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Abstract 
Change is inevitable in this fast-moving world. As the 
environment and people’s needs continuously change, so must 
the project. In our previous work, we developed an agent-based 
model of human collaboration that incorporates individual 
personalities. In this work, we applied a genetic algorithm to 
select the optimal personality combinations of a team in order to 
cope with different types of project change. We studied change 
in the context of three types of tasks: disjunctive (team 
performance is the performance achieved by the best performing 
individual), conjunctive (team performance is the performance 
achieved by the worst performing individual), and additive (team 
performance is the total performance of the group). Results 
reveal that different compositions of team personalities are 
suitable for different dynamic problems and task types. In 
particular, optimal personalities found for static problems differ 
from optimal personalities found for dynamic problems. 

Introduction 
Dynamically changing problems are a fact of life. Teams of 
people face change every day. Software developers frequently 
find themselves chasing a moving target as clients change their 
minds about features to be implemented (Lim & Finkelstein, 
2011). Architects and builders must change their solutions as 
regulators decide there have been infringements of rules. 
Doctors must modify their treatments as illnesses follow 
unexpected courses. Engineers must change their processes as 
new technologies emerge. Companies must alter their products 
as markets change. People are remarkable in their adaptability 
and ability to cope with such change. Yet not all people are 
suited for all types of change. In every team, some may be 
better suited to cope with certain forms of change compared to 
others, and this may be related to their personalities.  

In a pioneering study of group processes and productivity, 
Steiner (1972) found that tasks can be classified based on how 
individual contributions of members of a group are combined. 
For example, in disjunctive tasks, team performance is the 
performance achieved by the best performing individual (e.g., 
mathematicians proving a theorem), in conjunctive tasks, team 
performance is the performance achieved by the worst 
performing individual (e.g., a factory assembly line), and in 
additive tasks, team performance is the total performance of the 
group (e.g., a relay race or tug of war). 

In our previous work, we developed an agent-based model 
of human collaboration and studied the effectiveness of 
different personalities at solving problems with different levels 
of noise (Lim & Bentley, 2018). We also used the model to 
investigate the effects of diversity in background and 
personality on team performance (Lim & Bentley, 2019). 

In this work, we hypothesise that different combinations of 
personalities are needed for different dynamic problems and 
task types. We modify the model in order to simulate dynamic 
problems and types of task, and add a genetic algorithm in order 
to optimise the best team personalities to solve each task type 
and dynamic problem.  

The rest of the paper is organised as follows. The next 
section describes the background, the section after that 
describes the agent-based model of human collaboration. Then 
we describe the modifications we made to the model for this 
work, followed by the experiments, results and conclusions. 

Background 
Agent-based models have been used to study the effects of 
human personalities in collaborative work, such as termites 
gathering food (Salvit & Sklar, 2012), ant colony (Ahrndt et al., 
2015) and crowd movement (Durupinar et al., 2011). In these 
models, each agent is provided with a human personality, 
which determines how it behaves and interacts with other 
agents. 

Agent-based models have been optimised in previous work 
using genetic algorithms (GAs). Heppenstall et al. (2007) used 
a GA to optimise an agent-based model of a retail market. They 
model petrol stations as agents and integrated additional system 
behaviour through the use of spatial interaction model. A GA 
is then used to optimise the model, producing results that match 
those derived by expert analysis through rational exploration. 

Wang et al. (2009) used a GA to optimise partner selection 
for virtual enterprises that reduces their collaboration time and 
cost. They consider three types of collaborations (logistics, 
information transmission and capital flow) and two task 
allocation scenarios (allocating all tasks to one partner and 
allocation each task to different partners). 

Knoester et al. (2013) used the AVIDA platform (Lenski et 
al., 2003) to study the evolution of consensus, a cooperative 
behaviour in which members agree on information sensed in 



their environment. They used a form of evolutionary 
computation where a population of digital organisms is subject 
to instruction-level mutations and natural selection, and placed 
them into groups with fitness determined by their ability to 
perform consensus. Their experiments found that while genetic 
heterogeneity within groups increases the difficulty of the 
consensus task, a surprising number of groups were able to 
evolve this cooperative behaviour. 

