodologies such as spatial interaction model. The parameters 
were initially determined by the use of real data analysis and 
experimentation and then a GA is used to produce not just an 

optimised match, but results that match those derived by expert 
analysis through rational exploration. 

Wang et al. [11] used a genetic algorithm to optimise partner 
selection for virtual enterprises. They develop a genetic 
algorithm that finds the partners that reduce their collaboration 
time and cost. They consider three types of collaborations: 
logistics, information transmission and capital flow and two task 
allocation scenarios: allocating all tasks to one partner and 
allocation each task to different partners. 

III. THE PERSONALITY AGENT-BASED MODEL 
In our previous work [1], we proposed an agent-based model 

of human collaboration inspired by particle swarm optimisation 
to simulate the differing behaviours of people according to their 
personalities. Our model has the following key abstractions: 

• Problem. We abstract the shared goal of all agents as the 
shared task to optimise a function (i.e., find the values of 
𝐱 such that 𝑓(𝐱) is maximised). 

• Agent psychology. Inspired by swarming algorithms, 
we model the current mental state of each agent by giving 
it a position in the solution space (denoting the solution 
its mind has found so far), a velocity vector (denoting the 
direction and speed of its thought process), and 
acceleration vectors (representing the force of ideas and 
influences that modify the direction and speed of 
thought), the latter determined by its personality. 

• Agent communication. We model the distribution of 
information between agents as they each try to solve the 
same problem. The exact type of information perceived 
by each agent and its use is determined by its personality. 

Fig. 1 shows the algorithm of the model, and the following 
sections describe each component in detail. 

 

 
Fig. 1. Algorithm of the model [12]. 



A. Initialise 
The model is initialised with: 
• a problem space 𝐃 ∈ ℝ( 
• an objective function 𝑓(𝐱) 
• the number of timesteps 𝑇*+, to run the model	
• a population of agents 𝑁/0/, each agent 𝑖 ∈ 21,… , 𝑁/0/6 

is initialised with:	
o a personality type 𝐏8 (one of the MBTI personality 

types described in the next section)  
o a position 𝐱89 ∈ 𝐃: 𝐱*8( ≤ 𝐱89 ≤ 𝐱*+, , derived 

from a corresponding genotype (see Section IV)  
o a random velocity 𝐯89 ∈ ℝ(:−𝐯8(8> ≤ 𝐯89 ≤ 𝐯8(8> 
o personal best 𝑓8?@A> = 𝑓(𝐱89)  and personal best 

position 𝐱8?@A> = 𝐱89 
• group best 𝑓C?@A>  is the best 𝑓8?@A> , and group best 

position 𝐱C?@A> is the corresponding 𝐱8?@A> 

B. Update 
For each timestep 𝑡 ∈ {1,… , 𝑇*+,}, each agent 𝑖’s position 

𝐱8> is updated using Equation 1: 

xHI = xHIJK + vHI (1) 

with the velocity 𝐯8> calculated using Equation 2: 

vHI = vHIJK + aHI (2) 

If O𝐯8>O > 𝐯*+,, it is scaled to equal 𝐯*+,, in order to prevent 
excessive speed (an individual with high velocity would literally 
become too “set in their ways” and would find it impossible to 
change its direction of thought into a useful direction). 

Acceleration 𝐚8> is used to change the direction and speed of 
thought, as determined by the agent’s personality – one of the 
16 MBTI personality types [13]. The interpretation provided 
here is designed to enable each personality to have an equally 
good chance of finding the solution. Interpretations were created 
to represent MBTI personality types appropriately and were not 
tuned in order to achieve any specific result in later experiments. 

The MBTI consists of 16 personality types based on a 
person’s preferences on four opposing dichotomies: 
Extraversion (E) – Introversion (I), Sensing (S) – Intuition (N), 
Thinking (T) – Feeling (F), and Judging (J) – Perceiving (P) 
[13]. J – P defines the person’s preferred manner (either S–N or 
T–F) of dealing with the outer world. Each personality type has 
a dominant Jungian function (more developed) supported by an 
auxiliary Jungian function (less developed) as shown in Table I. 

Table II defines the Jungian attitude, and perception and 
judgment functions. Each attitude (extraversion and 
introversion) is used as a source of information for each function 
(Thinking, Feeling, Sensing, Intuition), resulting in Jung’s eight 
psychological types: extraverted Thinking (Te), introverted 
Thinking (Ti), extraverted Feeling (Fe), introverted Feeling (Fi), 
extraverted Sensing (Se), introverted Sensing (Si), extraverted 
iNtuition (Ne), introverted iNtuition (Ni).  

