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We consider semantics for the class-based object-oriented calculus Featherweight Java
(without casts) based upon approximation. We also define an intersection type assignment
system for this calculus and show that it satisfies subject reduction and expansion,
i.e. types are preserved under reduction and its converse. We establish a link between
type assignment and the approximation semantics by showing an approximation result,
which leads to a sufficient condition for the characterisation of head-normalisation and
termination.

We show the expressivity of both our calculus and our type system by defining
an encoding of Combinatory Logic into our calculus and showing that this encoding
preserves typeability. We also show that our system characterises the normalising and
strongly normalising terms for this encoding. We thus demonstrate that the great analytic
capabilities of intersection types can be applied to the context of class-based object
orientation.

© 2013 Elsevier B.V. All rights reserved.

Introduction

In this paper we will study semantics for Featherweight Java (fj) [48] through both a notion of intersection type assignment
[31,32,21,7] and of approximation [67]. Our types are functional (expressing the types of methods, in particular, as functions,
and assigned to untyped expressions, as common in functional programming), contain field and method information, and
characterise how a typeable object can be accessed by a context in which it is placed. Our type system will be shown to
be closed for conversion, i.e. closed for both subject reduction and subject expansion which implies that types give a complete
characterisation of the execution behaviour of programs; as a consequence, type assignment is undecidable.

The notion of type assignment we develop can be seen as a notion of ‘flow analysis’ in that assignable types express how
expressions can interact with a context; as such, the types express run-time behaviour of expressions. On the other hand,
our notion of approximation is defined similarly to Wadsworth’s notion [67,68] for the λ-calculus (lc) [28,20]: masking out
computationally active subterms on a reduction sequence (all the terms created by the execution of a term) creates a notion
of approximation for terms that induces a semantics. We will show that these two approaches lead essentially to the same
model by establishing a strong link between typeable terms and their approximants: we will show that every type that can
be assigned to a term can be assigned to one of its approximants, and vice versa. We will then explore these results further
and fully characterise normalisation and termination of terms through assignable types.

Semantics for object-oriented programming. The object-oriented (oo) programming paradigm, as exemplified by languages such
as C++ [63], Java [45], C# [1], Ruby [43], ECMAscript (or Javascript) [2] and Python [61], has been the subject of extensive
theoretical study over the last two decades. oo-languages come in two broad flavours: the object (or prototype) based, and
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the class based. A number of formal models has been developed [25,55,26,41,42,4,48] which attempt to distill the many
features of oo into a core set of primitive operations. Of these, the ς-calculus [4] and Featherweight Java (fj) have been
well received as elementary models for object based and class-based oo, respectively.

Most of the previous work on semantics for oo dates from quite some time back, but there is some more recent work on
denotational semantics for Java. Two major contributions are Abadi and Cardelli’s denotational PER model for the ς -calculus
[3] and Bruce’s semantics mapping his oo-languages to F-bounded second order λ-models [22]. Since both consider the
language explicitly typed, programs and their types are strongly linked; Abadi and Cardelli used their semantics to show
that the type system for the ς -calculus is sound. Bruce used his for the same purpose: he relates the interpretation of
programs to that of types by making sure that the interpretation of a term is an element of the interpretation of its
type, and also Abadi and Cardelli consider an interpretation of types as well as terms. However, neither of these papers
state a result relating the semantic model to reduction. The sub-typing relation is also proven to be semantic under this
interpretation – i.e. if σ � τ , then �σ � ⊆ �τ �, and this is used to show that well-typed expressions do not correspond to
the Error value in the semantic domain.

We believe our work to be the first to define a semantic model for oo that gets related to the model induced by the
reduction relation (i.e. conversion) – it is certainly the first to study an approximation model of oo.

Other related work includes Cook and Palsberg’s denotational treatment of inheritance and method lookup [29,30]. Reddy
[59] also gives a denotational semantics to object-oriented concepts, in which objects are viewed as closures (i.e. let-bound
functions). The main point of this work is to give a more fundamental view of what objects really are, rather than to
consider their reduction behaviour – the paper does not consider reduction and its relationship to the semantics at all.
A similar semantics is defined for the language SmallTalk by Kamin [51], but differs in that the interpretation of an object
is simply a record of its field values; Reddy and Kamin together compared their two semantics and proved them equivalent
[52]. Additionally, Castagna [27] has done work on defining an oo-calculus and a denotational PER semantics for it.

Using an alternative approach, semantics for oo has been studied by encoding oo-calculi in various typed λ-calculi.
Cardelli, Bruce and Pierce [23] gave a survey of some of the main approaches in this direction, and compare four different
encodings. Glew [44] builds on this, and presents a different typed encoding and gives a very comprehensive overview of
previous and related encodings. Viswanathan [66] uses an encoding of oo into a λ-calculus in order to study the observa-
tional equivalence/full abstraction issue.

More recently, and more immediately relevant to our work, some papers were published that consider denotational se-
mantics for (Featherweight) Java. Studer [64] defined a semantics for Featherweight Java using a model based on Feferman’s
Explicit Mathematics formalism [40]. Studer mentions that his model is theoretically weaker than other models that have
previously been considered (as mentioned above), and his result is that his semantics is adequate with respect to the Java
nominal class type system. Alves-Foss [5] has done work on giving a denotational semantics to the full Java language; his
system is impressively comprehensive but, as far as we can see, is not used for any kind of analysis – at least not in [5].
Finally, Burt in his PhD thesis [24] builds a denotational model for a featherweight model of Java with state based on game
semantics, via a translation to a PCF-like language.

Intersection types. Over the years, many expressive type systems have been defined and investigated for a variety of cal-
culi. Amongst those, the intersection type discipline (itd), first defined for lc, stands out as a powerful system, closed under
β-equality and giving rise to a filter model and semantics; it is defined as an extension of Curry’s basic type system for
lc, by allowing term-variables to have many, potentially non-unifiable, types. This generalisation leads to a very expressive
system: for example, termination (i.e. strong normalisation) of terms can be characterised by assignable types. Furthermore,
intersection-type-based filter models and approximation results show that intersection types describe the semantical be-
haviour of typeable terms in full. Intersection type systems have also been employed successfully in analyses for dead code
elimination [35], strictness analysis [50], and control-flow analysis [19], proving them a versatile framework for reasoning
about programs.

Inspired by this expressive power, investigations have taken place into the suitability of intersection type assignment for
other computational models: for example, van Bakel and Fernández [14–16] have studied intersection types in the context
of Term Rewriting Systems (trs) [53,36] and van Bakel studied them [10,12] in the context of sequent calculi [33,17]. In
addition, van Bakel and de’Liguoro [13] have developed a system for the ς-calculus, bringing intersection types to the
context of oo; the main characteristic of that system is that it sees assignable types as an execution predicate, or applicability
predicate, rather than as a functional characterisation as is the view in the context of lc and, as a result, recursive calls are
typed individually, with different types. This is also the case in our system.

In this paper we aim to develop denotational semantics for class-based oo; in order to be able to concentrate on the
essential difficulties, we focus on Featherweight Java [48], a restriction of Java defined by removing all but the most essential
features of the full language; Featherweight Java bears a similar relation to Java as lc does to languages such as ml [54]
and Haskell [47]. We will use two approaches, by defining both an approximation based and type-based semantics for fj; to
achieve the latter, we introduce a notion of intersection type assignment. For that notion, we will show that the expected
properties of a system based on intersection hold, i.e.:

subject reduction: if e has type σ and e reduces to e′ , then also e′ has type σ , and
subject expansion: if e′ has type σ and e reduces to e′ , then also e has type σ .
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Approximation. The notions of approximant and approximation were first introduced by Wadsworth in [67] for lc, where they
are used in order to better express the relation between equivalence of meaning in Scott’s models and the usual notions
of conversion and reduction. Wadsworth defines approximation of terms through the replacement of any parts of a term
remaining to be evaluated (i.e. β-redexes) by ⊥. Repeatedly applying this process over a reduction sequence starting with
M gives a set of approximants, each giving some – in general incomplete – information about the reduction behaviour
of M . Once this reduction produces λx.yN1 . . . Nn , all remaining redexes occur in N1, . . . , Nn , which then in turn will be
approximated. Following this approach, [67] defines A(M) (similar to Definition 13 below) as the set of approximants of
the λ-term M , which forms a meet semi-lattice. In [68], the connection is established between approximation and semantics,
by showing

�M � D∞ p =
⊔{

� A� D∞ p
∣∣ A ∈ A(M)

}
.

So, essentially, approximants are partially evaluated expressions in which the locations of incomplete evaluation (i.e. where
reduction may still take place) are explicitly marked by the element ⊥; thus, they approximate the result of computations.
Intuitively, an approximant can be seen as a ‘snapshot’ of a computation, where we focus on that part of the resulting
program which will no longer change, which corresponds to the (observable) output.

A notion of approximants for fj-programs is defined similarly. This is used to show an approximation result which states
that, for every intersection type assignable to a term in our system, an approximant of that term exists which can be
assigned the same type; for lc, this result was shown by Ronchi della Rocca [60] (see also [7]). Interpreting a fj-program by
its set of approximants gives an approximation semantics and the approximation result then relates the approximation and
the type-based semantics; it demonstrates that our type system is sound and complete with respect to the approximation
semantics, allowing a type-based analysis of termination. As is also the case for lc and trs, in our system this result is
shown using a notion of computability; since the notion of reduction we consider is weak (in the sense that methods have
a fixed arity, and all arguments need to be present before they can be invoked and are all ‘consumed’ in one go1), the
traditional approach to the proof of the approximation result does not work and, as in [16], we need to resort to a proof of
the much stronger property that reduction on type derivations is strongly normalising, from which the approximation result
follows.

Expressivity. That fj is Turing-complete seems to be a well-accepted fact; we illustrate the expressive power of our calculus
by embedding Combinatory Logic (cl) [34] – and thereby also lc – into it, thus confirming explicitly that (our variant of) fj

is Turing-complete. To show that our type system provides more than a semantical tool and can be used in practice as well,
we define a restriction of our system by restricting to a notion of Curry type assignment and show a type preservation result:
types assignable to cl-terms in the Curry system correspond to types in our system that can be assigned to the interpreted
cl-terms. This could then easily be extended to the strict intersection type assignment system for lc [6]; combined with the
results we show in this paper, this then implies that the collection of typeable oo-expressions correspond to the terms that
are typeable using intersection types, i.e. all λ-terms that are semantically meaningful (terms having a head-normal form).

Contents of this paper. In Section 1, we present the calculus fj
/c , Featherweight Java without casts, for which in Section 2 we

define an approximation semantics. In Section 3, we define our notion of intersection type assignment, and show subject re-
duction and expansion. In Section 4 we define a notion of reduction on derivations that follows reduction on fj

/c-expressions,
and show that this notion is strongly normalisable. The two approaches of approximation and intersection types are linked
in Section 5, where we show the approximation result and show that this is a direct consequence of the strong normalisabil-
ity of derivation reduction; we also show some characterisation results for head-normalisation and strong normalisation. In
Section 6 we present a restriction using Curry types and show how to encode Combinatory Logic into fj

/c , whilst preserving
assignable Curry types. In Section 7, we give some detailed examples and observations, followed by our conclusions.

An extended abstract of this paper has appeared as [62]. In [18] we presented a similar system which here has been
simplified. In particular, we have removed the (functional) field update feature (which can be modelled using method calls,2)
which gives a more straightforward presentation of system and proofs. We have also decoupled our intersection type system
from the existing nominal type system, as was used in [18,13], which shows that the approximation result does not depend
on the class type system in any way. Moreover, we moved away from late self typing (where the type for the receiver is
checked when invoking the method), which was making the proofs of our results unnecessarily complex, towards early self
typing (where the type for the receiver is checked when assigning a method type to an object).

1. Featherweight Java without Casts

In this section, we will define the variant of Featherweight Java we consider in this paper. As in other class-based
object-oriented languages, it defines classes, which represent abstractions encapsulating both data (stored in fields) and the

1 This is also the case for reduction in combinator systems, and trs in general. This differs from, for example, the notion of reduction in calculi like lc,
where arguments are ‘consumed’ one-at-the-time. Also, it differs from the notion of weak reduction in lc, which prohibits reduction under an abstraction.

2 One possible solution is to add to every class C , for each field f i belonging to the class, a method
C update_f i (Di x) { return new C (this.f1, . . . ,x, . . . ,this.fn); }.



R.N.S. Rowe, S.J. van Bakel / Theoretical Computer Science 517 (2014) 34–74 37
operations to be performed on that data (encoded as methods). Sharing of behaviour is accomplished through the inheritance
of fields and methods from parent classes. Computation is mediated by instances of these classes (called objects), which
interact with one another by calling (also called invoking) methods on each other and accessing each other’s (or their own)
fields. We have removed cast expressions since they introduce the possibility of certain run-time errors meaning that they
are, in a certain sense, ‘unsafe’; for this reason we call our calculus fj

/c . We discuss the motivations behind this decision
more fully in Section 7.3. We also leave constructors3 as implicit, as they plays no role in the reduction semantics.

Before defining the calculus itself, we introduce some notational conventions that we will use in the remainder of this
paper.

Definition 1 (Notation).

1. We use n (where n is a natural number) to represent the set {1, . . . ,n}.
2. A sequence s of n elements a1, . . . ,an is denoted by an; the subscript can be omitted when the exact number of

elements in the sequence is not relevant.
3. We write a ∈ an whenever there exists some i ∈ n such that a = ai .
4. The empty sequence is denoted by ε , and concatenation on sequences by s1 · s2.
5. We use familiar meta-variables in our formulation to range over class names (C and D), field names (f), method names

(m) and variables (x).
6. We use roman teletype font for concrete fj

/c-code, and italicised teletype font for meta-code.