Lim and Bentley (2019) used a GA to investigate the effects 
of differing initial knowledge within team members as they 
collaborate on a shared task. The GA is used to evolve the 
optimal starting positions of each team member (representing 
their initial idea about the solution) and diversity is measured 
as the distance between their starting positions. The 
experiments found that diversity in team members’ initial 
knowledge improves team performance, although teams with 
diverse personalities are more resilient to effects of diversity.  

In this work we model teams collaborating to solve 
dynamically changing problems. Most research on dynamic 
optimisation has so far concentrated on tracking the moving 
optima as closely as possible (Jin, 2011). In practice, this is 
costly, if not impossible. To address dynamic optimsation 
problems more practically, Jin et al. (2013) introduced an 
optimisation algorithm that aims to find an acceptable (optimal 
or sub-optimal) solution that changes slowly over time, rather 
than the moving global optimum. A local approximation model 
is constructed using its neighbouring historical data in the 
database to estimate a solution’s past performance. 

In summary, despite related work touching on many aspects 
of this topic, there do not exist any agent-based models that 
attempt to understand which combinations of personalities are 
optimal for dynamic problems or for different kinds of task. 
Given that evolutionary algorithms have been shown to be 
effective at optimising agent-based models, we use this 
approach to optimise the agent-based model in this work. 

Agent-based Model of Collaboration 
The model used in this work, proposed in (Lim & Bentley, 
2018), is designed to model human behaviour as team members 
collaborate to solve a shared task. The agent-based model uses 
a unique variant of particle swarm optimisation (PSO) to 
simulate the differing behaviours of people according to their 
personalities. The model has the following key abstractions: 
• Problem. The shared goal of all agents is abstracted as 

the shared task to optimise a function (i.e., find the values 
of 𝐱 such that 𝒇(𝐱) is maximised). 

• Agent psychology. The current “mental state” of each 
agent is modelled by giving it a position in the solution 
space (denoting the solution its mind has found so far), a 
velocity vector (denoting the direction and speed of its 
thought process), and acceleration vectors (representing 
the force of ideas and influences that modify the direction 
and speed of thought), the latter determined by its 
personality (behaviour algorithm). 

• Agent communication. The distribution of information 
between agents is modelled as they each try to solve the 

same problem. The exact type of information perceived 
by each agent and its use is determined by its personality. 

Figure 1 shows the algorithm of the model, and the following 
sections describe each component in detail. 
 

 

Figure 1: Algorithm of the model (Lim & Bentley, 2018). 

Initialise 
The model is initialised with: 
• a problem space 𝐃 ∈ ℝ( 
• an objective function 𝑓(𝐱) 
• the number of timesteps 𝑇+,- to run the model	
• a population of agents 𝑁010, each agent 𝑖 ∈ 31,… , 𝑁0107 

is initialised with:	
o a personality type 𝐏9 (one of the MBTI 

personality types, defined by a corresponding 
genotype (see later))  

o a random position 𝐱9: ∈ 𝐃: 𝐱+9( ≤ 𝐱9: ≤ 𝐱+,-  
o a random velocity 𝐯9: ∈ ℝ(:−𝐯9(9? ≤ 𝐯9: ≤

𝐯9(9? 
o personal best 𝑓9@AB? = 𝑓(𝐱9:) 

• Group best for timestep 0, 𝑓D@AB?: (see later)  

Update 
For each timestep 𝑡 ∈ {1,… , 𝑇+,-}, each agent 𝑖’s position 𝐱9? 
is updated using Equation 1: 

𝐱9? = 𝐱9?HI + 𝐯9? (1) 

with the velocity 𝐯9? calculated using Equation 2: 

𝐯9? = 𝐯9?HI + 𝐚9? (2) 

If |𝐯9?| > 𝐯+,-, it is scaled to equal 𝐯+,-, in order to prevent 
excessive speed (an individual with high velocity would 
literally become too “set in their ways” and would find it 
impossible to change its direction of thought into a useful 
direction). 

Acceleration 𝐚9? is used to change the direction and speed of 
thought, as determined by the agent’s personality – one of the 



16 MBTI personality types (Myers, 1962). The interpretation 
provided here is designed to enable each personality to have an 
equally good chance of finding the solution. Interpretations 
were created to represent MBTI personality types appropriately 
and were not tuned in order to achieve any specific result in 
later experiments. 