Acceleration 𝐚8> is calculated using Equation 3:  

aHI = aRHI + aS
H
I (3) 

where 𝐚T8> is the judging acceleration is calculated using Table 
III and 𝐚U8>  is the perceiving acceleration calculated using 
Equation 4:  

aSHI =VrX(cX − xHIJK)
Z

X[K

 
(4) 

where 𝑟K = 0.5, 𝑟 = 0.3, and 𝑟Z = 0.2, and 𝐜K , 𝐜`  and 𝐜Z  are 
the top 3 candidates derived using Table IV with 𝑓(𝐜K) ≥
𝑓(𝐜`) ≥ 𝑓(𝐜Z). In both tables, agent 𝑖’s neighbours are defined 
as the five nearest agents to agent 𝑖  measured by Euclidean 
distance, i.e., the peer group of each agent comprises those who 
share similar ideas to the agent. To ensure that the auxiliary 
component plays a lesser role compared to the dominant 

component, 𝐚T8>	 is scaled down such that e𝐚T8>e
`
= O𝐚fghO

i

`
 if 

e𝐚T8>e
`
> O𝐚fghO

i

`
 (if 𝐏8  has dominant perception and auxiliary 

judgment, otherwise vice versa). 

C. Evaluate 
Agent 𝑖’s fitness at timestep 𝑡 is evaluated as 𝑓8> = 𝑓(𝐱8>). 

Finally, the agent’s personal best 𝑓8?@A> , the agent’s personal 
best position 𝐱8?@A>, group best 𝑓C?@A>	and group best position 
𝐱C?@A> are updated. 

 
TABLE I. MYERS-BRIGGS TYPE TABLE SHOWING THE 16 PERSONALITY TYPES, 

WITH DOMINANT AND AUXILIARY FUNCTIONS [13] 

Type ISTJ ISFJ INFJ INTJ 
Dominant 
Auxiliary 

Si 
Te 

Si 
Fe 

Ni 
Fe 

Ni 
Te 

Type ISTP ISFP INFP INTP 
Dominant 
Auxiliary 

Ti 
Se 

Fi 
Se 

Fi 
Ne 

Ti 
Ne 

Type ESTP ESFP ENFP ENTP 
Dominant 
Auxiliary 

Se 
Ti 

Se 
Fi 

Ne 
Fi 

Ne 
Ti 

Type ESTJ ESFJ ENFJ ENTJ 
Dominant 
Auxiliary 

Te 
Si 

Fe 
Si 

Fe 
Ni 

Te 
Ni 

 
TABLE II. JUNGIAN ATTITUDES, PERCEPTIONS, AND JUDGMENTS [3] 

Attitude Extraversion: Directs perception and judgment on outer world 
of people and things. 
Introversion: Directs perception and judgment on outer world 
of people and things. 

Perception Sensing: Concrete perception, finds interest in actualities (made 
aware directly through the senses), prefers not to go beyond the 
objective, empirical world of facts. Relies on concrete, actual 
information. 
Intuition: Abstract perception, finds interest in connecting 
concepts and drawing parallels (made aware indirectly by way 
of the unconscious). Relies upon their conception about things 
based on their own understanding. 

Judgment Thinking: Impersonal assessment, comes to conclusions based 
on a logical process, aimed at an impersonal finding (facts and 
ideas), analyses and determines the truth or falseness of 
information in an impersonal fashion. 
Feeling: Person-centred assessment, comes to conclusions 
based on a process of appreciation, giving things a personal, 
subjective value. 



 

TABLE III. JUNGIAN JUDGING FUNCTIONS AND THEIR USE IN CALCULATING JUDGING ACCELERATION, 𝐚T8> 

Function Implementation 
Te: The agent is influenced by its neighbours’ best personal 
best. It accelerates towards its neighbours’ best personal 
best from the previous timestep. 

𝐚j@8> = 𝐱(8?@A>>JK − 𝐱
8
>JK                                                                                                          (5) 

where 𝐱(8?@A>>JK  is agent 𝑖’s neighbours’ personal best position in the previous timestep that 
results in the highest 𝑓(𝐱), and 𝐱8>JK is the agent’s position in the previous timestep.                                      

Ti: The agent focusses on its own personal best (the 
outcome of its own thoughts). It accelerates towards its 
own personal best, with randomness added to enable 
exploration.  