We distinguish the class name Object (which denotes the root of the class inheritance hierarchy in all programs) and
treat the self reference this (used to refer to the receiver object in method bodies) as a separate syntactic entity rather
than a variable.4

Definition 2 (fj
/c Syntax).

1. Assuming countably infinite sets of class, field, method, and variable names (not necessarily disjoint), expressions are
defined by the following grammar:

e ::= x | this | new C(e) | e.f | e.m(e)

2. The function vars returns the set of variables used in an expression (notice that this set does not include this even if
it occurs in the method body, since in our formalism this is not a variable).

3. An fj
/c program P consists of a class table CT , and an expression e to be run (corresponding to the body of the main

method in a real Java program). Programs are defined by the following grammar:

fd ::= Cf;
md ::= D m(C1 x1, . . . ,Cn xn) {return e; }
cd ::= class C extends C′ {fd md} (C �= Object)

CT ::= cd
P ::= (CT ,e)

Thus, class tables are comprised of a number of class declarations cd, which themselves contain field declarations fd, and
method declarations md. For a method declaration D m(C1 x1, . . . ,Cn xn) {return e; }, we call D m(C1 x1, . . . ,Cn xn)
the signature of the method, and e the method body. The variables x1, . . . ,xn are called the formal parameters of the
method.

The remaining concepts that we will define below are dependent (or, more precisely, parametric) on a given class table.
For example, the reduction relation we will define uses the class table to look up fields and method bodies in order to
direct reduction and our type assignment system will do likewise. Thus, there is a reduction relation and type assignment
system for each program. However, since the class table is a fixed entity (i.e. it is not changed during reduction, or during
type assignment), it will be left as an implicit parameter in the definitions that follow. This is done in the interests of
readability, and is a standard simplification in the literature (see, e.g., [48]).

3 In [48], each class has an explicit constructor which has as many parameters as the fields of the class and explicitly assigns the passed parameters e
in new C (e) to the fields.

4 Note that this is not a variable in the traditional sense, since it is not used to mark the position in the method’s body where a parameter can be
passed, nor for the position in a term that can be replaced by another term. Were we to define an interpretation of expressions into an appropriate domain,
via 	e
ζ , using the valuation ξ that maps variables to arbitrary terms, then the fact that this can only be mapped to the receiver would need to be treated
directly in the definition of 	e
ζ , and cannot be dealt with by ζ ; so this, formally, is not a variable. However, whenever convenient, we will treat this
as a variable, so will normally not mention it separately when replacing variables in an expression. Formally, there is no need to stipulate that there is no
variable called this, although for parsing purposes this may be useful.
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As mentioned above, the sequence of (class) declarations that comprises the class table induces a family of lookup func-
tions. In order to ensure that these functions are well defined, we only consider programs which conform to the following
well-formedness criteria, which are standard for class-based oo: that there are no cycles in the inheritance hierarchy; that
each class is declared only once; that fields in any given branch of the inheritance hierarchy are uniquely named; and that
each formal parameter in a method declaration must be unique in that declaration. Two further well-formedness criteria
deserve more detailed explanation. Firstly, if there are multiple method declarations containing the same method name in
any given branch of the inheritance hierarchy, then each of those declarations must have the same signature (modulo re-
naming of formal parameters). Each such method re-declaration is permitted to have a different method body, however. This
is known in the parlance of class-based oo as method override. Secondly, the formal parameters of a method must constitute
a superset of the variables used in the method body, so method definitions correspond to closed functions, thus avoiding
dynamic linking issues.

We define the following functions to look up elements of class definitions.

Definition 3 (Lookup Functions). The following lookup functions are defined to extract the names of fields and bodies of
methods belonging to (and inherited by) a class.

1. The following functions retrieve the name of a class, field or method from its definition:

CN (class C extends D {fd md}) = C

FN (C f; ) = f

MN (D m(C1 x1, . . . ,Cn xn) {return e; }) = m

2. By abuse of notation, we will treat the class table, CT , as a partial map from class names to class definitions:

CT (C) = cd if CN (cd) = C and cd ∈ CT

3. The list of fields belonging to a class C (including those it inherits) is given by the function F , which is defined as
follows:

F(Object) = ε

F(C) = F(C′) · fn if CT (C) = class C extends C′{fdn md} and FN (fdi) = f i for all i ∈ n

4. The function Mb, given a class name C and method name m, returns a tuple (x,e), consisting of a sequence of the
method’s formal parameters and its body:

Mb(C,m) = (xn,e) if CT (C) = class C extends C′{fd md} and there exist C0,Cn

such that C0 m(C1 x1, . . . ,Cn xn) {return e; } ∈ md

Mb(C,m) = Mb(C′,m) if CT (C) = class C extends C′{fd md} and m �= MN (md) for all md ∈ md

Substitution of expressions for variables is the basic mechanism for reduction in our calculus: when a method is invoked
on an object (the receiver) the invocation is replaced by the body of the method that is called, each of the variables is
replaced by the corresponding argument, and this is replaced by the receiver.

Definition 4 (Reduction).

1. A term substitution S = 〈this �→ e′,x1 �→ e1, . . . ,xn �→ en〉 is defined in the standard way as a total function on
expressions that systematically replaces all occurrences of the variables x i and this by their corresponding expression.
We write eS for S(e).

2. The reduction relation → is the smallest contextually closed relation on expressions satisfying:

new C(en).f i → ei for class name C with F(C) = fn and i ∈ n.

new C(e).m(e′
n)→ eS for class name C and method m with Mb(C,m) = (xn,e),

where S = 〈this �→ new C(e), x1 �→ e′
1, . . . , xn �→ e′

n〉
We call the left-hand term the redex (reducible expression) and the right hand the contractum. We write →∗ for the
reflexive and transitive closure of →.

This notion of reduction is confluent, which is easily shown by a standard ‘colouring’ argument (as is done in [20] for lc).
The lc view is that all normal forms are meaningful (in a semantic sense). However, note that in our system there are

some normal forms which are clearly problematic for this point of view. Take, for example, new C().m() with method
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Fig. 1. Type assignment rules for the Nominal Type Assignment system.

m not existing in class C. It seems obvious that this is not an expression which we should treat as meaningful. Indeed,
in real Java running such a program would result in a NoSuchMethodError. One approach we could have taken would
have been to model runtime errors explicitly. Although it would be straightforward to extend the system in this way, for
simplicity we chose not to take this approach. Instead, we will consider such normal forms to be not well-formed (see
Definition 46), and ensure that they are mapped to the bottom element of our semantic domain in Section 2.

The nominal5 type system as presented in [48], adapted to our version of Featherweight Java, is defined as follows.

Definition 5 (Member Type Lookup). The field table FT and method table MT are functions which return type information
about the elements of a given class. These functions allow to retrieve the types of any given field f or method m declared
in a particular class C:

FT (C,f) =
{
D if CT (C) = class C extends C′ {fd md} and D f ∈ fd
FT (C′,f) if CT (C) = class C extends C′{fd md} and f not in fd

MT is defined similarly:

MT (C,m) =
⎧⎨
⎩
E → D if CT (C) = class C extends C′ {fd md} and D m(E x){e} ∈ md
MT (C′,m) if CT (C) = class C extends C′ {fd md}

and m �= MN (md) for all md ∈ md

Notice both are not defined on Object.

Nominal type assignment in fj is a relatively easy affair, and more or less guided by the class hierarchy.

Definition 6 (Nominal Type Assignment for fj).

1. The set of expressions of fj is defined as in Definition 2, but adding the alternative (C)e (cast).
2. The sub-typing relation6 <: on class types is generated by the extends construct, and is defined as the smallest

pre-order satisfying: if class C extends D {fd md} ∈ CT , then C <: D.
3. Statements are pairs of expression and type, written as e : φ; contexts Γ are defined as sets of statements of the shape
x : φ, where all variables are distinct, and possibly containing a statement for this.

4. Expression type assignment for the nominal system for fj is defined in [48] through the rules of Fig. 1, where (var) is
applicable to this as well.

5. A declaration of method m is well typed in C when the type returned by MT (m,C) determines a type assignment for
the method body.

(meth) : x:C,this:C � eb:D
E m(C x) { return eb; } OK IN C

(MT (m,C) = C → E & D <: E)

6. Classes are well typed when all their methods are and a program is well typed when all the classes are and the
expression is typeable.

(class) : mdi OK IN C (∀i ∈ n)

class C extends D{fd mdn} OK
(prog) : cd OK Γ � e:C

(cd ,e) OK

5 This notion is called nominal since the set of types is taken to be the set of class names in the class table, and compatibility and equivalence of types
is determined based on identity of names only; in particular, two class types with different names are incompatible, even if they have identical field and
method declarations.

6 Notice that this relation depends on the class-table, so the symbol <: should be indexed by CT ; as mentioned above, we leave this implicit.
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class IntList extends Object {
IntList square() { return new IntList(); }
IntList removeMultiplesOf(int n) { return new IntList(); }
IntList sieve() { return new IntList(); }
IntList listFrom(int n) { return new NonEmpty(n, this.listFrom(n+1)); }
IntList primes() { return this.listFrom(2).sieve(); }

}

class NonEmpty extends IntList {
int val;
IntList next;
IntList square() { return new NonEmpty(this.val * this.val, this.next.square()); }
IntList removeMultiplesOf(int n) {

if (this.val % n == 0) {
return this.next.removeMultiplesOf(n);

} else {
return new NonEmpty(this.val, this.next.removeMultiplesOf(n));

}
}
IntList sieve() {

return new NonEmpty(this.val, this.next.removeMultiplesOf(this.val).sieve(); );
}

}

Fig. 2. The class table for the Sieve of Eratosthenes in fj
/c .

Notice that in the nominal system, classes are typed (or rather type-checked) once, and the types declared for their fields
and methods are static, unique, and used at invocation. We will see below (Definition 19) that this is not the case for our
notion of intersection type assignment; rather than typing classes, it has two rules (newF) and (newM) that create a field
or method type for an object (essentially stating that this field or method is available, and what its current type is). Using
that approach, method bodies are typed every time the context requires that an object has a specific method type, and the
various types constructed for a method that are used throughout a program need not be the same.

As mentioned above, we have decided to not consider casts in this paper, since they create run-time problems, as already
observed in [48].

2. An Approximation Semantics for FJ/c

In this section, we define a notion of approximation for fj
/c , as a generalisation of a similar notion first introduced by

Wadsworth in [67] for lc, which we will use to define an approximation semantics for fj
/c . Essentially, approximants are

partially evaluated expressions in which the locations of incomplete evaluation (i.e. where reduction may still take place)
are explicitly marked by the element ⊥; thus, they approximate the result of computations; intuitively, an approximant can
be seen as a ‘snapshot’ of a computation, where we focus on that part of the resulting program which will no longer change.

We first illustrate this concept.

Example 7. Consider fj
/c extended with numerals, arithmetic operators, and an if-then-else construct, and take the class

table given in Fig. 2. Let the notation n1 : n2 : . . . : nk : [] be shorthand for the fj
/c expression:

new NonEmpty (n1, new NonEmpty (n2, . . . new NonEmpty (nk, new IntList()) . . .))

Then which has the approximant

(1:2:3:[]).square() ⊥
→∗ 1:(2:3:[]).square() 1:⊥
→∗ 1:4:(3:[]).square() 1:4:⊥
→∗ 1:4:9:([]).square() 1:4:9:⊥
→∗ 1:4:9:[] 1:4:9:[]

In this case, the output is finite, and the final approximant is the end-result itself. The class table in Fig. 2 is also able to
calculate the (infinite) list of prime numbers using the well known ‘sieve of Eratosthenes’.

Then (where we abbreviate removeMultiplesOf by rMO) which has the approximant

new IntList().primes() ⊥
→∗ (2:3:4:5:6:7:8:...).sieve() ⊥
→∗ 2:(3:(4:5:6:7:8:...).rMO(2)).sieve() 2:⊥
→∗ 2:3:(((5:6:7:8:...).rMO(2)).rMO(3)).sieve() 2:3:⊥
→∗ 2:3:5:((((7:8:...).rMO(2)).rMO(3)).rMO(5)).sieve() 2:3:5:⊥

...
...
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In this case, the computation is infinite, and so is the output – there is no final approximant since the ‘result’ is never
reached and thus ⊥ is in every approximant.

Notice that, under reduction, more and more information about the structure of the end result of the computation is
revealed.

Approximate expressions and approximate normal forms for fj
/c are defined below.

Definition 8 (Approximate Expressions).

1. The set A of approximate fj
/c expressions is defined, essentially adding ⊥ as an expression, by the grammar:

a ::= ⊥ | x | this | a.f | a.m(an) | new C(an) (n � 0)

2. The set of approximate normal forms (apn for short), A, ranged over by A, is a strict subset of the set of approximate
expressions and is defined by the following grammar:

A ::= ⊥ | x | this | new C(An)
| A.f | A.m(An) (A �= ⊥, A �= new C(An))

The notion of approximation is formalised through an approximation relation on approximate expressions.

Definition 9 (Approximation Relation). The approximation relation � ⊆A2 is defined as the smallest pre-order satisfying:

⊥ � a

a� a′ & ∀i ∈ n [ai � a′
i] ⇒

{
a.f � a′.f
new C(an) � new C(a′

n)
a.m(an) � a′.m(a′

n)

If a� e, we call a a direct approximant of e.

As mentioned above, the idea behind approximation is to cover up incomplete evaluation with the element ⊥. Thus,
for example, if the expression new C(e) can reduce to new C(e′) via a reduction in the subexpression e, then we may
cover this reduction with ⊥, obtaining new C(⊥)� new C(e).