The MBTI consists of 16 personality types based on a 
person’s preferences on four opposing dichotomies: 
Extraversion (E) – Introversion (I), Sensing (S) – Intuition (N), 
Thinking (T) – Feeling (F), and Judging (J) – Perceiving (P) 
(Myers, 1962). J – P defines the person’s preferred manner 
(either S–N or T–F) of dealing with the outer world. Each 
personality type has a dominant Jungian function (more 
developed) supported by an auxiliary Jungian function (less 
developed) as shown in Table 1.  

Table 2 defines the Jungian attitude, and perception and 
judgment functions. Each attitude (extraversion and 
introversion) is used as a source of information for each 
function (Thinking, Feeling, Sensing, Intuition), resulting in 
Jung’s eight psychological types: extraverted Thinking (Te), 
introverted Thinking (Ti), extraverted Feeling (Fe), introverted 
Feeling (Fi), extraverted Sensing (Se), introverted Sensing (Si), 
extraverted iNtuition (Ne), introverted iNtuition (Ni).  

The Jungian intuitive functions (Ne and Ni) includes the 
notion of intuiting solutions, i.e., from sparse data they 
interpolate missing information, sometimes resulting in 
remarkable predictions (and sometimes not). This is modelled 
through a Gaussian process regression function which builds, 
from the data available to the agent, an internal imaginary view 
of the solution space for that agent. The agent then samples its 
imaginary space and is attracted to the area that it “believes” is 
a maximum. The Gaussian Progress Regressor from the Scikit-
learn Python library (implemented based on Algorithm 2.1 in 
Rasmussen and Williams (1996)) is used with default options. 

Acceleration 𝐚9? is calculated using Equation 3: 

𝐚9? = 𝐚N9? + 𝐚O
9
? (3) 

where 𝐚N9? is the judging acceleration is calculated using Table 
3 and 𝐚O9? is the perceiving acceleration calculated using 
Equation 4: 

𝐚O9? =PrR(cR − x9?HI)
U

RVI

 (4) 

where 𝑟I = 0.5, 𝑟[ = 0.3, and 𝑟U = 0.2, and 𝐜I, 𝐜[ and 𝐜U are 
the top 3 candidates derived using Table 4 with 𝑓(𝐜I) ≥
𝑓(𝐜[) ≥ 𝑓(𝐜U). In both tables, agent 𝑖’s neighbours are defined 
as the five nearest agents to agent 𝑖 measured by Euclidean 
distance, i.e., the peer group of each agent comprises those who 
share similar ideas to the agent. To ensure that the auxiliary 
component plays a lesser role compared to the dominant 

component, 𝐚N9?	is scaled down such that `𝐚N9?`
[
= a𝐚bcda

e

[
 if 

`𝐚N9?`
[
> a𝐚bcda

e

[
 (if 𝐏9 has dominant perception and auxiliary 

judgment, otherwise vice versa). 
 

Type ISTJ ISFJ INFJ INTJ 
Dominant 
Auxiliary 

Si 
Te 

Si 
Fe 

Ni 
Fe 

Ni 
Te 

Type ISTP ISFP INFP INTP 
Dominant 
Auxiliary 

Ti 
Se 

Fi 
Se 

Fi 
Ne 

Ti 
Ne 

Type ESTP ESFP ENFP ENTP 
Dominant 
Auxiliary 

Se 
Ti 

Se 
Fi 

Ne 
Fi 

Ne 
Ti 

Type ESTJ ESFJ ENFJ ENTJ 
Dominant 
Auxiliary 

Te 
Si 

Fe 
Si 

Fe 
Ni 

Te 
Ni 

Table 1: Myers-Briggs Type Table Showing the 16 Personality 
Types, with Dominant and Auxiliary Functions (Myers, 1962). 
 
Attitude Extraversion: Directs perception and judgment on 

outer world of people and things. 
Introversion: Directs perception and judgment on 
outer world of people and things. 

Perception Sensing: Concrete perception, finds interest in 
actualities (made aware directly through the senses), 
prefers to rely on objective, concrete facts.  
Intuition: Abstract perception, finds interest in 
connecting concepts and drawing parallels (made 
aware indirectly by way of the unconscious).  