𝐚j88> = (𝐱8?@A>>JK − 𝐱
8
>JK) + 𝜑                                                                                                 (6) 

where 𝐱8?@A>>JK is agent 𝑖’s personal best position in the previous timestep, 𝐱8>JK is the agent’s 
position in the previous timestep, and 𝜑 is a random float in the interval [−2.0,2.0].  

Fe: The agent “identifies with other agent’s feelings” and 
“seeks harmony” by matching its neighbours’ average 
velocity (direction of thought) from the previous timestep 
and to a lesser extent accelerates towards its neighbours’ 
best personal best from the previous timestep. 

𝐚n@8> = 𝜔K ∙ 𝐯qr8>JK + 𝜔` ∙ 𝐚j@8>                                                                                                 (7)  
where weights 𝜔K = 0.8 , 𝜔` = 0.2 , 𝐯qr8>JK  is agent 𝑖 ’s neighbours’ average velocity in the 
previous timestep, and 𝐚j@8> is calculated using Equation 5. 

Fi: The agent “empathises with” its neighbours’ ideas by 
accelerating towards its neighbours’ average position from 
the previous timestep. It also cares about its own personal 
thoughts, so accelerates towards its own best position.  

𝐚n88> = 𝜔K ∙ (𝐂𝒏8>JK − 𝐱
8
>JK) + 𝜔` ∙ (𝐱8?@A>>JK − 𝐱8>JK)                                                          (8)  

where weights 𝜔K = 0.8, 𝜔` = 0.2, 𝐂𝒏8>JKis the centroid (arithmetic mean position) of agent 𝑖’s 
neighbours’ positions in the previous timestep.  

 

TABLE IV. JUNGIAN PERCEIVING FUNCTIONS AND THEIR USE IN GETTING CANDIDATES. THE FIRST THREE CANDIDATES ARE RETURNED AS 𝑐K, 𝑐` AND 𝑐Z 

Function Implementation 
Se: The agent sees its neighbours’ positions and their 
quality. Candidates are the positions of the agent’s nearest 
neighbours in the previous timestep. 

ℂx@8> = {𝐱8(K>JK,… , 𝐱
8
(y>JK}                                                                                                      (9) 

where 𝐱8(K>JK is agent 𝑖’s first neighbour’s position in the previous timestep, and 𝐱8(y>JK is agent 
𝑖’s fifth neighbour’s position in the previous timestep. The candidates for current and previous 
timestep ℂx@8> and ℂx@8>JK are then sorted in the order of decreasing 𝑓(𝐱). 

Si: The agent remembers all its own previous positions and 
a few nearby points and their quality. Candidates are the 
agent’s previous path and new points near to their position. 

ℂx88> = {𝐱89, … , 𝐱8>JK} ∪ 𝑷                                                                                                                 (10) 
where P is the set of points near to 𝐱8>JK . Given 𝐱8>JK = (𝑥K, 𝑥`,… , 𝑥() , 𝑷 = {(𝑥K +
𝛿, 𝑥`,… , 𝑥(), (𝑥K − 𝛿, 𝑥`,… , 𝑥(), (𝑥, 𝑥` + 𝛿,… , 𝑥(), (𝑥K, 𝑥` − 𝛿,… , 𝑥(), … , (𝑥K, 𝑥`, … , 𝑥( +
𝛿), (𝑥K, 𝑥`,… , 𝑥( − 𝛿)} where 𝛿 is a random number from a normal distribution 𝑁(𝜇, 𝜎) with 
𝜇 = 1 and 𝜎 = 0.01. The candidates for current and previous timestep ℂx88> and ℂx88>JK are then 
sorted in the order of decreasing 𝑓(𝐱). 

Ne: The agent sees its neighbours’ positions and uses them 
to create an “imaginary solution space”. Candidates 
produced from Se (data from the environment) are used as 
input to train the Gaussian process regression function. 
Candidates are then the best quality solutions resulting 
from sampling this imaginary space. 

