
4 Edge Detection

A simple idea of an edge of a 1D-function f(x) is the place where it changes most rapidly, i.e.
where f ′(x) → max. This in turn leads to the idea of the second derivative being zero, i.e.
f ′′(x)→ 0. However, since we numerically have to deal with sampled functions, the location of
the zero of the second derivative of a function may not be exactly at one of the sample points,
so we need to use the interpolation ideas that we already saw in section 3.

4.1 Differentiation of Sampled Functions

4.1.1 Differentiation Based on the Sampling Theorem

We already saw that a function may be exactly reconstructed from its samples (assuming that
the function is periodic, band-limted and that sampling is above the Nyquist rate). This means
that we can then differentiate the result :

h(t) =

∞∑
n=−∞

hnSinc(ωct− nπ) ⇒ h′′(t) =
∞∑

n=−∞
hnSinc

′′(ωct− nπ) (26)

The second derivative of a Sinc funcion is

Sinc(t) :=
sin(t)

t
⇒ Sinc”(t) = −2 cos(t)

t2
+

2 sin(t)

t3
− sin(t)

t
(27)

Here is a plot of it : Note

Figure 3: Left: plot of the Sinc function. Right : plot of the Sinc” function.

• The Sinc function takes the value 1 at zero and zero at multiples of π.

• The Sinc” function takes the value − 1
3 at zero and −1n−1 2

π2
1
n2 at t = nπ. This evaluates

to
{− 1

3 ,
2
π2 ,− 2

4π2 ,
2

9π2 ,− 2
16π2 ,

2
25π2 ,

2
36π2 , . . .

}

21

Convolution of a set of samples with the sampled values of the Sinc” function give the values
of the ’ideal’ sampled 2nd derivative of the orginal function. As before, this gives an infinite
summation which is computationally heavy.

4.1.2 Finite Difference Differentiation

A different approach to finding numerical derivatives is from Taylor Series which states how to
find the value of a function h(t) at a distance ε from a known point t0 :

h(t0 + ε) = h(t0) + ε
∂h

∂t

∣∣∣∣
t0

+
ε2

2

∂2h

∂t2

∣∣∣∣
t0

+
ε3

6

∂3h

∂t3

∣∣∣∣
t0

+ . . .+
εn

n

∂nh

∂tn

∣∣∣∣
t0

(28)

Using this we can get different approximations to the second derivative

h(t0 + ε)− 2h(t0) + h(t0 − ε)

ε2
=

∂2h

∂t2

∣∣∣∣
t0

+O(ε2) (29)

which has an error depending on the 4th and higher derivatives that scales with ε2. In terms of
the original samples, we get this approximation by convolving it with

{1 − 2 1}

To get a higher order approximation, we consider the expression

Ah(t0) +B[h(t0 + ε) + h(t0 − ε)] + C[h(t0 + 2ε) + h(t0 − 2ε)]

and arrange for the 4th derivative to vanish. We evaluate the above to

Ah(t0)+B

[
2h(t0) + ε2

∂2h

∂t2

∣∣∣∣
t0

+
ε4

12

∂4h

∂t4

∣∣∣∣
t0

+ . . .

]
+C

[
2h(t0) + 4ε2

∂2h

∂t2

∣∣∣∣
t0

+
16ε4

12

∂4h

∂t4

∣∣∣∣
t0

+ . . .

]

This leads to 16C +B = 0 and A+ 2B + 2C = 0 which gives A = 30
12 , B = − 16

12 , C = 1
12 . So we

have convolution with
1

12
{−1 16 − 30 16 − 1}

This approximation has an error depending on the 6th and higher derivatives that scales with
ε4. Clearly we can continue this approach, adding samples at greater distance from the point of
evaluation, and eliminating higher and higher order derivatives.

4.1.3 Fourier Domain Differentiation

As we have seen that convolution is multiplication in the Fourier Domain, we can exploit the
differentiation properties of the Fourier Transform

F [h”(t)] = −ω2F [h(t)]

22

Figure 4: Left: An example function (black solid line) and its derivative (blue dashed line),
approximation using nearest neighbours (red) and 2nd nearest neighbours (magenta). Right
: The Fourier transform of the function (black), the derivative filter −ω2 and the result of
multiplication (red).

We simply need to multiply the discrete Fourier Tranform of the samples with the square of the
freqency sample values :

−
{
(N/2ω0)

2
, ((1−N/2)ω0)

2
, . . . , ω2

0 , 0, ω
2
0 , . . . , ((1−N/2)ω0)

2
}

(30)

This allows us to see the ’ideal’ spatial convolution simply by inverse Fourier transform of the
list Eq. 30. This is displayed here

compare this to figure 3.

23

Figure 5: An image and its two first order and three second order derivaties.

4.2 Differentiation of 2D Images

When dealing with two or more dimensions we have to use multiple derivatives. There are two
first order derivatives and three 2nd order derivatives in 2D

fx :=
∂f

∂x
, fy :=

∂f

∂y
, fxx :=

∂2f

∂x2
, fxy :=

∂2f

∂x∂y
, fyy :=

∂2f

∂y2

Note that the gradient operator is defined∇f :=

(
fx
fy

)
and the Hessian as H(f) :=

(
fxx fxy
fxy fyy

)
.

How should we define the location of an edge ? One way is to take the magnitude g = |∇f | =√
f2
x + f2

y . This has the disadvantage it has to be thresholded and searched to find the local

maximum. What is the equivalent of the zero-crossing of the 2nd derivative, given that there
are three of the them ? One answer is to look for the zero-crossings of the 2nd derivative in the
direction of the gradient. First we need to define what a directional derivative is. We can get it
from Taylor’s series.