Judgment Thinking: Analyses and determines the truth or 
falseness of information in an impersonal fashion, 
comes to conclusions based on a logical process, aimed 
at an impersonal finding (facts and ideas). 
Feeling: Person-centred assessment, comes to 
conclusions based on a process of appreciation, giving 
things a personal, subjective value. 

Table 2: Jungian Attitudes, Perceptions, and Judgments 
(Jung, 1923). 

Evaluate 
Agent 𝑖’s fitness at timestep 𝑡 is evaluated as 𝑓9? = 𝑓(𝐱9?). The 
agent’s personal best (𝑓9@AB?) and group best at timestep 𝑡 
(𝑓D@AB??) are evaluated as described in the next section. 

Updates to the Model 
In this work, we update the existing model by (1) modelling 
task types, (2) modelling dynamic problems, and (3) using a 
genetic algorithm to optimise team personalities. 

Task Types 
We model different task types by calculating group best 𝑓D@AB?? 
at timestep 𝑡 based on each task type as follows: 
• Disjunctive. Group performance is the performance of 

its best member, 𝑓D@AB?? is the best 𝑓9@AB?, 𝑖 ∈
31,… , 𝑁0107. This is the scenario most commonly used in 
optimisation algorithms. 

 



 
Function Implementation 
Te: The agent is influenced by its neighbours’ best 
personal best. It accelerates towards its neighbours’ 
best personal best from the previous timestep. 

𝐚fA9? = 𝐱(9@AB??HI − 𝐱
9
?HI                                                                                           (5)                                                                                   

where 𝐱(9@AB??HI is agent 𝑖’s neighbours’ personal best position in the previous timestep 
that results in the highest 𝑓(𝐱), and 𝐱9?HI is the agent’s position in the previous timestep.                                      

Ti: The agent focusses on its own personal best (the 
outcome of its own thoughts). It accelerates towards 
its own personal best, with randomness added to 
enable exploration.  

𝐚f99? = (𝐱9@AB??HI − 𝐱
9
?HI) + 𝜑                                                                                   (6)                                                                                      

where 𝐱9@AB??HI is agent 𝑖’s personal best position in the previous timestep, 𝐱9 ?HI is the 
agent’s position in the previous timestep, and 𝜑 is a random float in the interval 
[−2.0,2.0].  

Fe: The agent “identifies with other agent’s feelings” 
and “seeks harmony” by matching its neighbours’ 
average velocity (direction of thought) from the 
previous timestep and to a lesser extent accelerates 
towards its neighbours’ best personal best from the 
previous timestep. 

𝐚jA9? = 𝜔I ∙ 𝐯mn9?HI + 𝜔[ ∙ 𝐚fA
9
?                                                                                   (7)                                                                          

where weights 𝜔I = 0.8, 𝜔[ = 0.2, 𝐯mn9?HI is agent 𝑖’s neighbours’ average velocity in 
the previous timestep, and 𝐚fA9? is calculated using equation (5). 

Fi: The agent “empathises with” its neighbours’ ideas 
by accelerating towards its neighbours’ average 
position from the previous timestep. It also cares 
about its own personal thoughts, so accelerates 
towards its own best position.  

𝐚j99? = 𝜔I ∙ (𝐂𝒏9?HI − 𝐱
9
?HI) + 𝜔[ ∙ (𝐱9@AB??HI − 𝐱9?HI)                                            (8)                                              

where weights 𝜔I = 0.8, 𝜔[ = 0.2, 𝐂𝒏9?HIis the centroid (arithmetic mean position) of 
agent 𝑖’s neighbours’ positions in the previous timestep.  

Table 3: Jungian Judging Functions and Their Use in Calculating Judging Acceleration, 𝐚𝑱𝒊𝒕 (Lim & Bentley, 2018). 

 
Function Implementation 
Se: The agent sees its neighbours’ positions and their 
quality. Candidates are the positions of the agent’s 
nearest neighbours in the previous timestep. 

ℂvA9? = {𝐱9(I?HI, … , 𝐱
9
(w?HI}                                                                                        (9)                                                             

where 𝐱9(I?HI is agent 𝑖’s first neighbour’s position in the previous timestep, and 𝐱9(w?HI 
is agent 𝑖’s fifth neighbour’s position in the previous timestep. The candidates for current 
and previous timestep ℂvA9? and ℂvA9?HI are then sorted in the order of decreasing 𝑓(𝐱). 