𝑓∗ = 𝒢𝒫:	𝑡𝑟𝑎𝑖𝑛(ℂx@, 𝑓(ℂx@)); 	𝑝𝑟𝑒𝑑𝑖𝑐𝑡�ℂr@8>�                                                                                 (11) 
where 𝒢𝒫  is the Gaussian process regression function [14], training on ℂx@  𝑎𝑛𝑑  𝑓(ℂx@), and 
ℂr@8>  is a vector of points in 𝐃. The candidates for current and previous timestep ℂr@8>  and 
ℂr@8>JK are then sorted in the order of decreasing 𝑓∗. 

Ni: The agent sees its own previous positions and a few 
nearby points and uses them to create an “imaginary 
solution space”. Candidates produced from Si (internal 
data) are used as input to train the Gaussian process 
regression function. Candidates are then the best quality 
solutions resulting from sampling this imaginary space. 

𝑓∗ = 𝒢𝒫:	𝑡𝑟𝑎𝑖𝑛(ℂx8, 𝑓(ℂx8)); 	𝑝𝑟𝑒𝑑𝑖𝑐𝑡�ℂr88>�                                                                                                 (12)  
where 𝒢𝒫 is the Gaussian process regression function, training on ℂx8 and 𝑓(ℂx8), and ℂr88> is a 
vector of points in 𝐃. The candidates for current and previous timestep ℂr88> and ℂr88>JK are then 
sorted in the order of decreasing 𝑓∗. 

 

D. Updates to Model 
In this work, we updated the model by changing the ℂr@8> 

and ℂr88> vector from all discrete points in 𝐃 to every 10 points, 
in order to speed up computation. We also reduced Tmax from 50 
to 25 because fewer time steps are required to run the model 
when there is no noise, and we duplicate each run 50 times 
instead of 100 times for the same reason. We then reran previous 
experiments [1], verifying that our updates do not change the 
agent performance or trends. Finally, in [1], agents start with 
random positions (so people who start nearer to the solution may 
have some benefit – reflecting someone having a better idea of 
the solution at the start). Here, the distance of all agents from the 
solution is the same, but the distribution of agents on this circle 
is varied by a genetic algorithm, see Section IV. 

E. Settings and Function 
The model was initialised with constant settings in Table V 

and an objective function 𝑓(𝐱) as described in Equation 13: 

𝑓(𝑥, 𝑦) = −�𝑥` + 𝑦` (13) 

The function was normalised such that 𝑓(𝐱) ∈ [0,1]:	∀	𝑥 ∈
[𝐱*8(, 𝐱*+,]. Fig. 2 shows the heatmap and surface plot. The 
function represents a simple problem with a clear gradient.  

 
TABLE V. CONSTANTS SETTINGS FOR THE MODEL 

Constants Tmax Npop vmax xmin xmax vinit 

Values 25 4 5.0 (-100,-100) (100, 100) (1.0, 1.0) 



 

  
Fig. 2. Surface plot (left) and heatmap (right) for normalised Equation 13 with 
a maximum in (0, 0). Colour ranges from blue (minimum) to red (maximum). 

IV. USING A GENETIC ALGORITHM TO EVOLVE STARTING 
POSITIONS 

In this work we investigate whether teams of individuals 
who share similar initial ideas about the task perform better at 
solving the task, compared to teams who begin with very 
different initial ideas. In the model an “initial idea” corresponds 
to the starting point of the agent in the solution space. Thus, we 
use a genetic algorithm to evolve the starting points of agents, 
and then run the model to determine their success (team fitness). 

The starting position of each team member is a point on a 
circle with origin at the optimal so that no starting position is 
more advantageous than another. Positions are represented using 
polar coordinates, Pn (r, q) where  radial r = 90 (i.e., a distance 
of 90 from (0, 0)), and polar coordinate angle q determined by 
the GA. Each q is represented as a 9-digit binary chromosome. 
This string is converted into degrees by converting the binary 
string to its decimal equivalent, which ranges from 0 to 511, 
adding 1 to it to make it range from 1 to 512, and then scaling it 
to 360 degrees. For a team of n=4 members as used in the 
experiments, their angles are specified by a 36-digit binary 
genotype. For example, the 36-digit genotype 
011001000010001100101011111000110001 corresponds to the 
phenotype illustrated in Fig. 3. 

 

P1q P2q 

 

011001000 = 200 010001100 = 140 
200 + 1
512

× 360°
= 141° 

140 + 1
512

× 360°
= 99° 

P3q P4q 
101011111 = 351 000110001 = 49 
351 + 1
512

× 360°
= 248° 

49 + 1
512

× 360°
= 35° 

Fig. 3. Positions of team members P1, P2, P3 and P4 in problem space 𝐃. 

