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1 Contour curvature

Curvature is an intuitive component of shapes. But how to define it mathemati-
cally ? It has something to do with the rate of change of velocity, i.e. acceleration.
If we imagine travelling at fixed speed along a flat railway track then we feel no ac-
celeration. If the track bends, even if the speed stays constant, we feel acceleration
perpendicular to the velocity direction. This is sometimes called centrifugal (more
correctly, centripetal) force. The tighter the bend, the stronger the force. The
direction of the force tells us which way the track is bending. These ideas allow us
to define the concept of curvature mathematically.

Assume a curve is parameterised by s :

C(s) =

(

x(s)
y(s)

)

(1)

Then the tangent at s is given by

T̂ (s) =
1

L

(

ẋ(s)
ẏ(s)

)

(2)

where L = (ẋ(s)2 + ẏ(s)2)1/2, and the normal is given by

N̂(s) =
1

L

(

−ẏ(s)
ẋ(s)

)

(3)

with T̂ · N̂ = 0 by definition. Now consider that a circle is constructed to be
tangential to C(s) at s1 and s2 (see figure 1). This is known as an osculating

circle.The radius of curvature is the distance to the point of intersection of the two
lines

(

x(s1)
y(s1)

)

+ λN̂ 1 and

(

x(s2)
y(s2)

)

+ µN̂2
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Figure 1: Relationship of tangent and normal vectors in determining curvature. If a
circle is tangent at s1 and s2 then the radius of curvature is the distance s1A = s2A

Putting ∆s =

(

x(s2)− x(s1)
y(s2)− y(s1)

)

and using the standard result that

a+ λb = c+ µd

⇒ λ =
d⊥ · (c− a)

d⊥ · b

µ =
−b⊥ · (c− a)

b⊥ · d

we get

µ = −
T̂ 1 ·∆s

T̂ 1 · N̂ 2

Since N̂ 1 and N̂ 2 are of unit length, this value of µ is exactly the distance to the
centre of the circle, and thus its radius. But curvature is defined as the reciprocal
of the radius of this circle so we get

κ = −
T̂ 1 · N̂ 2

T̂ 1 ·∆s
(4)

Now consider the limit as ∆s → 0. We have

∆s → ∆sT 1

N̂ 2 → N̂ 1 +∆s
˙̂
N(s1)
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so that

κ → −
T̂ 1 · (N̂ 1 +∆s

˙̂
N(s1))

T̂ 1 · T 1∆s
= −

T̂ 1 · (N̂ 1 +∆s
˙̂
N(s1))

L∆s

with the limiting value :

κ(s) = −
T̂ (s) ·

˙̂
N(s)

L
= −

T (s) ·
˙̂
N(s)

L2
(5)

Now we can use the parametric definitions of Eqs. 2 and 3 to give

˙̂
N(s) =

1

L

(

−ÿ(s)
ẍ(s)

)

−
L̇

L2

(

−ẏ(s)
ẋ(s)

)

=
1

L
Ṅ(s)−

L̇

L2
N(s) (6)

leading to

κ(s) =
Ṫ (s) ·N(s)

L3
= −

T (s) · Ṅ(s)

L3
=

ẋ(s)ÿ(s)− ẏ(s)ẍ(s)

(ẋ(s)2 + ẏ(s)2)3/2
(7)

[ Note we used N · T = 0 ⇒ Ṫ ·N + T · Ṅ in the last expression.]
Remark It is worth noting that the expression eq.7 for curvature is independent

of the choice of parameterisation. This means that curvature is an invariant of
parameterisation. Suppose that we choose a new parameterisation

s̃ = φ(s)

where φ(s) is a twice differentiable function. Now consider

C(s̃) =

(

x(s̃)
y(s̃)

)

=

(

x(φ(s))
y(φ(s))

)

(8)

We have

dx

ds
=

dx

ds̃

ds̃

ds
= ẋφ̇ d

2x
ds2

= ẍφ̇2 + ẋφ̈

dy

ds
=

dy

ds̃

ds̃

ds
= ẏφ̇ d2y

ds2
= ÿφ̇2 + ẏφ̈
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Figure 2: Image gradient is the normal to the lines of equal intensity (isophotes).
Gauge coordidates n̂ aligned with normal, and t̂ aligned with the tangent

Then

κ̃ :=
dx
ds

d2y
ds2

−
dy
ds

d
2x

ds2
(

dx
ds

2
+ dy

ds

2
)3/2

=
ẋφ̇

(

ÿφ̇2 + ẏφ̈
)

− ẏφ̇
(

ẍφ̇2 + ẋφ̈
)

(ẋ2 + ẏ2)3/2 φ̇3

=
ẋÿφ̇3 + ẋẏφ̇2φ̈− ẏẍφ̇3

− ẋẏφ̇2φ̈

(ẋ2 + ẏ2)3/2 φ̇3

=
ẋÿ − ẏẍ

(ẋ2 + ẏ2)3/2
=: κ (9)

The curve given by eq.1 and that given by eq.8 describe exactly the same set

of points, and have the same geometrical features. All that changes is the fictious
“speed” with which we draw around the contour.

2 Image curvature

The key to defining curvature of images is to apply the concepts of parametric curves
to the level sets of the image. There is no explicit parameterisation of these level
sets, but we can define an implicit parameterisation. We do this by equating the
contour normal to the image gradient (see figure 2 ) :

N̂(x, y) =
1

(f 2
x + f 2

y )
1/2

(

fx
fy

)

(10)
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which by comparison with Eq. 3 means

ẋ(s) = fy ẏ(s) = −fx (11)

(the equality can be taken by imposing a suitable parameterisation). We need to
define

d

ds
=

dx

ds

d

dx
+

dy

ds

d

dy

= cos θ
d

dx
+ sin θ

d

dy

where

sin θ =
ẋ(s)

(ẋ(s)2 + ẏ(s)2)1/2
=

fy

(f 2
x + f 2

y )
1/2

cos θ =
ẏ(s)

(ẋ(s)2 + ẏ(s)2)1/2
=

−fx

(f 2
x + f 2

y )
1/2

which leads to

ẍ(s) = cos θfyx + sin θfyy

=
fyfyx

(f 2
x + f 2

y )
1/2

+
−fxfyy

(f 2
x + f 2

y )
1/2

ÿ(s) = − cos θfxx − sin θfxy

= −
fyfxx

(f 2
x + f 2

y )
1/2

−
−fxfxy

(f 2
x + f 2

y )
1/2

finally giving, from Eq 7

κ(x, y) = −
fxxf

2

y + fyyf
2

x − 2fxyfxfy

(f 2
x + f 2

y )
3/2

(12)

3 Divergence of Normal

There is another expression for the curvature

κ(x, y) = −∇ · N̂ (13)
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This can be verified by simple algebra:

∇ · N̂ =
∂

∂x

fx
(

f 2
x + f 2

y

)1/2
+

∂

∂y

fy
(

f 2
x + f 2

y

)1/2

=
fxx + fyy

(

f 2
x + f 2

y

)1/2
−

f 2

xfxx + fxfyfxy
(

f 2
x + f 2

y

)3/2
−

fxfyfxy + f 2

y fyy
(

f 2
x + f 2

y

)3/2

=
(fxx + fyy)(f

2

x + f 2

y )− f 2

xfxx − f 2

y fyy − 2fxfyfxy
(

f 2
x + f 2

y

)3/2

=
fxxf

2

y + fyyf
2

x − 2fxyfxfy

(f 2
x + f 2

y )
3/2

This has an important interpretation in terms of image denoising because it
allows for diffusion tangential to an edge but not across the edge.
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