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The purpose of this note is to point out some interesting variations of the
logical inductor defined by Garrabrant et al. [1] and to state some open problems.
As pointed out in Section 7.3 of [1], the ideas of aggregating different algorithms’
“knowledge” by making them trade against each other can be generalized to
other classes of algorithms than just polynomial time algorithms, e.g. to linear
time or exponential time algorithms. In this note I will suggest various other
changes that will make the inductor have better properties than the Garrabrant
inductor, at the cost of being even slower.1

1 r-traders

Garrabrant traders, as defined in [1] takes the day number, n, as input and
outputs a trading strategy, Tn. Since each Tn is the output of a polynomial time
algorithm, it can only involve polynomially many sentences. With Garrabrant
traders we get theorems like

Theorem 1 (Theorem 4.2.1, first half). Let φ be an e.c. sequence of theorem.
Then

Pn(φn)∼n 1.

That is, the probabilities that the logical inductor assigns to a sequence
theorems are guaranteed to go to 1, but this guarantee only holds if we consider
one theorem per day. There are exponentially many sentences of a given length,
so if we want something to hold for all/most theorems of length n, we would
have to wait exponentially many days.

To solve this problem, we define an r-trader to be a trader that takes input
(n, r) and outputs an n-trading strategy Tn,r. On day n we run each trader on
(n, r) for all r ∈ {0, 1}≤n.2 The trader’s strategy on day n is then Tn =

∑
r Tn,r.

For Garrabrant traders it is possible to let the trading strategy re-compute
what it did on previous days. This is not possible for r-traders, so to help the
traders, we let the trading strategies depend (in an expressible way) on the
infimum and supremum on the trader’s plausible assessments (as defined in [1]
after Definition 3.5.1) and on the trader’s holdings as well as on P≤n.

1It is trivial to define a logical inductor with better properties if you are willing to make it
slower: just give each trader more time. A Garrabrant inductor with exponential time traders
would have properties even stronger than those in Theorem 2 of this note. However, I hope
the variations suggested here are philosophically more interesting than just giving the traders
more time, and that the ideas might be useful when designing practical algorithms inspired
by logical inductors.

2Or we could instead say {0, 1}≤p(n), where p is a polynomial that depends on the trader.
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Definition 1. Let S ⊂ {0, 1}n denote the set of sentences (with some fixed
encoding) and let Sn ⊂ S be the set of sentences of length at most n.

A random variable Φ is efficiently samplable from n bits if there is a poly-
nomial time algorithm A such that if Un is uniformly distributed on {0, 1}n we
have Φ ∼ A(Un). A sequence of random variables Φ is efficiently samplable if
there is an algorithm A such that for each n we have Φn ∼ A(Un).

This definition generalizes e.c. sequences: if φ is an e.c. sequence of theo-
rems, it means that there exists a polynomial time algorithm A that on input n
returns φn. We can now define an algorithm B that on input u returns A(|u|),
so we can consider φ to be an efficiently samplable sequences of (degenerate)
random variables.

We will now show that if a market is not exploitable by r-traders we can
generalize Theorem 4.2.1 to efficiently sampable sequences of random variables.

Theorem 2 (Variation of first half of Theorem 4.2.1). Let P be a market that
is not exploitable by r-traders and let Φ be an efficiently samplable sequences of
random variables supported on theorems. Then for any ε > 0 and for sufficiently
large n we have

Pr[Pn(Φn) ≥ 1− ε] ≥ 1− ε
Here the probability Pr is taken over the randomness in Φn, while the Pn(φ)

returns the logical inductor’s probability estimate for particular values φ of Φn.
The theorem says that for a random instance φ of Φn, the logical inductor will
most likely be almost correct on day n. By using the ideas of Garrabrant et al.
we can add r-traders to the market and get a logical inductor that that is not
exploitable by r-traders and hence have the above property.

Proof. (Sketch) Assume that P is not exploitable by any r-traders and consider
an r-trader that acts as follows. On input (n, r) with |r| 6= n it returns the
empty trade and on input (n, r) with |r| = n it computes A(r). Now if the price
of A(r) stocks is below 1 − ε and the lower bound on the plausible assessment
of the trader is no worse than −1, the trader buys 2−|r| = 2−n stocks in A(r).
By construction, the trader can at most spend 1 on each day, so −2 is a lower
bound on its worst plausible assessment on any day.

For each dollar it spends, it will eventually get at least 1
1−ε > 1 + ε back.

Since the trader, by assumption, does not exploit the market, it can only spend
a finite total amount. This could happen in two ways: either the restriction
that the trader does not buy if it has a plausible assessments below −1 stops
the trader from buying infinitely many times or only finitely many times. If
infinitely many times, let M be the total amount spend on stocks in the limit.
Since the trader reaches the limit of −1, we must have M ≥ 1. By definition
of limit, there will be a time n where the trader has already spent M − ε on
stocks. Each dollar will eventually pay back more than 1 + ε, and by then the
trader will have spend at most ε more. This gives the trader a worst plausible
assessment of (M − ε)ε − ε ≥ Mε − ε ≥ 0 so the trader cannot hit the limit of
−1 again. Contradiction.