A standard canonical GA is used with population size of 20, 
each individual solution representing the starting positions of a 
team. Each team has four members with predefined personalities 
(one of the 16 types). For each member of the population, fitness 
is calculated by decoding the genotype to produce four starting 
locations for the team members. The agent-based model is run 
50 times for the team to produce average team performance for 
the task of maximising Equation 13. (The group best at the end 
of each run is recorded and team performance is measured by 
their average group best, which is the total group best for all runs 
divided by total number of runs). Based on fitness, 8 individuals 
are chosen as parents. 20 child teams are created using single-
point crossover from the parents. A single bit flip mutation 

occurs with a probability of  0.2 per chromosome. The GA is run 
for 100 generations. (Values were found following preliminary 
experiments to determine fastest and most effective settings.) 

We can then understand the diversity of “initial ideas” as the 
average starting distance in polar coordinate angles between 
team members: 

𝑆𝑡𝑎𝑟𝑡𝐷𝑖𝑠𝑡K,`,Z,� =
𝐷K,` + 𝐷K,Z + 𝐷K,� + 𝐷`,Z + 𝐷`,� + 𝐷Z,�

6  (14) 

where we calculate the nearest distance between two members 
𝑃𝑖  and 𝑃𝑗  as 𝐷8,� = |𝑃𝑖� − 𝑃𝑗�|  if |𝑃𝑖� − 𝑃𝑗�| ≤ 180°  and 
𝐷8,� = 360° − (|𝑃𝑖� − 𝑃𝑗�|) if |𝑃𝑖� − 𝑃𝑗�| > 180°. In a team 
of four, the highest possible StartDist is 120° and occurs when 
each consecutive team member is 90° apart. 

V. EXPERIMENTS 
To investigate the effects of differing initial ideas within 

teams, we use the GA to set the “initial idea” of each member of 
the team. Our experiments investigate four scenarios: 

E1. What are the optimal initial positions of team members, 
in order for the team to achieve best success in solving 
their problem, where all individuals share the same 
personalities? 

E2. What are the optimal initial positions of team members, 
in order for the team to achieve worst success in solving 
their problem, where all individuals share the same 
personalities? 

E3. What are the optimal initial positions of team members, 
in order for the team to achieve best success in solving 
their problem, where all individuals have random 
personalities? 

E4. What are the optimal initial positions of team members, 
in order for the team to achieve worst success in solving 
their problem, where all individuals have random 
personalities? 

For E1 and E2, to investigate starting positions where all 
team members have the same personalities, we repeated the 
experiment for 16 teams, one for each personality type, with all 
four team members having the same personality (e.g., a team of 
four INTJs). E1 used parent selection of the best members of the 
population, with the best team being the top team from the final 
generation. E2 used parent selection of the worst members of the 
population with the worst team being the bottom team from the 
final generation. 

For E3 and E4, the number of possible teams with random 
personalities can be calculated as: 

𝐶�(𝑛, 𝑟) =
(𝑛 + 𝑟 − 1)
𝑟! (𝑛 − 1)! , 𝐶

�(16,4) = 3876 

Each GA takes an average of 2 hours per run, depending on 
the personality combinations, so investigating all combinations 
of teams is infeasible. For this reason, we randomly selected 20 
teams of random personality combinations, shown in Table VI. 
The same GA parent and final team selection was used in E3 and 
E4 as for E1 and E2, respectively. 

P4 (90, 35º)

P2 (90, 99º)

P1 (90, 141º)

P3 (90, 248º)

 



TABLE VI. TEAMS WITH RANDOM PERSONALITIES 

Team No. P1 P2 P3 P4 
T1 INTJ ISTP ESFP ENFP 
T2 INFJ INFJ INTJ INTP 
T3 INFJ ENTP ENTP ENTJ 
T4 INTJ INTP INTP ENFJ 
T5 ISTJ ISTJ ISFP ESFJ 
T6 INFJ ISFP ENFJ ENTJ 
T7 ISFJ INFP ESTJ ESFJ 
T8 ISFJ INTJ ENFP ENTP 
T9 ESTP ENFP ESFJ ENTJ 