The other crucial aspect that we require of approximants is that they represent information about the result of a compu-
tation that cannot change through further reduction. It is for this purpose that we have defined approximate normal forms.
Notice that we do not consider ⊥.f or ⊥.m(An) to be apns: for such expressions it can be that ⊥ hides an expression that
reduces to an object new C(An), in which case the field or method invocation can run and thereby disappears. Moreover,
if in the apn A[⊥] the bottom gets replaced by e, an expression is created that can possibly reduce but only inside the
subexpression e, creating A[e′], thus maintaining the outer shape A[·].

This is expressed by the following result, which characterises the relationship between the approximation relation and
reduction.

Lemma 10. If A� e and e→∗ e′ , then A� e′ .

Proof. By induction on the length of reduction sequences; we only show the base case, which gets shown by induction on
the structure of apns, of which we show only one illuminating case.

A= A′.m(An): Then e = e0.m(en) with A′ � e0 and Ai � ei for each i ∈ n. Since A′ �= new C(A) it follows that e0 �=
new C(e′). Since e is not a redex, there are only two possibilities for the reduction step:

1. e0 → e′
0 and e′ = e′

0.m(en). Then by induction A′ � e′
0 and so also A′.m(An)� e′

0.m(en).
2. e j → e′

j for some j ∈ n and e′ = e0.m(e′
n) with e′

k = ek for each k ∈ n such that k �= j. Then, clearly Ak � e′
k for

each k ∈ n such that k �= j. Also, by induction A j � e′
j . Thus A′.m(An)� e0.m(e′

n). �
As desired, this property expresses that the observable behaviour of a program can only increase (in terms of �) through

reduction, corresponding to the idea that while running a program we discover more about its result. For A� e, the apn A
corresponds to that part of the result that will no longer change during reduction.

Notice that while we have called A the set of approximate normal forms, as per the discussion of the previous section
they do not correspond exactly to the set of normal forms with respect to reduction. As pointed out above, the expression
new C().m(), with method m not existing in class C, is a normal form but is not a well-formed one; thus, we exclude
it as an apn. Despite this, we have chosen to name the members of A approximate normal forms in order to draw an
explicit parallel between our notion of approximants, and that of other systems (namely lc and trs). In the lc for example,
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the reduction relation can be extended with the rules ⊥M → ⊥ and λx.⊥ → ⊥. With respect to this extended reduction
relation, the syntactically defined approximate normal forms are precisely the terms which cannot be further reduced.

We also define a join operation on approximate expressions, which will be needed to prove the approximation result of
Section 5.

Definition 11 (Join Operation). The join operation � on approximate expressions is a partial operator defined as the reflexive
and contextual closure of: ⊥ � a = a � ⊥ = a. We extend the join operation to sequences of approximate expressions by:
� ε = ⊥ and � a · an = a � ( � an).

Notice that the join of two approximate expressions is not always defined.
The following lemma shows that �, if defined, acts as an upper bound on approximate expressions, and that it is closed

over apns in that the join of two apns, if defined, is itself an apn.

Lemma 12.

1. Let a1,a2 and a3 be approximate expressions, then

a1 � a3 & a2 � a3 ⇒ a1 � a2 � a3 & a1 � a1 � a2 & a2 � a1 � a2
(a1 � a2) � a3 = a1 � (a2 � a3)

a1 � a2 = a2 � a1

2. A1 � A2 ∈A (when defined).

Proof.

1. By induction on the structure of approximate expressions; we show a more illustrating case.
a1 = a′

1.f, a2 = a′
2.f, a′

1 � a′, a′
2 � a′: By induction, a′

1 � a′
2 � a′,a′

1 � a′
1 � a′

2, and a′
2 � a′

1 � a′
2. Then, by Def-

inition 9, (a′
1 � a′

2).f � a′.f , a′
1.f � (a′

1 � a′
2).f , and a′

2.f � (a′
1 � a′

2).f . Then, by Definition 11, a1 � a2 =
(a′

1 � a′
2).f .

2. By induction on the structure of apns; again, we only show one case.
A1 = A′

1.f, A2 = A′
2.f: By definition A′

1 ∈ A and A′
2 ∈ A, with both A′

1 and A′
2 being neither ⊥, nor of the form

new C(A′′). Then by induction A′
1 � A′

2 ∈ A, and by Definition 11 the join is neither equal to ⊥ nor of the form
new C(A′′

n). Thus, by Definition 8, (A′
1 � A′

2).f = A1 � A2 ∈A. �
Notice that, in particular, the first part shows that if a1 � e & a2 � e, then a1 � a2 � e.
We now define the set of approximants of a term.

Definition 13 (Approximants). The symbol A also is used for a function that returns the set of approximants of an expression
e and is defined by:

A(e) = {A | ∃e′[e→∗ e′ & A� e′]}
Thus, an approximant of some expression e is an apn that approximates some (intermediate) stage of execution of e.

We will now show that A(·) induces an approximation semantics in that it equates pairs of expressions that are in the
reduction relation, as shown by the following theorem.

Theorem 14. Let e1 →∗ e2; then A(e1) =A(e2).

Proof.

⊇: e1 →∗ e2 & A ∈ A(e2) ⇒ (Definition 13)
e1 →∗ e2 & ∃e3[e2 →∗ e3 & A� e3] ⇒
∃e3[e1 →∗ e3 & A� e3] ⇒ (Definition 13)
A ∈ A(e1)

⊆: e1 →∗ e2 & A ∈ A(e1) ⇒ (Definition 13)
e1 →∗ e2 & ∃e3[e1 →∗ e3 & A� e3] ⇒ (Church–Rosser)
∃e3,e4[e1 →∗ e2 & e2 →∗ e4 & e1 →∗ e3 & e3 →∗ e4 & A� e3] ⇒ (Lemma 10)
∃e4[e2 →∗ e4 & A� e4] ⇒ (Definition 13)
A ∈ A(e2) �

Since this result states that terms that are related through reduction have the same interpretation, we can even reverse
the reduction order; this allows us to define a semantics for fj

/c by interpreting expressions by the set of their approximants:
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Definition 15 (Approximation Semantics). The approximation model for fj
/c expressions (given a class table) is a structure

〈℘(A), �·�A〉, where �e�A =A(e).

That this indeed gives a semantics follows from Theorem 14; notice that an abstract notion of model for fj
/c does not

exist (as it does for lc), so we have no other means to verify that 〈℘(A), �·�A〉 does indeed give a model.
Before moving on to describe our type assignment system and its relationship to the semantics we have just defined, we

will make one final point concerning our treatment non-well-formed normal forms such as new C().m(), where method
m does not exist in class C. We have explained above why we consider such normal forms to be meaningless, even though
we have chosen not to reflect this in the reduction system. Notice that the only apn which approximates this expression is
⊥ and thus its semantic denotation is the set {⊥}, the bottom element of the semantic domain. Of course, it is exactly these
kinds of results that the nominal type system of Definition 6 rejects. This might give the impression that we will implicitly
only be considering those expressions which are nominally well-typed, however this is not the case. The type system which
we consider in the remainder of this paper assigns types to all expressions. Note that there are programs which are rejected
by the nominal type system but which nevertheless have meaningful results and thus are typeable in our semantic system.
We examine in detail an example of such a program in Section 7.3.

3. Semantic Type Assignment

Having defined a semantics for fj
/c , we continue by considering a type system for fj

/c which is sound and complete with
respect to this semantics in the sense that every type assignable to an expression is also assignable to an approximant of
that expression and vice versa. Notice that, since in approximants redexes are replaced by ⊥, this result is not an immediate
consequence of a subject reduction result; moreover, as we will see in the next section, it is the type derivation itself which
determines the approximant in question.

The type assignment system defined below follows in the intersection type discipline; it is influenced by the predicate
system for the ς -calculus [13], and is ultimately based upon the strict intersection type system for lc [6,7] (see [11]
for a survey). Our types can be seen as describing the capabilities of an expression (or rather, the object to which that
expression evaluates) in terms of i) the operations that may be performed on it (i.e. accessing a field or invoking a method), and
ii) the outcome of performing those operations, where dependencies between the inputs and outputs of methods are tracked
using (type) variables. In this way, our types express detailed properties about the contexts in which expressions can safely
be used. More intuitively, they capture a certain notion of observational equivalence: two expressions with the same set of
assignable types will be observationally indistinguishable. Our types thus constitute semantic predicates.

Definition 16 (Functional Types). The set of functional intersection types (or types for short), ranged over by φ, ψ , and its
subset of strict types, ranged over by σ , τ are defined by the following grammar (where ϕ ranges over a denumerable set
of type variables, C ranges over the set of class names, and ω is a type constant):

φ,ψ ::= ω | σ | φ ∩ ψ

σ ::= ϕ | C | 〈f : σ 〉 | 〈m : (φ1, . . . , φn) → σ 〉 (n � 0)

We call 〈f : σ 〉 a field type and 〈m : (φ1, . . . , φn) → σ 〉 a method type, and, in these, f and m are labels; labels are ranged over
by �.

Notice that our types do not depend on the types that would be assigned in the nominal system; in fact, we could have
presented our results for an untyped variant of fj, where all class annotations on parameters and return types are omitted.
We have decided not to do so for reasons of compatibility with other work, and to avoid leaving the (incorrect) impression
that our results would somehow then depend on the fact that expressions carry no type information.

The key feature of types is that they may group information about many operations together into intersections from
which any specific one can be selected for an expression as demanded by the context in which it appears. In particular,
an intersection may combine two or more different (even non-unifiable) analyses of the same field or method. Types are
therefore not records: records can be characterised as intersection types of the shape 〈�1:σ1, . . . , �n:σn〉 where all σi are
intersection free, and all labels �i are distinct; in other words, records are intersection types, but not vice versa; see also
Definition 52.

In the language of intersection type systems, our types are strict in the sense of [7], since they must describe the outcome
of performing an operation in terms of a(nother) single operation rather than an intersection. We include a type constant for
each class, which we can use to type objects which therefore always have a type, like for the case when an object does not
contain any fields or methods (as is the case for Object) or, more generally, because no fields or methods can be safely
invoked. The type constant ω is a top (maximal) type, assignable to all expressions and serves typically to type subterms
that do not contribute to the normal form of an expression.

The following subtype relation facilitates the selection of individual behaviours from an intersection.
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Fig. 3. Type assignment rules for the Functional Type Assignment system.

Definition 17 (Subtype Relation). The subtype relation � is induced by the fact that an intersection type is smaller than each
of its components, and is defined is the smallest pre-order satisfying:

φ � ω for all φ

φ ∩ ψ � φ

φ ∩ ψ � ψ

φ � ψ & φ � ψ ′ ⇒ φ � ψ ∩ ψ ′

We write ∼ for the equivalence relation generated by �, extended by

σ ∼ σ ′ ⇒ 〈f : σ 〉 ∼ 〈f : σ ′〉
∀i ∈ n [φ′

i ∼ φ′
i ] & σ ∼ σ ′ ⇒ 〈m : (φ1, . . . , φn) → σ 〉 ∼ 〈m : (φ′

1, . . . , φ
′
n) → σ ′〉

Note that φ ∩ ω ∼ φ.
We will consider types modulo ∼; in particular, all types in an intersection are different and ω does not appear in an

intersection. It is easy to show that ∩ is associative and commutative with respect to ∼, so we will abuse notation slightly
and write σ1 ∩· · ·∩σn (where n � 2) to denote a general intersection, where all σi are distinct and the order is unimportant.
In a further abuse of notation, φ1 ∩ · · · ∩ φn will denote the type φ1 when n = 1, and ω when n = 0.

Definition 18 (Type Environments).

1. A type statement is of the form e : φ, where e is called the subject of the statement.
2. An environment � is a set of type statements with variables (and possibly this) as subjects, and with subjects pairwise

distinct; for ease of notation, we will let x range over this as well as variables in type statements of the form x:φ.
�,x:φ stands for the environment � ∪ {x:φ} (so then either x does not appear in � or x:φ ∈ �) and x:φ stands for
∅,x:φ.

3. We extend � to environments by: �′ � � ⇔ ∀x:φ ∈ � ∃φ′ � φ[x:φ′ ∈ �′].
4. If �n is a sequence of environments, then

⋂
�n is the environment defined as follows: x:φ1 ∩ · · · ∩ φm ∈ ⋂

�n , if and
only if {x:φ1, . . . ,x:φm} is the non-empty set of all statements in the union of the environments that have x as subject.

We will now define our notion of type assignment, which is a slight variant of the system defined in [18].

Definition 19 (Functional Type Assignment). Functional type assignment for fj
/c is defined by the natural deduction system of

Fig. 3.

We will give extended examples for our system in Section 7. For now, we can make the following observations on the
type assignment rules:

• Rule (newM) expresses that we consider the expression new C(e) typeable with 〈m : (φn) → σ 〉 only if m’s method
body eb (in C) can be typed with σ , where the type used for each variable x i is exactly φi , and assuming that the
expression new C(e) itself is typeable with the type ψ needed for this when typing eb. Notice that this is required
in order to be able to show subject reduction; moreover, it introduces a kind of ‘recursion’ into our notion of type
assignment: in order to type new C(e), we need first to type new C(e), a fact we will investigate in Section 7.2.
Notice that, for typeable method bodies, this means that, eventually, we end up not needing a type for this (for
example, when it does not occur, or occurs in a subexpression typed using rule (ω)), or we only need to know that it
has type C .
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• Rule (newF) expresses that the same expression new C(e) can be typed with 〈f i : σ 〉, provided we can type the
expression ei with type σ ; we demand that all other expressions are typeable as well (their types are not relevant)
mainly to be able to prove Theorem 50.