Si: The agent remembers all its own previous 
positions and a few nearby points and their quality. 
Candidates are the agent’s previous path and new 
points near to their position. 

ℂv99? = {𝐱9:, … , 𝐱9?HI} ∪ 𝑷                                                                                          (10)                                                                  
where P is the set of points near to 𝐱9?HI. Given 𝐱9?HI = (𝑥I, 𝑥[, … , 𝑥(), 𝑷 =
{(𝑥I + 𝛿, 𝑥[, … , 𝑥(), (𝑥I − 𝛿, 𝑥[, … , 𝑥(), (𝑥, 𝑥[ + 𝛿, … , 𝑥(), (𝑥I, 𝑥[ −
𝛿, … , 𝑥(), … , (𝑥I, 𝑥[, … , 𝑥( + 𝛿), (𝑥I, 𝑥[, … , 𝑥( − 𝛿)} where 𝛿 is a random number from 
a normal distribution 𝑁(𝜇, 𝜎) with 𝜇 = 1 and 𝜎 = 0.01. The quality of old solutions is 
reduced as follows: every solution in the agent’s previous path {𝐱9:, … , 𝐱9?HI} that are 
more than 10 timesteps old are reduced in quality by decrementing the fitness by 0.001 
each timestep. The candidates for current and previous timestep ℂv99?  and ℂv99?HI are then 
sorted in the order of decreasing 𝑓(𝐱). 

Ne: The agent sees its neighbours’ positions and uses 
them to create an “imaginary solution space”. 
Candidates produced from Se (data from the 
environment) are used as input to train the Gaussian 
process regression function. Candidates are then the 
best quality solutions resulting from sampling this 
imaginary space. 

𝑓∗ = 𝒢𝒫:	𝑡𝑟𝑎𝑖𝑛(ℂvA, 𝑓(ℂvA)); 	𝑝𝑟𝑒𝑑𝑖𝑐𝑡�ℂnA9?�                                                          (11)                                                       
where 𝒢𝒫 is the Gaussian process regression function (Williams & Rasmussen, 1996), 
training on ℂvA 𝑎𝑛𝑑  𝑓(ℂvA), and ℂnA9? is a vector of points in 𝐃, sampled every 10 points. 
The candidates for current and previous timestep ℂnA9? and ℂnA9?HI are then sorted in the 
order of decreasing 𝑓∗. 

Ni: The agent sees its own previous positions and a 
few nearby points and uses them to create an 
“imaginary solution space”. Candidates produced 
from Si (internal data) are used as input to train the 
Gaussian process regression function. Candidates are 
then the best quality solutions resulting from 
sampling this imaginary space. 

𝑓∗ = 𝒢𝒫:	𝑡𝑟𝑎𝑖𝑛(ℂv9, 𝑓(ℂv9)); 	𝑝𝑟𝑒𝑑𝑖𝑐𝑡�ℂn99?�                                                           (12)                                                                              
where 𝒢𝒫 is the Gaussian process regression function, training on ℂv9 and 𝑓(ℂv9), and 
ℂn99?  is a vector of points in 𝐃, sampled every 10 points. The candidates for current and 
previous timestep ℂn99?  and ℂn99?HI are then sorted in the order of decreasing 𝑓∗. 

Table 4: Jungian Perceiving Functions and Their Use in Getting Candidates (Top Three Candidates Returned as 𝒄𝟏, 𝒄𝟐 and 𝒄𝟑) (Lim 
& Bentley, 2018). 

 
• Conjunctive. Group performance is the performance of 

its weakest member, 𝑓D@AB?� is the worst 𝑓9@AB?, 𝑖 ∈
31,… , 𝑁0107. 

• Additive. Group performance is a sum of all individual 
performances, 𝑓D@AB?? is the sum of all 𝑓9@AB?, 𝑖 ∈
31,… , 𝑁0107. 



Each agent’s personal best, 𝑓9@AB? , is calculated as the 
agent’s best fitness in the last 10 timesteps, i.e., 
𝑚𝑎𝑥	(𝑓9?, 𝑓

9
?HI,… , 𝑓

9
?H�,𝑓

9
?H�
). Retaining the memory of all 

best fitnesses for the entire run is not appropriate for dynamic 
problems where the optimal solution changes over time. 