T10 ISTJ ISFJ INTP INTP 
T11 INFJ INFJ ISTP ENFP 
T12 ISFJ INFP ESTP ENFP 
T13 ISFJ INFP INFP ESTJ 
T14 ISFJ ESFP ESFP ENTP 
T15 INTJ INTJ ISFP ESFP 
T16 ISTJ ISTJ INTP ESTP 
T17 INFJ ISTP ISFP ENFJ 
T18 INFJ ESTP ENFJ ENTJ 
T19 INTP ESTP ENFP ESFJ 
T20 ISFJ INFJ ISFP ENFP 

 

For all experiments, we ran the GA 10 times and measured 
average 𝑆𝑡𝑎𝑟𝑡𝐷𝑖𝑠𝑡  over 10 runs (AvgDist), average team 
performance over 10 runs (AvgPerf), and finally, t-test is used to 
assess whether the differences in the averages between the best 
teams and their corresponding worst teams are significant. 

VI. RESULTS 

A. Experiments E1 and E2: Teams with Same Personality 
Fig. 4 provides the results for experiments E1 and E2. Most 

best teams (E1) have more diverse initial ideas compared to 
worst teams (E2) – 14 out of 16 have higher AvgDist, with 
Teams INTJ and ENFJ being the exceptions (Fig. 4 top). All best 
teams (E1) perform significantly better than their corresponding 
worst teams (E2) (Fig. 4 bottom). The differences in AvgDist 
between E1 and E2 for Teams ISTJ, INFJ, INTJ, INTP, ENFP, 
and ENFJ are not significant, indicating that they are less 
sensitive, with similar distances between best and worst teams.  

 When optimised, Team INFJ performed the best (0.9999, 
AvgDist=105.6°) and INTP the worst (0.9552, AvgDist=95.2°). 
When minimised, Team INFJ performed the best (0.9878, 
AvgDist=99.9°) and ISFP the worst (0.5795, AvgDist=37.3°). 
The GA found team ISTP to be the most sensitive to distance 
between team members with the highest AvgDist of 116.8° (very 

near the maximum of 120°) when optimised and the lowest 
AvgDist  of 21.4° when minimised. 

B. Experiments E3 and E4: Teams with Random Personality 
Fig. 5 provides the results for experiments E3 and E4. 

Random teams are less sensitive to diversity of initial position 
amongst team members. Although most best teams (E3) have 
more diverse initial ideas compared to worst teams (E4) (12 out 
of 20 have higher AvgDist) the differences are only significant 
for six of the teams (Fig. 5 top). None of the teams with INFJ 
and ENFJ members have significant differences in AvgDist. This 
appears to mirror findings for E1 and E2, where INFJ and ENFJ 
are among the personalities whose performance are not sensitive 
to diversity. All best teams (E3) perform significantly better than 
their corresponding worst teams (E4) (Fig. 5 bottom). 

Team T4 is the only team where when optimised (E3) has 
significantly lower AvgDist than when minimised (E4). T4 
consists fully of team members that are not sensitive to initial 
positions (as found in E1 vs. E2). The results also show that 
interaction between personalities changes their sensitivity to 
diversity. For example, everyone in T14 is sensitive to distances 
in E1 vs. E2, but the differences in AvgDist for E3 vs. R4 are not 
significant; T10 and T16 has 3 out of 4 team members that are 
not sensitive to distances in E1 vs. E2 but both have high 
significant difference in AvgDist when put with one member 
where distances matter.  

VII. ANALYSIS 
Fig. 6 illustrates the change in AvgDist for each team in each 

experiment during evolution. Most teams have their AvgDist 
increased over generations for E1 and E3, and decreased over 
generations for E2 and E4. However, it is clear that the GA 
discovered that making distances as large as possible, or as small 
as possible, was rarely optimal. Instead, the GA converged to 
relatively stable specific distance values for each team. E1 and 
E2 show that most personalities are more effective with larger 
initial distances, with only two exceptions: INTJ and ENFJ, 
which seem to work well regardless of distance. A similar result 
is clear in E3 and E4, where the right combination of different 
personalities can perform consistently well, making the team 
less affected by initial distances. Thus, in general, diversity is 
helpful, whether in initial position or in team personalities. 