• Rule (obj) states that C is a type for new C(e) as well. Crucially, these three rules ensure that the correct number of
arguments are provided for the constructor.

• Rule (invk) expresses that, if an expression e has a method type, then that method can be invoked on e, provided the
arguments have the correct demanded types. Similar for rule (fld).

• Rule (join) allows us to group several types in an intersection, and rule (ω) says that every expression has type ω;
this rule is used whenever the type of an expression is not relevant and can be ignored as far as type assignment is
concerned.

The rules of our type assignment system are fairly straightforward generalisations of the rules of the strict intersection
type assignment system for lc to oo, whilst making the step from a higher order to a first-order language: for example,
(fld) and (invk) are analogous to (→ E); (newF) and (newM) are a form of (→ I); and (obj) can be seen as a universal
(ω)-like rule for objects only.

The only non-standard rule from the point of view of similar work for trs and traditional nominal oo-type systems is
(newM), which derives a type for an object that presents an analysis of a method that is invokable on that object. Note that
the analysis involves typing the body of the method, and the assumptions (i.e. requirements) on the formal parameters are
encoded in the derived type (to be checked on invocation). However, a method body may also make requirements on the
receiver as well as the formal method parameters, through the use of the variable this. In our system we check that these
hold at the same time as typing the method body, so-called early self typing, whereas with late self typing (as used in [13]) we
would check the type of the receiver at the point of method invocation. This checking of requirements on the object itself
is where the expressive power of our system resides. If a method calls itself recursively, this recursive call must be checked,
but – crucially – carries a different type if a valid derivation is to be found. Thus only recursive calls which terminate at a
certain point (i.e. which can then be assigned ω or C, and thus ignored) will be typeable in the system.

We will accept

(newM
′) : x1:φ1, . . . , xn:φn � eb : σ � � e1 : φ′

1 . . . � � en : φ′
n

� � new C(e) : 〈m : (φn) → σ 〉 (this not in eb,Mb(C,m) = (xn,eb), n � 0)

as a variant of rule (newM), since this rule is admissible:

The type assignment rules in fact operate on the larger set of approximate expressions, but we abuse notation slightly
and use the meta-variable e for expressions rather than a. Note that there is no special rule for typing ⊥, meaning that if
⊥ appears in a term, then some part of that term, containing that ⊥, is typed with ω.

We should perhaps emphasise that, as remarked above, we explicitly do not type classes; instead, the rules (newF) and
(newM) create a field or method type for an object. This entails that method bodies are checked every time we need that
an object has a specific method type, and the various types for a particular method used throughout a program need not
be the same; they have to be in the nominal system.

Example 20. Take the fj
/c program

class List
{

List cons(Object o) { return new NonEmptyList(o, this); }
List append(Object o) { return new NonEmptyList(o, new EmptyList()); }

}

class EmptyList extends List { }

class NonEmptyList extends List
{

Object head;
List tail;
List append(Object o) {

return new NonEmptyList(this.head, this.tail.append(o)); }
}
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We can assign new EmptyList() any of the type schemes

• ω,
• EmptyList,
• 〈cons : φ → NonEmptyList〉,
• 〈cons : φ1 → 〈cons : φ2 → NonEmptyList〉〉, . . .
• 〈append : φ → NonEmptyList〉,
• 〈append : φ1 → 〈append : φ2 → NonEmptyList〉〉, etc.

We can even assign it any ‘combination’ of these types, like for example

〈cons : φ1 → 〈append : φ2 → 〈cons : φ3 → NonEmptyList〉〉〉

So, in our system, we would have, in principle, an infinite (intersection) type for each class,7 which we cannot establish
when typing the class separately; rather, we let the context of each object declaration (of the shape new C(e)) decide
which type is needed, so the type for an occurrence of new C(e) is ‘constructed’ by need, and not from a complete
analysis of the class.

As is standard for intersection type assignment systems, our system is set up to satisfy both subject reduction and subject
expansion, which we will show below. First we show:

Lemma 21 (Weakening). Let �′ � � and φ � ψ ; then � � e : φ ⇒ �′ � e : ψ .

Proof. By easy induction on the structure of derivations. The base case of (ω) follows immediately, and for (var) it follows
by transitivity of the subtype relation. �

The next result forms the basis for the proof of Theorem 23; notice that, for brevity, we treat this as a variable here,
which need not appear amongst the x .

Lemma 22 (Replacement and Extraction).

1. If x:φn � e : φ and there exists � and en such that � � ei : φi for each i ∈ n, then � � eS : φ where S = 〈x �→ en〉.
2. For an expression e and term substitution S = 〈x �→ en〉 with vars(e) ⊆ { x}, if � � eS : φ, then there are φn such that

� � ei : φi for each i ∈ n and x:φn � e : φ .

Proof. By induction on the structure of derivations; we show only one case for the second part:

(newM): Then eS = new C(e′
n′′) and φ = 〈m : (φ′

n′) → σ 〉 for some m, φ′
n′ and σ ; also, there are eb and x′

n′ such that
Mb(C,m) = (x′

n′ ,eb). Without loss of generality, assume that this appears in eb, then there exists some ψ such
that this:ψ,x′

1:φ′
1, . . . ,x′

n′ :φ′
n′ � eb : σ and � � new C(e′

n′′) : ψ – that is � � eS : ψ . Then by induction, there exists
some φn such that � � ei : φi for each i ∈ n, and x1:φ1, . . . ,xn:φn � e : ψ . Now, there are two cases to consider for e:
e= new C(e′′

n′′): then we have x1:φ1, . . . ,xn:φn � new C(e′′
n′′) : ψ and by rule (newM) it follows that x1:φ1, . . . ,

xn:φn � new C(e′′
n′′) : 〈m : (φ′

n′) → σ 〉; that is x1:φ1, . . . ,xn:φn � e : φ.
e= x j for some j ∈ n: then e j = new C(e′

n′′), and so we have x1:φ1, . . . ,xn:φn � x j : ψ . From rules (join) and (var) it
follows that φ j � ψ . Since � � ei : φi for each i ∈ n, it follows that � � new C(e′

n′′) : φ j and then by Lemma 21 that
� � new C(e′

n′′) : ψ . From this and rule (newM) we then have that � � new C(e′
n′′) : 〈m : (φ′

n′) → σ 〉; that is
� � e j : 〈m : (φ′

n′) → σ 〉. Now take φ′′
n such that φ′′

j = 〈m : (φ′
n′) → σ 〉 and φ′′

k = φk for each k ∈ n such that k �= j.
Notice that by rule (var) we have x1:φ′′

1 , . . . ,xn:φ′′
n � x j : 〈m : (φ′

n′) → σ 〉; that is x1:φ′′
1 , . . . ,xn:φ′′

n � e : φ. �
We can now show that type assignment is closed under reduction as well as under expansion.

Theorem 23 (Subject Reduction and Expansion). Let e→ e′; then � �e : φ if, and only if, � �e′ : φ.

Proof. By induction on the definition of reduction. We show the cases for the two kinds of redex (the inductive cases are
easy) and only for φ is strict; when φ = ω the result follows immediately since we can always type both e and e′ using
the (ω) rule, and when φ is an intersection we can reason that the result holds for each strict type in the intersection, and
then apply the (join) rule.

7 This has the flavour of polymorphism, but is in fact more general: it is, for example, not possible to define a finite principal pair for each typeable term.
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F(C) = fn ⇒ new C(en).f j → e j, j ∈ n:
if: Assume � � new C(en).f j : σ . The last rule applied must be (fld) so � � new C(en) : 〈f j : σ 〉. This in turn

must have been derived using the (newF) rule and so there are φ1, . . . , φn such that � � ei : φi for each i ∈ n.
Furthermore, σ � φ j and so it must be that φ j = σ . Therefore � � e j : σ .

only if: Assume � � e j : σ . Notice that using (ω) we can derive � � ei : ω for each i ∈ n such that i �= j. Then, using
the (newF) rule, we can derive � � new C(en) : 〈f j : σ 〉 and by (fld) also � � new C(en).f j : σ .

Mb(C,m) = (xn,eb) ⇒ new C(e′).m(en)→ eb
S where S = 〈this �→ new C(e′),x1 �→ e1, . . . ,xn �→ en〉:

if: Assume � � new C(e′).m(en) : σ . The last rule applied must be (invk), so there is φn such that � � new C(e′) :
〈m : (φn) → σ 〉 and � � ei : φi for each i ∈ n. Furthermore, the last rule applied in the derivation of � �
new C(e′) : 〈m : (φn) → σ 〉 must be (newM) and so there is some type ψ such that � � new C(e′) : ψ and
�′ � eb : σ where �′ = this:ψ,x1:φ1, . . . ,xn:φn . Then � � eb

S : σ by Lemma 22(1).
only if: Assume that � � eb

S : σ . Then by Lemma 22(2) there is ψ , φn such that �′ � eb : σ where �′ = this:ψ,

x1:φi, . . . ,xn:φn with � � new C(e′) : ψ and � � ei : φi for each i ∈ n. By the (newM) rule we can then derive
� � new C(e′) : 〈m : (φn) → σ 〉, and by applying (invk) rule that � � new C(e′).m(en) : σ . �

Notice that, as usual, computational equality between expressions in fj
/c is undecidable; as a consequence, through

Theorem 23 we obtain that type assignment in our system is undecidable as well. In fact, we can use our types to build
a semantics for fj

/c programs: following [21], we can define a filter d as a set of types that contains ω, and is closed for
∩ and � (so if φ,ψ ∈ d, then also φ ∩ ψ ∈ d, and if φ ∈ d, and φ � ψ , then also ψ ∈ d). It is then straightforward to
show that, for every e, the set {φ | ∃�[� � e : φ]} is a filter; we could use Theorem 23 to define a filter semantics for
fj

/c , defining �e� = {φ | ∃�[� � e : φ]}. In Section 5 we will show, essentially, that this semantics would coincide with our
approximation semantics, so we will not develop the line of filter semantics in this paper any further.

4. Strong Normalisation of Derivation Reduction

The approximation result we show in the next section is, as in other systems [8,16], a direct consequence of the strong
normalisability of derivation reduction which we will define in this section. As in [16], we need to consider derivation
reduction to achieve the approximation result; since reduction on expressions is weak (the language is first order, methods
have an arity, and equality between expressions is non-extensional), the ‘normal’ approach (as used, for example, in [60,7])
to show the approximation result does not work. The traditional computability approach is not expressive enough, since, as
argued in [16], it depends strongly on the presence of abstraction which FJ lacks. Also, as can be seen in [6], that approach
is inherently extensional (so closed for η-reduction), a property our system lacks; that is why also for the strict system
of [6], also non-extensional, the characterisation of strong normalisation has to be shown using the derivation reduction
technique; see [8,11] for details of this result.

In [16] an approximation result is shown for combinator systems (that have weak reduction), for which an encompass-
ment relation on terms is used; this technique is standard in the context of term rewriting, and was also used in [14,15].
Since our notion of reduction is weak as well, and one might think that a similar approach would be necessary for fj

/c .
This is not the case however, since our approach differs in that method bodies are typed for each individual invocation, and
are part of the overall derivation. Thus, there will be sub-derivations for the constituents of each redex that will appear
during reduction. The consequence of this is that we are able to prove our main result by straightforward induction on the
structure of derivations.

Definition 24 (Notation for Derivations). The meta-variable D ranges over derivations. We will use the notation
〈D1, . . . ,Dn, r〉 :: � � e : φ to represent the derivation concluding with the judgement � � e : φ where the last rule applied
is (r) and D1, . . . ,Dn are the (sub) derivations for each of that rule’s premises. By abuse of notation, we may sometimes
write D :: � � e : φ for 〈D1, . . . ,Dn, r〉 :: � � e : φ when the structure of the derivation is not relevant, and simply write
〈D1, . . . ,Dn, r〉 when the conclusion of the derivation is not relevant or is implied by the context.

The notion of derivation reduction is essentially a form of cut-elimination on type derivations, diagrammatically defined
through the following two basic ‘cut’ rules:
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and

(so (newF) followed by (fld), or (newM) followed by (invk)); here Db
S is the derivation obtained from Db by replacing all

sub-derivations of the form 〈var〉 :: �,x i :φi � x i : σ by a derivation constructed out of sub-derivations of Di , and replacing
sub-derivations of the form 〈var〉 :: �,this:ψ � this : σ by a derivation constructed out of sub-derivations of Dself. This
induces eb

S , obtained from eb by replacing each variable x i by the expression ei , and this by new C(e′). This reduction
creates exactly the derivation for a contractum as suggested by the proof of the subject reduction, but is explicit in all its
details, which gives the expressive power to show the approximation result. An important feature of derivation reduction is
that sub-derivations of the form 〈ω〉 :: � � e : ω do not reduce, since they are already in normal form; however, notice that
the expression involved, e, need not be in normal form. This is crucial for the strong normalisability of derivation reduction,
since it decouples the reduction of a derivation from the possibly infinite reduction sequence of the expression which it
types.

We now introduce some further notational concepts to aid us in describing and reasoning about the structure and re-
duction of derivations. The first of these is the notion of position in an expression or derivation. We then extend expressions
and derivations with a notion of placeholder, so that we can refer to and reason about specific subexpressions and sub-
derivations.