This work evaluates the performance of groups of agents as 
they collaborate to solve dynamic problems over time, thus 
fitness scores are obtained throughout the run. The final group 
performance 𝑓�D@AB?  (used as the fitness function for the GA) 
is calculated using Equation 13: 

𝑓�D@AB? =
∑ 	𝑓D@AB??
f����[�]
?Vf����[:]

5
 (13) 

where 𝑇01�� is a list of timestep values and 𝑓D@AB?? is the group 
best at timestep 𝑡. 

Dynamic Problems 
To model dynamic problems, we use a simple two-dimensional 
problem with a clear gradient as in (Lim & Bentley, 2018). The 
objective function 𝑓(𝑥, 𝑦) is described in Equation 14: 

𝑓(𝑥, 𝑦) = −�(𝑥 − 𝑎)[ + (𝑦 − 𝑏)[ (14) 

where agent i’s position at time t, 𝐱9? = (𝑥, 𝑦), the values of 𝑎 
and 𝑏 are varied over time and 𝑓(𝑥, 𝑦) is normalised such that 
𝑓(𝑥, 𝑦) 	∈ 	 [0,1] ∶ 		∀	𝑥		 ∈ 	 [𝑥+9(, 𝑥+,-], ∀		𝑦	 ∈ 	 [𝑦+9(, 𝑦+,-]. 
Figure 2 shows the heatmap and surface plot when 𝑎 = 0 and 
𝑏 = 0. 

We investigate the following types of change: 

• Static: This is the baseline scenario with no change, 
where 𝑎 = 0 and 𝑏 = 0 for the entire duration. 

• Linear: The position of the maximum moves from left to 
right on the x-axis. At 𝑡 = 0, 𝑎 = −25 and 𝑏 = 0. The 
maximum starts at (-25, 0) and 𝑎 increments by 1 at every 
timestep, so at 𝑡 = 𝑇+,-, the maximum is at (25, 0), see 
Figure 3. This models a simple “moving target” problem, 
for example a design specification that changes over time 
as the team tries to find the solution. 

• Oscillating: The position of the maximum moves from 
left to right on the x-axis and returns to where it started. 
At 𝑡 = 0, 𝑎 = −25 and 𝑏 = 0, and 𝑎 increments by 2 at 
every timestep until 𝑎 = 25 and 𝑏 = 0, then 𝑎 decreases 
by 2 at every timestep so at 𝑡 = 𝑇+,-, 𝑎 = −25 and 𝑏 =
0, see Figure 4. This models a problem where best 
solutions oscillate and repeat, e.g., in trading, sometimes 
it is good to buy, sometimes it is good to sell. 

• Rotary: The position of the maximum moves 90° 
clockwise every 10 timesteps. At 𝑡 = 0, 𝑎 = 0 and 𝑏 =
50, at 𝑡 = 11, 𝑎 = 50 and 𝑏 = 0, at 𝑡 = 21, 𝑎 = 0 and 
𝑏 = −50, and so on, see Figure 5. This models a cyclic 
problem, e.g., designing gifts for different seasons 
throughout a year. 

   
Figure 2: Surface plot (left) and heatmap (right) for 
normalised Equation 14 with a maximum in (0, 0). Colour 
ranges from blue (minimum) to red (maximum). 
 

   

Figure 3: Linear at t=0, 25 and 50. 
 

   

Figure 4: Oscillating at t=0, 25 and 50. 
 

     

Figure 5: Rotary at t=0–10, 11–20, 21–30, 31–40, and 41–50. 

Genetic Algorithm for Optimising Team Personalities 
We used a genetic algorithm to evolve an optimal combination 
of agent personalities for each dynamic problem. For a team of 
n=4 members as used in the experiments, their personalities are 
specified by a 16-digit binary genotype. For example, the 16-
digit genotype 1100000110001010 corresponds to the 
phenotype INTJ, ESTP, ISTJ, ISFJ.  