This shows that there is some last time n0 − 1 where the −1 limit prevents
the trader from buying stocks. We have already seen that the trader will only
spend a finite amount on stocks, so we must now have

∞ >
∑
n≥n0

∑
r∈{0,1}n

2−n1Pn(A(r))<1−ε =
∑
n≥n0

Pr(Pn(Φn) < 1− ε).
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Here 1P is the indicator function of P . This shows that in particular, the
probabilities must go to 0.

In this proof sketch we use discontinuous (non-expressible) trading strategies.
It is easy to approximate them sufficiently well by expressible strategies as
in [1].

I would think that all the theorems given in Garrabrant et al. for sequences
φ can be generalized in similar ways if we introduce r-traders to the market,
but I have not checked.

2 Restricted r-traders

When we allow r-traders we get a very strong logical inductor. To see an example
of how strong it is, let hn : {0, 1}2n → {0, 1}2n be a sequence of one-way
permutations, and for x ∈ {0, 1}n, y ∈ {0, 1}2n let φx,y denote the sentence

φx,y := “∃r ∈ {0, 1}n : hn(x ◦ r) = y”.

Although it is difficult to determine whether such a sentence is true when pre-
sented to you, it is easy to sample such true sentences: simply sample x and
r and compute y. So Theorem 2 tells us that a logical inductor that is con-
structed using r-traders, and hence not exploitable by r-traders, will learn to
recognize true sentences φx,y. This is fine if we want our logical inductor to be
as “efficient” as possible (when efficiency is measured only by considering how
quickly P converges measured in “days” rather than in actually running time).
However, if we want a realistic model for how fast a practical approximation of
a logical inductor converges, we want it not to assign accurate probabilities to
φx,y too quickly: practical algorithms will (under the standard cryptographic
assumption that one-way permutations exists) not be able to make good guesses
of the truth value of a given φx,y in a reasonable time. If we can define a logi-
cal inductor that captures this difference, it might be useful for understanding
cryptography and understanding the P vs NP problem.

To capture the fact that some samplable theorems are hard to prove without
the randomness used to generate them, we might use restricted r-traders instead.
A restricted r-trader is a polynomial time algorithm that takes as input (n, φ)
and outputs a trading strategy Tn,φ that only trades in φ stocks. On day n,
the restricted r-trader is run on each input (n, φ) with |φ| ≤ n, and all the
outputs are added up. Notice that the trade on φ is still allowed to depend
in an expressible way on the prices of other stocks. Like for the r-traders, we
also allow restricted r-traders to output trading strategies that depend in an
expressible way on the trader’s holdings and on the infimum and supremum on
plausible assessments of the trader’s worth. We now get a different variation of
Theorem 4.2.1, but to state it, we first need a definition.

Definition 2. A sequence Φ of random variables is efficiently computable or
e.c. all the density function of each Φn only takes rational values, has support
in {0, 1}≤n and if there is an algorithm A that on input n and x ∈ {0, 1}≤n
returns Pr(Φn = x).

Theorem 3 (Variation of first half of Theorem 4.2.1). Let P be a market that is
not exploitable by restricted r-traders and let Φ be an e.c. sequences of random

3



variables taking values in the theorems in S. Then for any ε > 0 and sufficiently
large n we have

Pr[Pn(Φn) ≥ 1− ε] ≥ 1− ε.

Proof. Consider a restricted r-trader that acts as follows: on input (n, φ) it
computes A(n, φ). If the trader’s plausible assessments are bounded below by
−1, and the price of φ stock are below 1− ε, the trader buys A(n, φ) stocks in
φ. The rest of this proof is similar to that of Theorem 2.

Unlike Theorem 2 this theorem no longer says that the logical inductor will
assign accurate probabilities to φx,y. Notice however that the statement of
Theorem 2 might still hold for the logical inductor made out of restricted r-
traders: it is difficult to prove upper bound on how fast logical inductors learn,
so I have not been able to prove that a logical inductor build from restricted
r-traders will not be able to get accurate probabilities for the φx,y’s quickly.

We know that for some enumerations of the traders Garrabrant inductor does
not have the properties given in Theorem 2 and Theorem 3: you can enumerate
the traders in a way that ensure that at most nlog(n) stocks have been traded on
day n and there are e.c. sequences of random variables supported on theorems
with a support that is larger than nlog(n).

3 Labeled stocks

Instead of just having one stock per sentence φ, we can have infinitely many
stocks (φ, r) per sentence, one for each r ∈ {0, 1}∗. We say that the stock (φ, r)
is for φ and has label r. We now consider a variant of the restricted r-trader,
which on input (n, r) can trade on all stocks with the label r. Again the trader
is allowed to base its trading strategy on the prices of stocks with other labels.
Once a sentence φ has been proven by D, the values of all the stocks (φ, r) is set
to 1. If the market is functioning perfectly, the price of (φ, r) should not depend
on r. However, because all the traders have bounded computational power and
each sentence can have infinitely many different labels, we could hope that the
price of the stock might depend on the label. For example, that (φx,y, r) is
valued at 1 when hn(x ◦ r) = y but (φx,y, λ) is still valued at 2−n for the empty
sting λ. If there is a price difference (or if we can modify the definition of a
logical inductor to create a price difference in some natural way) this might be
useful for cryptography.