Definition 25 (Position). The position p of one (sub) expression – similarly of one (sub) derivation – in another, denoted by
pos (e, e′) – or pos (D, D′) – is a partial function on a pair of expressions or derivations, and returns, if defined, a non-empty
sequence of integers:

1. Positions in expressions are defined inductively as follows:

pos (e, e) = 0

pos (e′, e) = p ⇒
{

pos (e′, e.f) = 0 · p
pos (e′, e.m(e)) = 0 · p

pos (e′, e j) = p with j ∈ n ⇒
{

pos (e′, e.m(en)) = j · p
pos (e′, new C(en)) = j · p

2. Positions in derivations are defined inductively as follows:

pos (D, D) = 0

pos (D, D′) = pos (D, 〈Db,D′,newM〉)
pos (D, D j) = p with j ∈ n ⇒ pos (D, 〈Dn, join〉) = p

pos (D, D′) = p ⇒
{

pos (D, 〈D′,fld〉) = 0 · p
pos (D, 〈D′,Dn, invk〉) = 0 · p

pos (D, D j) = p with j ∈ n ⇒
{

pos (D, 〈D′,Dn, invk〉) = j · p
pos (D, 〈Dn,obj〉) = j · p
pos (D, 〈Dn,newF〉) = j · p

Notice that due to the (join) rule, sub-derivations indicated by positions in derivations are not necessarily unique.
3. We define the following terminology:

• We say that e′ (or D′) appears at position p in e (D) if pos (e′, e) = p (pos (D′, D) = p).
• We say that position p exists in e (D) if there exists some e′ (D′) that appears at position p in e (D).

Notice that different occurrences of a sub-expression have different positions.

Definition 26 (Expression Contexts).

1. An expression context C is an expression containing a unique ‘hole’ (denoted by [ ]) defined by the following grammar:

C ::= [ ] | C.f | C.m(e) | e.m( . . . ,ei−1,C,ei+1, . . .) | new C( . . . ,ei−1,C,ei+1, . . .)

2. C[e] denotes the expression obtained by replacing the hole in C with e.
3. We write Cp to indicate that the hole in C appears at position p.
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4. Contexts Cp where p = 0n , for some n � 1, are called neutral.
5. Expressions of the form C[x] where C is neutral are also called neutral.

Neutral expressions are simply those expressions consisting of a (possibly empty) sequence of successive method in-
vocations and field accesses on a variable. Neutral expressions, along with the following property which is easy to show,
are a crucial element to the computability technique that we use to prove our strong normalisation result for derivation
reduction, the details of which can be seen in Appendix A.

Proposition 27. Approximate normal forms of the form A.f and A.m(A) are neutral.

We also use the notion of derivation context that is like a derivation, but concluding with a statement assigning a strict
type to a neutral context. We need to extend our notion of type assignment for that:

Definition 28 (Derivation Contexts).

1. We add the inference rule:

� � [ ] : σ ([ ])

2. A derivation context D(p,σ ) (where with p we mark at which position the hole appears and which strict type σ it gets
assigned) is straightforwardly defined as a generalisation over derivations.

3. For a derivation D :: � � e : σ and derivation context D(p,σ ) :: � � C : σ ′ , we write D(p,σ )[D] :: � � C[e] : σ ′ to denote
the derivation obtained by replacing the hole in D by D.

We now define an explicit derivation weakening operation on derivations, which is straightforwardly extended to deriva-
tion contexts. This will be crucial in defining our notion of computability which we will use to show that derivation reduction
is strongly normalising.

Definition 29 (Weakening). A weakening, written [�′ � �] where �′ � �, is an operation on derivations that replaces
environments by smaller environments (with respect to �).

We now define two sets of derivations: strong and ω-safe derivations. The idea behind these kinds of derivation is to
restrict the use of the (ω) rule in order to preclude non-termination (i.e. guarantee normalisation). In strong derivations, we
do not allow the (ω) rule to be used at all. This restriction is relaxed slightly for ω-safe derivations in that ω may be used
to type the arguments to a method call. The idea behind this is that when those arguments disappear during reduction it is
‘safe’ to type them with ω since non-termination at these locations can be ignored. We will show later that our definitions
do indeed entail the desired properties, since expressions typeable using strong derivations are strongly normalising, and
expressions which can be typed with ω-safe derivations using an ω-safe environment, while not necessarily being strongly
normalising, have a normal form.

Definition 30 (Strong and ω-Safe Derivations).

1. Strong derivations are defined as in Definition 19, but by excluding rule (ω).
2. ω-safe derivations are defined inductively as follows:

• 〈var〉 :: x:φ � x : σ is ω-safe for any φ and σ.
• 〈Dn, join〉, 〈Dn,obj〉 and 〈Dn,newF〉 are ω-safe, if each derivation Di is ω-safe.
• 〈D,fld〉 is ω-safe, if D is ω-safe.
• 〈D,Dn, invk〉 is ω-safe, if D is ω-safe and for each Di either Di is ω-safe or Di is of the form 〈ω〉 :: � � e : ω.
• 〈D,D′,newM〉 is ω-safe, if both D and D′ are ω-safe.

3. We call a type φ strong if it does not contain ω. We call a type environment � strong if for all x:φ ∈ �, φ is strong.
Similarly we call � ω-safe if, for all x:φ ∈ �, either φ is strong or φ = ω.

Notice that ω can appear in ω-safe derivations, but can never be the derived type, and that an ω-safe derivation can
have sub-derivations that are not ω-safe. In Section 6 below we give examples of each kind of derivation (strong, ω-safe
and non-ω-safe).

The following lemma is used in the proof of Theorem 50.
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Lemma 31. If D :: � � A : φ with ω-safe D and �, then A does not contain ⊥; moreover, if A is neutral, then φ does not contain ω.

Proof. By induction on the structure of derivations; we only show one interesting case.

〈D′,Dn, invk〉: Then A= A′.m(An) and φ is strict, hereafter called σ. Also D′ :: � � A′ : 〈m : (φn) → σ 〉 with D′ ω-safe, and
Di :: � � Ai : φi for each i ∈ n. By induction, A′ does not contain ⊥. Also, notice that A must be neutral, and therefore
so must A′ . Then it also follows by induction that 〈m : (φn) → σ 〉 does not contain ω. This means that no φi is equal to
ω, and so it must be that each Di is ω-safe; thus by induction, no Ai contains ⊥ either. Consequently, A′.m(An) does
not contain ⊥ and σ does not contain ω. �

Continuing with the definition of derivation reduction, we point out that, just as term substitution is the main engine
for reduction on expressions, a notion of substitution for derivations, in which instances of the (var) rule are replaced by
derivations, will form the basis of derivation reduction. It is formally defined as follows:

Definition 32 (Derivation Substitution). Let D1 :: �′ � e1 : φ1, . . . ,Dn :: �′ � en : φn be derivations, then S = 〈x1:φ1 �→
D1, . . . ,xn:φn �→ Dn〉 is a derivation substitution (based on �′; when each Di is strong (ω-safe) then we say that S is also
strong (ω-safe)), a partial function from derivations to derivations, characterised by its effect on sub-derivations of 〈var〉,
and is defined by:

1. If D :: � � e : φ, and � ⊆ dom(S), then S is applicable to D.
2. If D :: � � e : φ, S is applicable to D and based on �′ , then S(D) (we normally write DS ) is defined inductively as

follows (where S is the term substitution induced by S , i.e. S = 〈x1 �→ e1, . . . ,xn �→ en〉):

D = 〈var〉 :: � � x : σ : Then there are two cases to consider:
(a) either x:σ ∈ � and so x = x i for some i ∈ n with Di :: �′ � ei : σ : then DS =Di ; or
(b) x:φ ∈ � with φ = σ1 ∩ · · · ∩σn′ and σ = σ j for some j ∈ n′ . Also in this case, x = x i for some i ∈ n, so then

Di = 〈D′
1, . . . ,D′

n′ , join〉 :: �′ � ei : φ and DS =D′
j :: �′ � ei : σ j .

D = 〈Db,D′,newM〉 :: � � new C(e) : 〈m : (φ) → σ 〉: Then

DS = 〈Db,D′S ,newM〉 :: � � new C(e)S : 〈m : (φ) → σ 〉
D = 〈D1, . . . ,Dn, r〉 :: e : φ, r /∈ { (var), (newM)}: Then DS = 〈D1

S , . . . ,Dn
S , r〉 :: �′ � eS : φ.

Notice that the last case includes the base case of derivations of the form 〈ω〉 :: � � e : ω as a special case.
3. We extend the weakening operation to derivation substitutions as follows: for a derivation substitution S =

〈x:ψ �→D :: � � e : φ〉, we write S[�′ � �] for the derivation substitution 〈x:ψ �→D[�′ � �]〉.

Example 33. Consider the derivations below for two expressions e1 and e2:

and also the following derivation of the method invocation x.m(y), where �′ = x:〈m : (ϕ1 ∩ ϕ2) → σ 〉,y:ϕ1 ∩ ϕ2:

Take S = 〈x:〈m : (ϕ1 ∩ ϕ2) → σ 〉 �→ D1,y:ϕ1 ∩ ϕ2 �→ D2〉; then the result of applying the substitution to D is the following
derivation, where instances of the (var) rule in D have been replaced by the appropriate (sub) derivations in D1 and D2:

Notice that the collection of derivations used in the (join) of derivation D2 ‘distributes.’

Derivation substitution is sound, preserves strong and ω-safe derivations, and the operations of weakening and derivation
substitution are commutative.
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Fig. 4. The advance operation on derivations.

Lemma 34 (Soundness of Derivation Substitution).

1. Let D :: � � e : φ and S be based on �′ and applicable to D; then DS :: �′ � eS : φ, where S is the term substitution induced
by S .

2. If D is strong (ω-safe) then, for any strong (ω-safe) derivation substitution S applicable to D, DS is also strong (ω-safe).
3. Let D :: �′′ � e : φ be a derivation and S be a derivation substitution based on � and applicable to D, and let [�′ � �] be a

weakening. Then DS [�′ � �] =DS[�′ ��] .

Proof. By easy induction on the structure of derivations. �
Definition 35 (Identity Substitutions). Each environment � induces a derivation substitution Id� which is called the identity
substitution for �. Let � = x:φn; then Id� � 〈x:φ �→Dn〉 where for each i ∈ n:

• If φi = ω then Di = 〈ω〉 :: � � x i : ω;
• If φi is a strict type σ then Di = 〈var〉 :: � � x i : σ ;
• If φi = σ1 ∩ · · · ∩ σmi for some m � 2 then Di = 〈D′

m, join〉 :: � � x i : σ1 ∩ · · · ∩ σmi , with D′
j = 〈var〉 :: � � x i : σ j for

each j ∈ m.

Notice that for every environment �, the identity substitution Id� is also based on �.

We can of course show that Id� is indeed the identity for the substitution operation on derivations using �.

Proposition 36. Let D :: � � e : φ , then DId� =D.

Before defining the notion of derivation reduction itself, we first define the auxiliary notion of advancing a derivation. This
is an operation which contracts redexes at some given position in expressions covered by ω in derivations. This operation
will be used to reduce derivations which introduce intersections.

Definition 37 (Advancing).

1. The advance operation � on expressions contracts the redex at a given position p in e if it exists, and is undefined
otherwise. It is defined as the smallest relation on tuples (p,e) and expressions satisfying the following properties
(where we write e

p�e′ to mean ((p,e),e′) ∈�):

F(C) = fn & e = Cp[new C(en).f i] with i ∈ n ⇒ e
p�Cp[ei]

Mb(C,m) = (xn,eb) & e = Cp[new C(e′).m(en)] ⇒ e
p�Cp[eb

S]
where S = 〈this �→ new C(e′),x1 �→ e1, . . . ,xn �→ en〉

2. We extend � to derivations via the rules in Fig. 4 (where we write D p�D′ to mean ((p,D),D′) ∈�).
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Fig. 5. Derivation reduction.

Notice that the advance operation does not change the structure of derivations. Exactly the same rules are applied and
the same types derived; only subexpressions which are typed with ω are altered.

The following lemma states that this always generates a correct derivation and that the advance operation preserves
strong (and ω-safe) typeability.

Lemma 38 (Soundness of Advancing).

1. Let D :: � � e : φ; if a redex appears at position p in e (so e
p�e′ for some e′) and no derivation redex appears at p in D, then

there exists D′ such that D p�D′ , and D′ :: � � e′ : φ .
2. If D p�D′ is defined, and D is strong (ω-safe), then D′ is also strong (ω-safe).

Proof.

1. By well-founded induction on pairs of position and derivation (p,D).
2. By induction on the definition of the advance operation for derivations. �

The notion of derivation reduction is defined in two stages. First, the more specific notion of reduction at a certain
position (i.e. in a given sub-derivation) is introduced. The full notion of derivation reduction is then a straightforward
generalisation of this position-specific reduction over all positions.

Definition 39 (Derivation Reduction).

1. The reduction of a derivation D at position p to D′ is denoted by D p
�D′ , and is defined inductively using the rules in

Fig. 5.
2. The reduction relation on derivations →D is defined by:

D →D D′ � ∃p[D p
�D′]

The reflexive and transitive closure of →D is denoted by →∗
D

.
3. We write SN (D) whenever the derivation D is strongly normalising with respect to →D .

Similarly to reduction for expressions, if D 0
�D′ then we call D a derivation redex and D′ its derivation contractum.
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Our notion of derivation reduction is not only sound (i.e. produces valid derivations) but, most importantly, we can show
that it corresponds to reduction on expressions. We can also show that strong and ω-safe derivations are preserved by
derivation reduction.

Theorem 40 (Soundness of Derivation Reduction).

1. If D ::� � e : φ and D p
�D′ , then D′ is a well-defined derivation, that is there exists some e′ such that D′ ::� � e′ : φ; moreover,

then e
p�e′ .