A standard canonical GA is used with population size of 20, 
each individual solution representing the personalities of a 
team. Each team has four members, for each member of the 
population, fitness is calculated by decoding the genotype to 
produce four personalities for the team members. The agent-
based model is run 50 times for the team to produce average 
team performance. The group best at the end of each run is 
recorded and team performance is measured by their average 
group best, which is the total group best for all runs divided by 
total number of runs. Based on fitness, 8 individuals are chosen 
as parents. 20 child teams are created using single-point 
crossover from the parents. A single bit flip mutation occurs 
with a probability of 0.2 per chromosome.  



The GA is run for 20 generations. Values were found 
following preliminary experiments to determine fastest and 
most effective settings. 

Experiments 
Our experiments investigate each task type (Disjunctive, 
Conjunctive, Additive) with each dynamic problem (Static, 
Linear, Oscillating, Rotary) as illustrated in Table 5. 
  

Static Disjunctive Static Conjunctive Static Additive 
Linear Disjunctive Linear Conjunctive Linear Additive 

Oscillating Disjunctive Oscillating Conjunctive Oscillating Additive 
Rotary Disjunctive Rotary Conjunctive Rotary Additive 

Table 5: Task types with dynamic problems. 
 

For each experiment, we ran the GA ten times and analysed 
personalities selected by the GA. The model was initialised 
with constant settings in Table 6. For each task type and 
dynamic problem, we measured the number of times each 
personality is used by the GA to assemble teams. We also 
measured the average fitness over generations and average 
fitness over time for each task type and dynamic problem. 
Finally, we counted the opposing MBTI dichotomies used by 
the GA to assemble teams, i.e., Extraverts vs. Introverts (E vs. 
I), Sensors vs. Intuitives (S vs. N), Thinkers vs. Feelers (T vs. 
F), and Judgers vs. Perceivers (J vs. P). 
 

Constants Values 
𝑇+,- 50 
𝑁010 4 
𝐯+,- 5.0 

𝑥+9(,	𝑦+9( -100 
𝑥+,-, 𝑦+,-	 100 

𝐯9(9? (1.0, 1.0) 
𝑇01�� [10, 20, 30, 40, 50] 

Table 6: Constants Settings for The Model 

Results 
Different personality types are selected at different frequencies 
as the best team compositions for different tasks and dynamic 
problems, as illustrated by the heatmap in Figure 6. The GA 
never chooses teams made from a single personality type, 
rather, it selects mixtures of different personalities to work in 
combination. The GA is able to optimise all types of task and 
dynamic problem, although disjunctive tasks are the easiest to 
optimise, with the highest average fitness over generations for 
all types of change, followed by additive tasks and conjunctive 
tasks (Figure 7). Figure 8 illustrates the average team 
performance over 50 timesteps for all the ten best teams 
selected by the GA. Good combinations of personalities are 
found, resulting in improvement over time by the agents as they 
solve each type of problem, even the difficult rotary problem, 
where performance drops when change occurs, but the teams 
are still able to gradually improve the performance over time 
(Figure 8). 

  
Figure 6: Heatmap of personality type in teams for dynamic 
problems and task types. 
 

 

Figure 7: Average fitness over generations for dynamic 
problems and task types. x-axis is generations, y-axis is 𝒇𝒇𝒈𝒃𝒆𝒔𝒕. 
 

 

Figure 8: Average team performance over 50 timesteps for all 
10 best teams selected by the GA for types of task and change. 
x-axis is timesteps, y-axis is 𝒇𝒈𝒃𝒆𝒔𝒕. 



Personalities best suited for static problems are different 
from those suited for dynamic problems (Figure 9). For all 
static problems, the GA evolved more Introverts compared to 
Extraverts, with Static Disjunctive exclusively composed of 
Introverts. For all dynamic problems, the GA evolved more 
Extraverts compared to Introverts. This is because Extraverted 
team members communicate more, which is essential when 
facing a moving target. The finding is supported by literature, 
where extraverted personalities has been found to be positively 
correlated to adaptability (Teixeira et al., 2012).  

Similarly, for all static problems, the GA evolved teams with 
more Judgers compared to Perceivers, with Static Disjunctive 
exclusively composed of Judgers (Figure 9). For all dynamic 
problems, it evolved more Perceivers compared to Judgers, 
with Rotary Conjunctive being exclusively composed of 
Perceivers. Perceivers put more weight on the current state of 
their environment when making decisions, enabling them to 
detect and react to change, and management literature has 
found that Judging individuals prefer to regulate and control, 
while Perceivers prefer to understand and adapt (Nutt, 1993). 