4 Value of Information and Option traders

Suppose you are offered a bet on a decidable sentence φ. You can pay $0.60 for
the bet and then if φ is true you get $1 back. You have run your logical inductor
for n days, and it outputs Pn(φ) = 0.3. If you cannot run the logical inductor
for longer, you should not bet, but what if you can run the logical inductor for
n more days at some price p? Then you should run it if and only if you think
max(P2n(φ)− 0.6, 0) is in expectation more than p.

You can write down a sentence that encodes the logical inductor itself and
make the logical inductor estimate this expectation: En max(P2n(φ) − 0.6, 0).
However, this is an extremely complicated sentence, because it contains an

4



encoding of a logical inductor. Since the inductor has a long running time, it
will take a long time for D to prove theorems about it, so for “astronomically
small” n (values that can actually occur in this universe) En max(P2n(φ)−0.6, 0)
is probably not useful. To get a better expectation of max(P2n(φ)− 0.6, 0), we
could add call and put options to the market. For each sentence φ, each rational
number x ∈ [0, 1] and each natural number n we can add a call options that
gives the owner the right to buy one stock for sentence φ at time n for the price
x and a put option that gives the owner the right to sell stocks for φ at time n
for the price x. We define option-traders to be like Garrabrant traders, except
trading strategies can also depend on the prices of options and can also involve
buying and selling options. If a trader has a negative amount of some options,
the plausible assessments have to take this into account in the natural way. For
simplicity, we assume that call options (φ, n, x) are transformed into stocks for
φ on day n if and only if φ∗n > x for the price of x, and similarly put options are
also exercised automatically.3 This creates a discontinuity, but if only exercise
the options after day n and not as part of finding the market equilibrium on
day n this is not a problem.

We should now have the following recurring unbiasedness theorem, modelled
on Theorem 4.3.6 in Garrabrant et al.

Conjecture 4. Let φ,m, x be a e.c. sequences and let (φ,m, x)∗n denote the
price on day n of a call option for one φ stock to be bought at price x on day
m. Let w be a P-generable divergent weighting. Then the sequence∑

i≤n wi
(
(φi,mi, xi)

∗i −max(Pmi(φi)− xi, 0)
)∑

i≤n wi

has 0 as a limit point.

I think you can build a proof of this based on the proof of Theorem 4.5.9 of
Garrabrant et al.

If you care about the Value of Information about Value of Information, you
can also add higher order options, but having traders tradering higher order
options will probably make the logical inductor slower at getting accurate values
of P(φ)’s.

5 Open problems

Is there a natural logical inductor that captures the fact that some theorems can
be hard to prove if presented to you, but easy to generate in a way that ensures

3Automatic execution of options could force some traders to go bankrupt (go over the
budget, and be eliminated by the Budgeter algorithm on all future days). We could let trader
choose whether to exercise the options themselves, but this raises many other questions. E.g.
are the sellers and buyers of options paired up, or are sold options just exercised at the average
rate at which bough options are exercised? Can traders exercise their option before the expiry
day? If a trader buys and sells the same option, should they cancel out, or should we allow
them not to chancel out in case the trader wants to exercise his options some day and the
buyers of his options does not? Should a trader be allowed to exercise their option after they
go bankrupt? If not, this might make the price of options artificially low (although probably
not in the limit), as some buyers of options will not be able to exercise their options later on.
I didn’t want to think about all these questions, so I just assume that options are exercised
automatically. I think that the answers to all these questions will not make a difference in the
limit, but the will make some difference in the running time.
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that you only generate true sentences? This is morally equivalent to: Is there
a logical inductor that has the property of Theorem 3 but not of Theorem 2?
Equivalently, is there a logical inductor that are exploitable by r-traders, but
not by restricted r-traders? This might be useful for cryptography, especially
if we could prove this distinction, for example conditioned on the existence of
one-way permutations.

We have various parameters to play around to get such a logical inductor:
running time of traders, restriction on the traders, what information the trades
can depend on (bounds on plausible assessments? holdings?), are the traders
required to distribute its budget between the different r’s in a way that does not
depend on P≤n, the enumeration of the traders, the total budget of the different
traders, etc. Unfortunately, it seems difficult to prove upper bounds on how
fast the logical inductor is learning, so it will be difficult to prove that a logical
inductor does not have the property of Theorem 2.

It would also be interesting to get a working definition of the entropy of an
LUV (logically uncertain variable). For example, if x, r ∈ {0, 1}n, y ∈ {0, 1}2n
with y = hn(x ◦ r) but only y is given, then x is a LUV. If hn is a one-way
permutation it should intuitively have entropy n, but can we capture this? There
exists various definition of computational entropy, e.g. HILL entropy and Yao
entropy [2], but here the setting is different: you see a pseudo-random output X
and want to estimate the computational entropy of the random variable. Still,
there might be connections between the entropy of an LUV and computational
notions of entropy.
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