2. If D is strong (ω-safe) and D →D D′ , then D′ is strong (ω-safe).

Proof. By induction on the definition of derivation reduction; for the second part, notice that derivation reduction does not
introduce instances of rule (ω) and that, by Lemma 34, derivation substitution preserves strong and ω-safe derivations. �

We can also show that derivation reduction is strongly normalisable; the (full construction of the) proof can be found in
the appendix. The main result shown there is:

Theorem 41 (Strong Normalisation for Derivation Reduction). If D :: � � e : φ then D is strongly normalisable with respect to →D .

5. Linking Types with Semantics: The Approximation Result

We will now study the relationship that the type system from Section 3 has with the semantics that we defined in
Section 2. This takes the form of an approximation theorem, which states that every type we can assign to an approximant
of an expression can be assigned to the expression itself, and vice versa:

� � e : φ ⇔ ∃ A ∈ A(e)[� � A : φ]
This expresses that every type we can derive for an expression describes a finite part of its (potentially infinite) head
normal form and execution behaviour by describing that part of the output that is reached after a finite amount of steps.
We will show that this result is a direct consequence of the strong normalisability of derivation reduction we achieved in
the previous section: the structure of the normal form of a given derivation exactly corresponds to the structure of the
approximant of the term that is typed. This is a very strong property since it implies that typeability provides a sufficient
condition for the (head) normalisation of expressions, i.e. a termination analysis for fj

/c .
The following properties of approximants and type assignment lead to the approximation result itself.

Lemma 42. If D :: � � a : φ (with D ω-safe) and a� a′ then there exists D′ :: � � a′ : φ (where D′ is ω-safe).

Proof. By induction on the definition of �. The main case is ⊥ � a′: then φ = ω, and the result follows. �
Lemma 43. Let An be apns with n � 2 and e be an expression such that Ai � e for each i ∈ n. Then � An is also an apn and � An � e,
and if there are (ω-safe) derivations Di :: � � Ai : φi for each i ∈ n, there are (ω-safe) derivations D′

i :: � � � An : φi for each i ∈ n.

Proof. By induction on the number of approximants. We just deal with the base case n = 2.

n = 2: Then there are A1 and A2 such that A1 � e and A2 � e. By Lemma 12, A1 � A2 � e, with A1 � A2 an apn, and also
A1 � A1 � A2 and A1 � A2 � A2. Therefore, given that D1 ::� � A1 : φ1 and D2 ::� � A2 : φ2 (with ω-safe D1 and D2), by
Lemma 42 there exist derivations D′

1 and D′
2 (both ω-safe) such that D′

1 :: � � A1 � A2 : φ1 and D′
2 :: � � A1 � A2 : φ2.

Then by Lemma 12, � A2 = A1 � A2. �
The following lemma states that a derivation in normal form corresponds to a derivation for an apn.

Lemma 44. If D :: � � e : φ (with D ω-safe) and D is in →D-normal form, then there exists A and (ω-safe) D′ such that A� e and
D′ :: � � A : φ , and D and D′ have the same structure in terms of applied rules and types.

Proof. By induction on the structure of derivations.

(ω): Take A = ⊥. Notice that ⊥ � e, by Definition 9, and by (ω) we can take D′ = 〈ω〉 :: � � ⊥ : ω. (In the ω-safe version
of the result, this case is vacuously true since the derivation D = 〈ω〉 :: � � e : ω is not ω-safe.)

(var): Then e= x and D = 〈var〉 :: � � x : σ (notice that this is a derivation in normal form). By Definition 8, x is already
an apn and x � x , by Definition 9. So we take A = x and D′ = D. Moreover, notice that, by Definition 30, D is an
ω-safe derivation.
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(join): Then D = 〈Dn, join〉 ::� � e : σ1 ∩ · · · ∩ σn with n � 2 and Di ::� � e : σi for each i ∈ n. Since D is in normal form it
follows that each Di (i ∈ n) is in normal form too (and also, if D is ω-safe then, by Definition 30, each Di is ω-safe too).
By induction, there exist An and (ω-safe) derivations D′

n such that, for each i ∈ n, Ai � e and D′
i :: � � Ai : σi . Now,

by Lemma 43 it follows that � An � e with � An normal and that there are (ω-safe) derivations D′′
n such that D′′

i ::
� � � An : σi for each i ∈ n. Finally, by the (join) rule we can take (ω-safe) D′ = 〈D′′

n, join〉 :: � � � An : σ1 ∩ · · · ∩ σn .
(fld): Then e = e′.f and D = 〈D′,fld〉 :: � � e′.f : σ with D′ :: � � e′ : 〈f : σ 〉. Since D is in normal form, so too is D′ .

Furthermore, if D is ω-safe then, by Definition 30, so too is D′ . By induction, there is some A and (ω-safe) derivation
D′′ such that A� e′ and D′′ ::� � A : 〈f : σ 〉. Then by rule (fld), 〈D′′,fld〉 ::� � A.f : σ and, by Definition 9, A.f � e′.f .
Moreover, by Definition 30, when D′′ is ω-safe, so too is 〈D′′,fld〉.

(invk), (obj), (newF), (newM): These cases follow straightforwardly by induction similar to (fld). �
Lemma 42 above simply states the soundness of type assignment with respect to the approximation relation. Lemma 44

is the more interesting, since it expresses the relationship between the structure of a derivation and the typed approximant.
The derivation D′ is constructed from D by replacing sub-derivations of the form 〈ω〉 :: � � e : ω by 〈ω〉 :: � � ⊥ : ω (thus
covering any redexes appearing in e). Since D is in normal form, there are also no typed redexes, ensuring that the expres-
sion typed in the conclusion of D′ is an apn. The ‘only if’ part of the approximation result itself then follows easily from
the fact that →D corresponds to reduction of expressions, so A is also an approximant of e. The ‘if’ part follows from the
first property above and subject expansion.

Theorem 45 (Approximation Theorem). � �e : φ if and only if there exists A ∈A(e) such that � �A : φ.

Proof.

if: There is an approximant A of e such that � � A : φ, so e→∗ e′ with A� e′ . Then, by Lemma 42, � � e′ : φ, and then
by subject expansion (Theorem 23), also � �e : φ.

only if: Let D :: � � e : φ, then, by Theorem 41, D is strongly normalising, with normal form D′ , say; by the soundness of
derivation reduction (Theorem 40), D′ :: � � e′ : φ and e→∗ e′ . By Lemma 44, there is some apn A such that � � A : φ
and A� e′ . Also, by Definition 13, A ∈A(e). �

Termination analysis. As in other intersection type systems [8,16,9,11], the approximation theorem underpins characterisation
results for various forms of termination. Our type system is sound with respect to the approximation semantics (as shown
by the Approximation Theorem), and so typeability gives a guarantee of termination since our normal approximate forms of
Definition 8 correspond in structure to standard expressions in (head) normal form.

Definition 46 ((Head) Normal Forms).

1. The set of (well-formed) head-normal forms (ranged over by H) is defined by:

H ::= x | new C(en) | H .f | H .m(e) (F(C) = fn,H �= new C(e))

2. The set of (well-formed) normal forms (ranged over by N ) is defined by:

N ::= x | new C(Nn) | N .f | N .m(N) (F(C) = fn,N �= new C(N))

Notice that the difference between these two notions sits in the second and fourth alternatives, where head-normal forms
allow arbitrary expressions to be used.

Lemma 47.

1. If A �= ⊥ and A�e, then e is a head-normal form.
2. If A�e and A does not contain ⊥, then e is a normal form.

Proof. By straightforward induction on the structure of apns using Definition 9. �
From the approximation result, the following characterisation of head-normalisation follows easily.

Lemma 48 (Typeability of (Head) Normal Forms).

1. If e is a head-normal form then there exists a strict type σ and type environment � such that � � e : σ ; moreover, if e is not of
the form new C(en) then for any arbitrary strict type σ there is an environment such that � � e : σ .

2. If e is a normal form then there exist strong strict type σ , type environment � and derivationD such that D ::� � e : σ ; moreover,
if e is not of the form new C(en) then for any arbitrary strong strict type there exist strong D and � such that D :: � � e : σ .
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Proof.

1. By induction on the structure of head-normal forms; we only show some of the cases:
new C(en): Notice that F(C) = fn , by definition of the head-normal form. Notice that by rule (ω) we have ∅ � ei : ω

for each i ∈ n; by rule (obj) we have ∅ � new C(en) : C .
H .f: Take σ ′ a strict type, then, in particular, 〈f : σ ′〉 is strict. Notice that, by definition, H is a head-normal expression

not of the form new C(en), thus by induction there exists � such that � � H : 〈f : σ ′〉. Thus, by rule (fld) we
have � � H .f : σ ′ for any arbitrary strict type σ ′ .

2. By induction on the structure of normal forms.
x: By the (var) rule, x:σ � x : σ for any arbitrary strict type (in particular, for any arbitrary strong strict type). Also,

notice that derivations of the form 〈var〉 are strong by Definition 30.
new C(Nn): Notice that F(C) = fn by the definition of normal forms. Since each N i is a normal form, by induction

there are strong strict types σ n , �n and Dn such that Di ::�i � N i : σi for each i ∈ n. Let �′ = ⋂
�n; notice that, by

Definition 18, �′ � �i for each i ∈ n, and also that since each �i is strong so is �′ . Thus, [�′ � �i] is a weakening
for each i ∈ n and thus Di[�′ � �i] :: �′ � N i : σi for each i ∈ n. Notice that, by Definition 29, weakening does not
change the structure of derivations, therefore for each i ∈ n, Di[�′ � �i] is a strong derivation. Now, by rule (obj)

we can derive

〈D1[�′ � �1], . . . ,Dn[�′ � �n],obj〉 :: �′ � new C(Nn) : C
Notice that C is a strong strict type, and that since each derivation Di[�′ � �i] is strong then, by Definition 30, so
is 〈D1[�′ � �1], . . . ,Dn[�′ � �n],obj〉.

N .f: Notice that, by definition, N is a normal expression not of the form new C(Nn), thus by induction, with σ ′
a strong strict type, there are strong � and D such that D :: � � N : 〈f : σ ′〉. Thus, by rule (fld) we have
〈D,fld〉 :: � � N .f : σ ′ . Notice that since D is strong, by Definition 30 also 〈D,fld〉 is strong.

N .m(Nn): Since each N i for i ∈ n is a normal form, by induction there are strong strict types σ n , �n and Dn such
that Di :: �i � N i : σi for each i ∈ n. Take σ ′ a strong strict type, then 〈m : (σ n) → σ ′〉 is also strong. Notice that,
by definition, N is a normal expression not of the form new C(Nn), thus by induction there is a strong environ-
ment � and derivation D such that D :: � � N : 〈m : (σ n) → σ ′〉. Let �′ = ⋂

� · �n notice that, by Definition 18,
�′ � � and �′ � �i for each i ∈ n, and also that since � is strong and each �i is strong then so is �′ . Thus,
[�′ � �] is a weakening and [�′ � �i] is a weakening for each i ∈ n. Then D[�′ � �] :: �′ � N : 〈m : (σ n) → σ ′〉
and Di[�′ � �i] ::�′ � N i : σi for each i ∈ n. Notice that, by Definition 29, weakening does not change the structure
of derivations, therefore D[�′ � �] is strong and for each i ∈ n, Di[�′ � �i] is also strong. Now, by rule (invk)

〈D[�′ � �],D1[�′ � �1], . . . ,Dn[�′ � �n], invk〉 :: �′ � N .m(Nn) : σ ′

for any arbitrary strong strict type σ ′ . Furthermore, by Definition 30, we have that

〈D[�′ � �],D1[�′ � �1], . . . ,Dn[�′ � �n], invk〉
is a strong derivation. �

Theorem 49 (Head-Normalisation). � � e : σ if and only if e has a head-normal form.

Proof.

if: Let e′ be a head-normal of e. By Lemma 48(1) there exists a strict type σ and a type environment � such that
� � e′ : σ . Then by subject expansion (Theorem 23) it follows that � � e : σ .

only if: By the approximation theorem, there is an approximant A of e such that � � A : σ . Thus e→∗ e′ with A� e′ . Since
σ is strict, it follows that A �= ⊥, so by Lemma 47 e′ is a head-normal form. �

For lc, normalisability can be characterised in itd as follows:

Γ � M : σ with Γ and σ strong ⇔ M has a normal form

An analogous result does not hold for fj
/c (see the third example in Example 63 for a counterexample); however, we can

obtain such a result modulo certain kinds of derivations – namely the ω-safe derivations (and also, as we will explain,
modulo certain kinds of programs – namely oocl ones).

One half of the implication holds in general:

Theorem 50 (Normalisation). If D :: � � e : σ with D and � ω-safe then e has a normal form.

Proof. By the approximation theorem, there is an approximant A of e and derivation D′ such that D′ :: � � A : σ and
D →∗

D
D′ . Thus e→∗ e′ with A� e′ . Also, since derivation reduction preserves ω-safe derivations (Lemma 40), it follows

that D′ is ω-safe and thus by Lemma 31 that A does not contain ⊥. Then by Lemma 47 we have that e′ is a normal
form. �
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The reverse implication does not hold in general since our notion of ω-safe typeability is too fragile: it is not preserved
by (derivation) expansion. Consider that while an ω-safe derivation may exist for � � ei : σ , no ω-safe derivation may exist
for � � new C(en).f i : σ (due to non-termination in the other expressions e j with j �= i) even though this expression has
the same normal form as ei . Such a completeness result can hold for certain particular programs, and we consider such an
example in the following section.

We can however show that the set of strongly normalising expressions are exactly those typeable using strong deriva-
tions. This follows from the fact that in such derivations, all redexes in the typed expression correspond to redexes in the
derivation, and then any reduction step that can be made by the expression (via →) is then matched by a corresponding
reduction of the derivation (via →D).