For all static problems, the GA evolved teams with more 
Thinkers compared to Feelers, but evolved teams with more 
Feelers compared to Thinkers for all dynamic problems except 
for Linear Disjunctive (more Thinkers than Feelers) and Linear 
Additive (equal numbers of Feelers and Thinkers) (Figure 9). 
This is because Feelers are more influenced by the behaviour 
of their companions compared to Thinkers. Such personalities 
have been found in existing research to be more consultative 
and adaptive to change (Nutt, 1993).   

Comparison between Sensors and Intuitives are less clear 
cut. For all static problems, the GA evolved more Sensors 
compared to Intuitives, while for dynamic problems, Intuitives 
are used more frequently than Sensors for all disjunctive tasks 
and linear and rotary additive tasks (Figure 9). When fitness is 
determined by using the best solution from any team member, 
the GA chooses team members that “intuit” the solution space 
and anticipate where to move. Figure 10 illustrates the solution 
space as perceived by a team in one run, sampled over time. At 
t=50, team member INTJ (last column row 2) has correctly 
mapped the solution space, finding four distinct optimal regions 
corresponding to the locations where the optimal rotates to 
every 10 timesteps. A study by Allinson et al. (2000) of more 
than 150 founders of high growth companies found that these 
founders exhibit higher intuition compared to general 
population of managers and the intuition has helped them to be 
quick at identifying and exploiting opportunities. In 
evolutionary computation literature, gaussian process 
modelling have been used to improve speed and quality of 
optimisation (e.g., Büche et al. (2005), Zhang et al. (2010), and 
Han et al. (2017)). For conjunctive tasks, when fitness of a team 
depends on the fitness of the worst team member, the GA 
optimises teams with more Sensors compared to Intuitives.  

Finally, in all disjunctive tasks, we found an unusual 
behaviour by this PSO-based model: instead of team members 

converging onto one solution, the team spreads themselves 
more widely so that members become more likely to catch the 
moving target as it passes by. This is evident in Figure 11, 
where all disjunctive tasks have a higher average distance 
between team members compared to other tasks. In particular, 
for rotary change, the distance is up to four times more than the 
other changes, as it is beneficial for team members to be 
stationed at (0, 50), (-50, 0), (50, 0) and (0, -50). 

 

 

Figure 9: Personality count for task types and dynamic 
problems in terms of opposing MBTI dichotomy: Extraverts 
vs. Introverts (E vs. I), Sensors vs. Intuitives (S vs. N), Thinkers 
vs. Feelers (T vs. F), and Judgers vs. Perceivers (J vs. P). x-axis 
is the MBTI dichotomies, and y-axis is the personality count. 
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Figure 10: Solution space as perceived by each team member 
in one of the teams selected by the GA for Rotary Disjunctive, 
sampled at t=1, 11, 21, 31, 41, 50. The circle o in each image 
denotes the agent’s position for that timestep. 



Figure 11: Average distance between team members at t=50 for all teams selected by the GA. Error bars represent standard deviation. 
 
 

Conclusions 
Dynamic optimisation is a commonly found class of problem 
in the real world, and teams of people handle such problems 
regularly in their working lives. This research used a genetic 
algorithm to optimise the constituent members of teams as they 
tackled dynamic problems and task types. The teams were 
represented by an agent-based model of personality, each 
corresponding to a different PSO-based behaviour and 
communication strategy. 

We found that different combinations of personalities are 
selected for different dynamic problems. The GA evolved 
teams comprising heterogenous personalities, with different 
combinations of personalities for each type of problem. 
Introverts, Sensors, Thinkers and Judgers are used frequently 
by the GA for static problems, while Extraverts, Intuitives, 
Feelers and Perceivers are used more frequently for dynamic 
problems. Analysing the movement of the agents over time and 
their internal representations of the problem, it is clear that 
Intuitive types learned to “anticipate” repeating solutions, 
working as a team to spread themselves across the likely good 
solution areas, rather than behaving in the more typical manner 
of converging to a single point in the solution space.  
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