Define a position r :=

(
x
y

)
, and consider an arbitrary length one direction vector v̂ :=

(
vx
vy

)
=(

cos θ
sin θ

)
. From the fundamental theorm of calculus we can state

∂f

∂v
:= lim

ε→0

[
f(r+ εv̂)− f(r)

ε

]
= lim

ε→0

[
f(r) + εv̂ · ∇f +O(ε2)− f(r)

ε

]
= v̂·∇f = cos θfx+sin θfy

(31)

The direction n̂ := ∇f
|∇f | is a unit vector normal to the level-sets of f and points in the direction

24

of steepest descent of f . From Eq. 31 we define the derivative in the direction of steepest descent
as

∂

∂n
:=

(
cos θ

∂

∂x
+ sin θ

∂

∂y

)
(32)

and therefore the 2nd derivative in the direction of steepest descent as

∂2

∂n2
:=

(
cos θ

∂

∂x
+ sin θ

∂

∂y

)(
cos θ

∂

∂x
+ sin θ

∂

∂y

)
=

(
cos2 θ

∂2

∂x2
+ 2 cos θ sin θ

∂2

∂x∂y
+ sin2 θ

∂2

∂y2

)
.

(33)
Applying this to f itself gives

fnn :=
∂2f

∂n2
=

f2
xfxx + 2fxfyfxy + f2

y fyy

f2
x + f2

y

(34)

The zero crossings of fnn give the location of the edges and is known as the Canny Edge Detector.
A technical difficulty with this function is that the denominator could become zero. Therefore
sometimes we use the Unnormalised Canny Edge Detector

fUn
nn := |∇f |2fnn = f2

xfxx + 2fxfyfxy + f2
y fyy =

(
fx fy

)(fxx fxy
fxy fyy

)(
fx
fy

)
= ∇fTH(f)∇f .

(35)
Examples of some of these quantities are show in figure 6.

Figure 6: An image and the result of applying the Canny Edge Detector Eq. 34 . Also shown
are the Unnormalised Canny Edge Detector Eq. 35 and its square root, and the images of
cos θ = fx√

f2
x+f2

y

and sin θ =
fy√
f2
x+f2

y

.

25

4.3 Differentiation of 3D Images

In 3D we have a very similar analysis. There are three first order derivatives,

fx :=
∂f

∂x
, fy :=

∂f

∂y
fz :=

∂f

∂z
,

and six second order derivatives

fxx :=
∂2f

∂x2
, fyy :=

∂2f

∂y2
, fzz :=

∂2f

∂z2
, fxy :=

∂2f

∂x∂y
, fxz :=

∂2f

∂x∂z
, fyz :=

∂2f

∂y∂z
,

and we have the gradient and Hessian defined as

∇3Df =

⎛
⎝fx
fy
fz

⎞
⎠ ; H3D(f) :=

⎛
⎝fxx fxy fxz
fxy fyy fyz
fxz fyz fzz

⎞
⎠ .

Using spherical polar notation we have

∂

∂n3D
:=

(
cos θ sinφ

∂

∂x
+ sin θ sinφ

∂

∂y
+ cosφ

∂

∂z

)
(36)

and the Canny operator is

f3D
nn :=

∂2f

∂n3D,2
=

f2
xfxx + f2

y fyy + f2
z fzz + 2fxfyfxy + 2fxfzfxz + 2fyfzfyz

f2
x + f2

y + f2
z

=
∇3DfTH3D(f)∇3Df

|∇3Df |2
(37)

See the code Canny3D on the course webpage for examples.

4.4 Finding a Continuous Connected Level Set in an Image

The Canny edge operator (2D or 3D) gives a response at every sample point (i.e. at each
pixel/voxel). These values are very unlikely to be identically zero. Instead we have to interpolate
to find zero-crossings. There is a well-established algorithm for this in 2D ”Marching Squares”, or
”Marching Cubes” in 3D. We’ll briefly sketch the idea in 2D. For 3D see the paper W.E.Lorenson
and H.E.Cline, ”Marching cubes: A high resolution 3D surface construction algorithm”, In :
Proceedings of the 14th annual conference on Computer graphics and interactive techniques,
Pages 163-169 (1987).

”Marching Squares” works by taking the output of the 2D Canny operator and considering
groups of 2 × 2 pixels in turn. Each of these is either positve or negative, so can be labelled
as one of 16 binary patterns. These patterns give rise to different outputs from Marching Squares

26

Case Number Action

0 0
0 0

or
1 1
1 1

(two cases) No zero crossings, no output

1 0
0 0

or
0 1
1 1

, etc. (eight cases) Two zero crossings, output two interpolated points,

and a connecting line segment
1 1
0 0

or
0 1
0 1

, etc. (four cases) Two zero crossings, output two interpolated points,

and a connecting line segment
0 1
1 0

or
1 0
0 1

(two cases) Four zero crossings, output four interpolated points

choose between two possible pairs of line segments

This template is scanned across the image in raster fashion (it is a sequential algorithm) with
the patterns overlapping. Thus the sets of output line segments are connected and the result
is a finite number of closed connected polygons representing a piecewise linear representation of
the zero levels sets of the input image. Note that the algorithm can be used to find any level set
for a value T in an image simply by subtracting T from an image and using that as input.

27