Theorem 51 (Strong Normalisation for Expressions). e is strongly normalisable if and only if D :: � � e : σ with D strong.

Proof.

if: Since D is strong, all redexes in e are typed with a strict type and therefore each possible reduction of e is matched by
a corresponding derivation reduction of D. By Lemma 40 it follows that no reduction of D introduces sub-derivations
of the form 〈ω〉, and so since D is strongly normalising (Theorem 41) so too is e.

only if: By induction on the maximum lengths of left-most outer-most reduction sequences for strongly normalising expres-
sions, using the fact that all normal forms are typeable with strong derivations and that strong typeability is preserved
under left-most outer-most redex expansion. �

6. Curry Type Assignment

Although the nominal type system for Java is so far the accepted standard, many researchers are looking for more
expressive type systems that deal with intricate details of object oriented programming and in particular with side effects.
It will be clear that through the system we presented above, we propose a different path, an alternative to the nominal
approach. We illustrate the strength of our approach in this section by briefly studying a basic functional system, that
allows for us to show a preservation result with respect to a notion of Curry type assignment for cl. This basic system
is a true restriction of our semantical type system; the restriction consists of removing the type constant ω as well as
intersection types from the type language, but not completely: we will still allow for types to be combined as by rule (join)

above, but only if they are of the shape 〈f : ·〉 or 〈m : ·〉, and the labels involved are different: the intersection types we
allow, thereby, correspond to records.

It is worthwhile to point out that, above, the fact that we allow more than just record types is crucial for the results:
without allowing arbitrary intersections (and ω) we could not show that type assignment is closed under conversion.

Definition 52 (Curry Type Assignment for fj
/c).

1. Curry (object) types for fj are defined by:

σ ,τ ::= C | ϕ | 〈f1:σ , . . . ,fn:τ , m1:(α) → β, . . . , mk:(γ ) → δ〉 (n + k � 1)

We will call a type of the shape 〈. . .〉 a record type, and let ρ range over those; we write � for arbitrary labels, 〈�:σ 〉 ∈ ρ
when �:σ occurs in ρ , and assume that all labels are distinct in records.

2. A Curry context is a mapping from term variables (including this) to Curry types.
3. Curry type assignment for fj

/c is defined through the rules:

(newM) : this:τ ,x1:σ1, . . . ,xn:σn � eb : σ � � new C(e) : τ
� � new C(e) : 〈m : (σ n) → σ 〉 (Mb(C,m) = (xn,eb))

(newF) : � � e1 : σ1 . . . � � en : σn

� � new C(en) : 〈f i : σi〉 (F(C) = fn, i ∈ n, n > 0)

(obj) : � � e1 : σ1 . . . � � en : σn

� � new C(en) : C (F(C) = fn) (var) :
�,x:σ � x : σ

(invk) : � � e : 〈m : (σ n) → σ 〉 � � e1 : σ1 . . . � � en : σn

� � e.m(en) : σ (fld) : � � e : 〈f : σ 〉
� � e.f : σ

(rec) : Γ �e : 〈�1:σ1〉 . . . Γ �e : 〈�n:σn〉
(proj) : Γ �e : ρ

(�:σ ∈ ρ)

Γ �e : 〈�1:σ1, . . . , �n:σn〉 Γ �e : 〈�:σ 〉
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We write Γ �c e : σ for statements derivable using those rules; the last two rules could be omitted without affecting
the obtainable results.

We will normally drop the adjective “Curry”.

It is straightforward to check that this system is a true restriction of our intersection type system by translating record
types into intersections, as described above, and then noting that the (rec) rule corresponds to (join) and (proj) corre-
sponds to a derivable subsumption rule with respect to �; for the other rules, in case that σ is a record type, the premise
can be translated into an appropriate intersection constructed from all the strict types contained in the record type σ . The
normalisation results as shown above therefore still hold. In particular, since ω is not used, all typeable terms are strongly
normalisable.

We make no claim about the possibility to define a notion of principal pair for fj
/c expressions for this system, nor how

to show completeness and decidability of (Curry) type assignment. Since we focus in this paper on semantics, and not on
implementation, we do not study such properties. Notice that this system, as the one of Definition 19, does not associate
types to classes, as does the nominal system of Definition 6.8

We can, however, relate this notion of type assignment to one from the world of functional programming, by defining
an encoding of Combinatory Logic [34] (cl) into fj

/c , and showing that assignable types are preserved by this encoding.

Definition 53 (Combinatory Logic). cl consists of the function symbols S,K with terms defined over the grammar:

t ::= x | S | K | t1 t2

and the reduction is defined via the rewrite rules:

K x y → x
S x y z → x z (y z)

cl can be seen as a higher-order trs.

Through our embedding – and the results we have shown above – we can achieve a type-based characterisation of all
(terminating) computable functions in oo (see Theorem 62). Since cl is a Turing-complete model of computation, as a side
effect we show that fj

/c is Turing-complete.9 Although we are sure this does not come as a surprise, it is a nice formal
property for our calculus to have, and comes easily as a consequence of our encoding.

Our encoding of cl in fj
/c is based on a Curryfied first-order version of the system above (see [15] for details), where

the rules for S and K are expanded so that each new rewrite rule has a single operand, allowing for the partial application
of function symbols. Application, the basic engine of reduction in trs, is modelled via the invocation of a method named
app. The reduction rules of Curryfied cl each apply to (or are ‘triggered’ by) different ‘versions’ of the S and K combinators;
in our encoding these rules are implemented by the bodies of five different versions of the app method which are each
attached to different classes representing the different versions of the S and K combinators.

In order to make our encoding a valid (typeable) program in full Java, we have defined a Combinator class containing
an app method from which all the others inherit, essentially acting as an interface to which all encoded versions of S and
K must adhere.

Definition 54. The encoding of Combinatory Logic (cl) into the fj
/c program oocl (Object-Oriented Combinatory Logic) is

defined using the class table given in Fig. 6 and the function �·� which translates terms of cl into fj
/c expressions, and is

defined as follows:

�x� = x
�t1 t2 � = �t1 �.app(�t2 �)

�K� = new K()
�S� = new S()

We can show that the reduction behaviour of oocl mirrors that of cl.

8 We will leave a system based on this one, that types classes as well and has polymorphic method types, for future research.
9 As a remark, it is not straightforward to embed the higher-order abstraction of lc into fj

/c without resorting to bracket abstraction, as is used for the
encoding of lc into cl. The approach we follow here seems to be the most straightforward.
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class Combinator extends Object {

Combinator app(Combinator x) { return this; }

}

class K extends Combinator {

Combinator app(Combinator x) { return new K1(x); }

}

class K1 extends K {

Combinator x;

Combinator app(Combinator y) { return this.x; }

}

class S extends Combinator {

Combinator app(Combinator x) { return new S1(x); }

}

class S1 extends S {

Combinator x;

Combinator app(Combinator y) { return new S2(this.x, y); }

}

class S2 extends S1 {

Combinator y;

Combinator app(Combinator z) { return this.x.app(z).app(this.y.app(z)); }

}

Fig. 6. The class table for Object-Oriented Combinatory Logic (oocl) programs.

Theorem 55 (Soundness of �·�). If t1 , t2 are terms of cl and t1 →∗ t2 , then �t1 � →∗ �t2 � in oocl.

Proof. By induction on the definition of reduction in cl; we only show the case for S:

�S t1 t2 t3 � �
((new S().app(�t1 �)).app(�t2 �)).app(�t3 �) →
((new S1(�t1 �)).app(�t2 �)).app(�t3 �) →
(new S2(this.x,y)).app(�t3 �) [this �→ new S1(�t1 �),y �→ �t2 �] =
(new S2(new S1(�t1 �).x, �t2 �)).app(�t3 �) →
new S2(�t1 �, �t2 �).app(�t3 �) →
this.x.app(z).app(this.y.app(z)) [this �→ new S2(�t1 �, �t2 �),z �→ �t3 �] =
(new S2(�t1 �, �t2 �).x.app(�t3 �)).app(new S2(�t1 �.�t2 �).y.app(�t3 �)) →∗
(�t1 �.app(�t3 �)).app(�t2 �.app(�t3 �)) �
�t1 t3 (t2 t3)�

The case for K is similar, and the rest is straightforward. �
The reverse of this result also holds, that is if �t1 � →∗ �t2 � in oocl, then t1 →∗ t2 in cl. Notice that this only relates

reduction between oocl expressions which are the images of cl terms. Consider that there are oocl expressions (and
typeable ones, at that) which have no counterpart in cl, such as newS2(newK(),newK()).x; see also Example 64; this
implies that we cannot show an operational completeness result.

Our type system can perform the same ‘functional’ analysis as itd does for lc and cl. This is illustrated by a type
preservation result. We present Curry’s type system for cl and then show we can give equivalent types to oocl programs.

Definition 56 (Curry Type Assignment for cl). (See [46].)

1. The set of simple types (also known as Curry types) is defined by the following grammar:

A, B ::= ϕ | A → B

2. A basis � is a mapping from variables to Curry types, written as a set of statements of the form x:A in which each of
the variables x is distinct.

3. Simple types are assigned to cl-terms using the following natural deduction system:

(Ax) :
��clx : A

(x:A ∈ �) (→ E) : ��clt1 : A → B ��clt2 : A

��clt1t2 : B
(K) :

��clK : A → B → A
(S) :

��clS : (A → B → C) → (A → B) → A → C
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Fig. 7. Derivation schemes for the translations of S and K.

The elegance of this approach is that we can now link types assigned to combinators to types assignable to object-
oriented programs. To show this type preservation, we need to define what the equivalent of Curry’s types are in terms of
our fj

/c types.

Definition 57 (Type Translation). The function �·�, which transforms Curry types,10 is defined as follows:

�ϕ� = ϕ
� A → B � = 〈app:(� A�) → � B �〉

It is extended to contexts as follows: ��� = {x:� A� | x:A ∈ �}.

We can now show the type preservation result.

Theorem 58 (Preservation of Types). If ��clt : A then ��� � �t� : � A�.

Proof. By induction on the derivation of ��clt : A. The cases for (var) and (→ E) are trivial. For the rules (K) and (S), Fig. 7
gives derivation schemata for assigning the translation of the respective Curry type schemes to the oocl translations of K
and S. �

Notice that, in the nominal system, we can at most show � new K() : K and � new S() : S, and that those types do
not express an applicative character.

Furthermore, since Curry’s well-known translation of the simply typed lc into cl preserves typeability (see [16]), we can
also construct a type-preserving encoding of lc into fj

/c; it is straightforward to extend this preservation result to full-blown
strict intersection types. We stress that this result really demonstrates the validity of our approach. Indeed, our type system
actually has more power than intersection type systems for cl as presented in [16], since there not all normal forms are
typeable using strict types, whereas in our system they are; this is mainly because we can assign types to encoded terms
that do not correspond to encoded types.

First we will illustrate our termination results by applying them in the context of oocl.

10 Note we have overloaded the notation �·�, which we also use for the translation of cl terms to fj
/c expressions.
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Definition 59 (oocl Normal Forms). Let the set of oocl-normal forms be the set of expressions

{e | there exists a cl-term t such that e is the normal form of �t �}
Notice that oocl-normal forms can be defined by the following grammar:

n ::= x | new K() | new K1(n) | new S() | new S1(n) | new S2(n1,n2) |
n.app(n’) (n �= new C(e))

Each oocl normal form corresponds to a cl normal form, the translation of which can also by typed with an ω-safe
derivation for each type assignable to the normal form.

Lemma 60. If e is an oocl normal form, then there exists a cl normal form t such that �t � →∗ e and for all ω-safe D and � such
that D :: � � e : σ , there exists an ω-safe derivation D′ such that D′ :: � � �t � : σ .

Proof. By induction on the structure of oocl normal forms. �
We can also show that ω-safe typeability is preserved under expansion for the images of cl-terms in oocl.

Lemma 61. Let t1 and t2 be cl-terms such that t1 → t2; if there is an ω-safe derivation D and environment �, and a strict type σ
such that D :: � � �t2 � : σ , then there exists another ω-safe derivation D′ such that D′ :: � � �t1 � : σ .

Proof. By induction on the definition of reduction for cl. �
This property of course also extends to multi-step reduction.
Together with the lemma preceding it (and the fact that all normal forms can by typed with an ω-safe derivation), this

leads to both a sound and complete characterisation of normalisability for the images of cl-terms in oocl.

Theorem 62. Let t be a cl-term: then �t� is normalisable, if and only if, there are ω-safe D and �, and strict type σ such that
D :: � � �t� : σ .

Proof.

if: Directly by Theorem 50.
only if: Let t’ be the normal form of t; then, by Theorem 55, �t� →∗ �t′�. Since reduction in cl is confluent, �t′� is

normalisable as well; let n be the normal form of �t′�. Then by Lemma 48(2) there are strong strict type σ, environ-
ment � and derivation D such that � � n : σ . Since D and � are strong, they are also ω-safe. Then, by Lemmas 60
and 61, there exists ω-safe D′ such that D′ :: � � �t� : σ . �

To conclude this section, we give some example derivations of oocl programs that demonstrate these results.

Example 63. Fig. 8 shows, respectively,

• a strong derivation typing a strongly normalising expression of oocl;
• an ω-safe derivation of a normalising (but not strongly normalising) expression of oocl; and
• a non-ω-safe derivation deriving a non-trivial type for a head-normalising (but not normalising) oocl expression,

7. Some Worked Examples

We will now give a more concrete idea of the concepts outlined above, by giving a couple of examples. The first is
based upon the familiar concept of a fixed-point combinator from the world of functional programming: we will show how
a simple yet non-trivial type can be derived for our construction, and then demonstrate how this derivation reduces to a
normal form whose structure directly corresponds to an approximant of the original term. The second example is actually a
non-example demonstrating how a non-terminating program (i.e. one having no approximants other than ⊥) is not typeable.
The third will show that, in our system, we catch the ‘message not understood’ run-time error.