Fig. 7 illustrates the change in AvgPerf for each team in each 
experiment during evolution. All teams are able to optimise their 
AvgPerf in E1 and E3 and minimise it in E2 and E4, although it 

 
Fig. 4. E1 and E2 Teams with same personality: AvgDist and AvgPerf. Error bars represent standard deviation. * indicates that the t-test results show a significant 
difference between the averages for the pair of teams at p < .05, ** at p < .01 and *** at p < .001. 

*** *** *** *** *** *** *** *** *** *** *** *** *** *** *** ***

*** *** *** ** *** *** *** *** ** *



 
Fig. 5. E3 and E4 Teams with random personality: AvgDist and AvgPerf. Error bars represent standard deviation. * indicates that the t-test results show a significant 
difference between the averages for the pair of teams at p < .05, ** at p < .01 and *** at p < .001. 

 

 
  

Fig. 6. AvgDist (y-axis) over generations (x-axis) for E1, E2, E3 and E4. All experiments share the same y-axis scales. 

 

 
  

Fig. 7. AvgPerf (y-axis) over generations (x-axis) for E1, E2, E3 and E4. E1 and E3 share the same y-axis scales. E2 and E4 share the same y-axis scales.

*** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** ***

** *** *** *** **** *

E1 E2 E3 E4

E1 E2 E3 E4



is clear that some teams produce considerably better results 
when minimising their performance, compared to others. 

Some explanation for these behaviours can be found by 
looking at the significances of Fig. 4 and Fig. 5, where the Se 
function (Table IV) is present in all teams that have significant 
differences in AvgDist between E1 and E2 (but not between E3 
and E4), while the Ni function (Table IV) is the most indifferent 
to distances, i.e., the majority of homogeneous teams with Ni are 
indifferent to distances, and uniquely all heterogeneous teams 
with the Ni function are indifferent to distances. Thus, the model 
predicts that Extraverted Sensors (who rely on communication) 
do better with teams containing diverse ideas, while Introverted 
Intuitives (who are inward thinking and rely less on 
communication) are less affected by diversity.  

Looking at average distances and performances across all 
experiments (Fig. 8), best teams have higher average AvgDist 
compared to their corresponding worst teams, i.e., E1 vs. E2 and 
E3 vs. E4. This confirms that regardless of personality (same or 
random), teams with higher diversity in their initial positions 
perform better than teams with lower diversity. The average 
AvgDist of best teams with same personalities (E1) is higher 
than the average AvgDist of best teams with random 
personalities (E3), indicating that when team members have 
same personalities, they needed to start from more diverse ideas 
in order to perform their best. This prediction is corroborated by 
literature: empirical studies have found that functionally diverse 
management teams are more innovative, respond better to 
threats, and quicker to implement organisational change than 
functionally homogeneous teams. In a study involving 92 
workgroups, informational diversity, i.e., differences in 
knowledge and perspectives that members bring to the team, 
positively influences team performance [15].  

Teams with different personalities are more resilient to the 
differences in initial positions affecting performances. As can be 
seen in Fig. 8 (right), heterogeneous teams perform better than 
homogeneous teams with smaller standard deviations, 
regardless of whether it is minimisation or maximisation. This 
prediction is also corroborated by literature: separate studies of 
information systems teams have found that successful teams 
have more diverse personalities [16, 17]. 

 
Fig. 8. Average AvgDist (left) and average AvgPerf (right) over all teams in E1, 
E2, E3 and E4. Error bars represent standard deviation.  

VIII. CONCLUSION 
In this work we applied a genetic algorithm to an agent-

based model of collaboration in order to explore the effects of 
creating teams with diverse or similar initial ideas on their ability 
to solve a simple task. As discovered by the GA, each type of 
team “preferred” a different and very specific level of diversity 
for them to work optimally well or poorly. The results showed 
that almost all homogeneous teams (comprising identical 

personality types) benefited from starting from more diverse 
initial ideas (and those that did not benefit were already 
performing well so no benefit was evident). At their worst, 
homogeneous teams were also considerably worse than 
heterogenous teams. The results also showed that heterogeneous 
teams (comprising mixtures of personalities) generally 
performed the task more consistently well, and while many also 
benefited from specific levels of diversity in their initial 
positions, some were naturally diverse enough that it made little 
difference to their already-good results.  

In optimisation and machine learning, the benefits of broader 
exploration before fine-tuning via exploitation are well-known. 
It seems that the same may also be true of human teams: the right 
amount of diversity can enable improved exploration of the 
problem, and better, more consistent results. 
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