7.1. A Fixed-Point Construction

The fixed point of a function F is a term M such that M = F (M); a fixed-point combinator is a (higher-order) function
that returns a fixed-point of its argument (another function). Thus, a fixed-point combinator F has the property that F f =
f (F f ) for any function f . Turing’s well-known fixed-point combinator in lc is the following term:

Tur = �� = (λxy.y(xxy))(λxy.y(xxy))
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Fig. 8. Derivations for Example 63.

That Tur provides a fixed-point constructor is easy to check:

Tur M = (λxy.y(xxy))�M →∗
β M(��M) = M(Tur M)

Tur itself has the reduction behaviour

Tur = (λxy.y(xxy))� →β λy.y(��y)

→β λy.y((λz.z(��z))y)

→β λy.y(y(��y))

→β λy.y(y(y(��y)))
...

which implies it has the following set of approximants:

{⊥, λy.y⊥, λy.y(y⊥), λy.y(y(y⊥)), . . .}
Thus, if z is a term variable, the approximants of Tur z are ⊥, z⊥, z(z⊥), etc. Based on this, it is straightforward to define
an fj

/c program which mirrors this behaviour:

class T extends Combinator {
combinator app(Combinator x) { return x.app(this.app(x)); }

}

The body of the app method in the class T encodes the reduction behaviour we saw for Tur above: for any fj
/c expression

e we have:

new T().app(e) → e.app(new T().app(e))

So, taking t = new T().app(e), we have t → e.app(t). Thus, by Theorem 14, the fixed point t of e (as returned
by the fixed-point combinator class T) is semantically equivalent to e.app(t), and so new T().app(·) does indeed
represent a fixed-point constructor.

The (executable) expression new T().app(z) has the reduction behaviour

new T().app(z) → z.app(new T.app(z))
→ z.app(z.app(new T.app(z)))
...
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Fig. 9. Type derivations for the fixed-point construction example.

so has the following (infinite) set of approximants:

{⊥, z.app(⊥), z.app(z.app(⊥)), . . .}
Notice that these exactly correspond to the set of the approximants for the λ-term Tur z that we considered above.

The derivation D1 in Fig. 9 shows a possible derivation assigning the type ϕ to new T().app(z). In fact, the normal
form of this derivation corresponds to the approximant z.app(⊥). Observe that the derivation D1 comprises a typed
redex, in this case a derivation of the form 〈〈·, ·,newM〉, ·, invk〉, thus it will reduce, creating the derivation D2. This is
now in normal form since although the expression that it types still contains a redex, that redex is covered by ω and so
no further (derivation) reduction can take place there. The structure of this derivation therefore dictates the structure of
an approximant of new T().app(z): the approximant is formed by replacing all sub-expressions typed with ω by the
element ⊥. When we do this, we obtain the derivation D3.

Although this example is relatively simple (we chose the derivation corresponding to the simplest non-trivial approxi-
mant), it does demonstrate the central concepts involved in the approximation theorem.

7.2. A Program without Head-Normal Form

We now examine how the type system deals with programs that do not have a head-normal form. The approximation
theorem states that any type which we can assign to an expression is also assignable to an approximant of that expression.
As we mentioned in Section 2, approximants are snapshots of evaluation: they represent the information computed during
evaluation. But by their very nature, programs which do not have a head-normal form do not compute any information as
they have no observable behaviour. Formally, then, the characteristic property of expressions without a head-normal form
is that they do not have non-trivial approximants: their only approximant is ⊥. From the approximation result it therefore
follows that we cannot build any derivation for these expressions that assigns a type other than ω (since that is the only
type assignable to ⊥).

To illustrate this, consider the following program which constitutes perhaps the simplest example of a term without
head-normal form in oo:

class C extends Object {
C m() { return this.m(); }

}

This program has a method m which simply calls itself recursively, and new C().m() loops:

new C().m()→ this.m()[new C()/this] = new C().m()

so, in particular, new C().m() has no normal form, not even a head-normal form.
Fig. 10 shows two candidate derivations assigning a non-trivial type to the expression new C().m(), the first of which

we can more accurately call a derivation schema since it specifies the form that any such derivation must take. The second
derivation of Fig. 10 is an attempt at instantiating the schema that we have just constructed, which clearly fails: the require-
ments for this derivation to exist is that it is identical to a proper sub-derivation, which is impossible. Notice however, that
the receiver new C() itself is a head normal form – indeed, it is a normal form – and so we can assign to it a non-trivial
type: using the (obj) rule, ∅ �new C() : C.

7.3. Cops and Cars

To give the reader a more intuitive understanding of both the differences and advantages of our approach over the con-
ventional nominal approach to object-oriented static analysis (as exemplified in Featherweight Java), we will now consider
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Fig. 10. Type derivations for a non-terminating program.

an example which presents certain challenges to the nominal approach, but is handled by our type system naturally since
it is a semantics-based one.

We will model a situation involving cars and drivers so we write classes Car and Driver; we will focus on a single
aspect: the action of the driver starting the car. For our purposes, we will assume that a car is started when its driver turns
the ignition key and so the classes Car and Driver might contain the following code:

class Car {
Driver driver;

.

.

.

Car start() { return this.driver.turnIgnition(this); }
}

class Driver {

.

.

.

Car turnIgnition(Car c) { return c; }
}

Since we are working with a featherweight model of the language, we have had to abstract away some detail and are
subject to certain restrictions. For instance, since in Featherweight Java we do not have a void return type, we return the
Car object itself from the start and turnIgnition methods.

We define a special type of car – a police car: it may chase other cars, however in order to do so the police officer driving
the car must report to the headquarters. Thus, only police officers may initiate car chases. We write a PoliceCar class
that extends Car and make the Cop class extend Driver so that police officers are capable of driving cars (including police
cars). Here we run into a problem, however: the nominal approach imposes that when we override method definitions we
must use the same type signature (we are not allowed to specialise or change the argument or return types, nor are we
allowed to specialise the types of fields that are inherited11). Thus, we must define our new classes as follows:

class PoliceCar extends Car {
PoliceCar chaseCar(Car c) { return this.driver.reportChase(this); }

.

.

.

}

class Cop extends Driver {

.

.

.

PoliceCar reportChase(PoliceCar c) { return c; }
}

11 The full Java language allows fields to be declared in a subclass with the same name as fields that exists in the superclasses, however the semantics of
this construction is that a new field is created which hides the previously declared field; while this serves to mitigate the specific problem we are discussing
here, it does introduce its own new problems.
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Before considering the type safety of our extra classes, let us examine their behaviour from a purely operational point
of view. As desired, a police car driven by a police officer is able to chase another car (the method invocation results in an
object, i.e. a well-formed normal form):

new PoliceCar(new Cop()).chaseCar(new Car(new Driver()))

→ new PoliceCar(new Cop()).driver.reportChase(new PoliceCar(new Cop()))

→ new Cop().reportChase(new PoliceCar(new Cop()))

→ new PoliceCar(new Cop())

However, if a police car driven by a Driver attempts to chase a car we run into trouble:

new PoliceCar(new Driver()).chaseCar(new Car(new Driver()))

→ new PoliceCar(new Driver()).driver.reportChase(new PoliceCar(new Driver()))

→ new Driver().reportChase(new PoliceCar(new Driver()))

Here, we get stuck trying to invoke the reportChase method on a Driver object since the Driver class does not
contain such a method. This is the infamous ‘message not understood’ error.

The nominal approach to static type analysis is twofold: firstly, to ensure that the values assigned to the fields of an
object match their declared type; and then secondly, to enforce within the bodies of the methods that the fields are used
in a way consistent with their declared type. Thus, while it is type safe to assign a Cop object to the driver field of
a PoliceCar (since Cop is a subtype of Driver), trying to invoke the reportChase method on the driver field
in the body of the chaseCar method is not type safe since such an action is not consistent with the declared type
(Driver) of the driver field. In such a situation, where a method body uses a field inconsistently, the nominal approach
is to brand the entire class unsafe and prevent any instances being created. Thus, in Featherweight Java (as in full Java),
the subexpression new PoliceCar(new Driver()) is not well-typed, consequently entailing that the full expression
new PoliceCar(new Driver()).chaseCar(new Car(new Driver())) is not well typed.

This leaves us in an uncomfortable position, since we have seen that some instances of the PoliceCar class (namely,
those that have Cop drivers) are perfectly safe, and thus preventing us from creating any instances at all seems a little
heavy-handed. There are two solutions to this problem. The first is to rewrite the PoliceCar and Cop classes so that they
do not extend the classes Car and Driver. That way, we are free to specify the constructor (and any setter methods) to
take an argument of Cop. However, this would mean having to reimplement all the functionality of Car and Driver. The
other solution is to use casts: in the body of the chaseCar method we cast the driver, telling the type system that it is
safe to consider the driver field to be of type Cop:

class PoliceCar extends Car {

.

.

.

PoliceCar chaseCar(Car c) { return ((Cop) this.driver).reportChase(this); }
}

Now, the PoliceCar class is type safe: we can create instances of it and PoliceCar objects with Cop drivers can chase
cars:

new PoliceCar(new Cop()).chaseCar(new Car(new Driver()))

→ ((Cop) new PoliceCar(new Cop()).driver).reportChase(new PoliceCar (new Cop()))

→ ((Cop) new Cop()).reportChase(new PoliceCar(new Cop()))

→ new Cop().reportChase(new PoliceCar(new Cop()))

→ new PoliceCar(new Cop())

However, we are not entirely home and dry, since to regain type soundness in the presence of casts we now have to check
at run-time that the cast is valid:

new PoliceCar(new Driver()).chaseCar(new Car(new Driver()))

→ ((Cop) new PoliceCar(new Driver()).driver)

.reportChase(new PoliceCar(new Driver()))

→ ((Cop) new Driver()).reportChase(new PoliceCar(new Driver()))
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Fig. 11. Typing derivation for the chaseCar method of a PolCar object with a Cop Drvr.

Fig. 12. Typing derivation for the start method of a PolCar object with a Drvr driver.

As the above reduction sequence shows, the ‘message not understood’ error from before has merely been transformed into a
run-time ‘cast exception’ which occurs when we try to cast the new Driver() object to a Cop object. Using the nominal
approach to static typing, we are forced to choose the ‘lesser of many evils’, as it were: being unable to write typeable
programs that implement what we desire; being unable to share implementations between classes; or having to allow some
run-time exceptions (albeit only with the explicit permission of the programmer). We should point out here that some other
solutions to this particular problem have been proposed in the literature (see the work on family polymorphism [39,49]),
but these solutions persist in the nominal typing approach and can thus only be achieved by extending the language itself.

The fj
/c intersection type system we have presented in this paper has two main characteristics that distinguish it from

the traditional (nominal) type systems for object-orientation: i) our types are structural and so provide a fully functional analysis
of the behaviour of objects; ii) we keep the analysis of methods and fields independent from one another, allowing for a fine-grained
analysis. This means that not all methods need be typeable – we do not reject instances of a class as ill-typed simply because
they cannot satisfy all of the interface specified by the class (in terms of being able to safely – in a semantic sense – invoke
all the methods). In other words, if we cannot assign a type to any particular method body from a given class, then this
does not prevent us from creating instances of the class if other methods may be safely invoked and typed.

In Fig. 11 we can see a typing derivation in our system that assigns a type for the chaseCar method to a PoliceCar
object with Cop driver. Now consider replacing the Cop object in this derivation with a Driver object, as we would have
to do if we wanted to try and assign this type to a PoliceCar object with a Driver driver. In doing so, we would
run into problems since we would ultimately have to assign a type for the reportChase method to the driver (as has
been done in the topmost sub-derivation in Fig. 11) – an obviously impossible task seeing as no such method exists in
the Driver class. This does not mean however that we should not be able to create such PoliceCar objects. After all,
PoliceCars are supposed to behave in all other respects as ordinary cars, so perhaps we might want ordinary Drivers
to be able to use them as such. In Fig. 12 we can see a typing derivation assigning a type for the start method to a
PoliceCar object with a Driver driver, showing that this is indeed possible. Notice that this is also sound from an
operational point of view:
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new PoliceCar(new Driver()).start()

→ new PoliceCar(new Driver()).driver.turnIgnition(new PoliceCar(new Driver()))

→ new Driver().turnIgnition(new PoliceCar(new Driver()))

→ new PoliceCar(new Driver())

The second characteristic is that our type system is a true type inference system – that is, no type annotations are re-
quired in the program itself in order for the type system to verify its correctness.12 In the type checking approach, the
programmer specifies the type that their program must satisfy. As our example shows, this can sometimes lead to inflexi-
bility: in some cases, multiple types may exist for a given program (as in a system without finitely representable principal
types) and then the programmer is forced to choose just one of them; in the worst case, a suitable type may not even be
expressible in the language. This is the case for our nominally typed cars example: the same PoliceCar class may give
rise to objects which behave differently depending on the particular values assigned to their fields; this should be expressed
through multiple different typings, however in the nominal system there is no way to express them. Our system does not
force the programmer to choose a type for the program, thus retaining flexibility. Moreover, since our system is semantically
complete, all safe behaviour is typeable and so it provides the maximum flexibility possible. Lastly, and more importantly,
we have achieved this result without having to extend the programming language in any way.

7.4. Some Observations

In this paper we have shown how the itd approach can be applied to class-based oo, preserving the main expected
properties of intersection type systems. There are however some notable differences between our type system and previous
work on lc and trs upon which our research is based.

Firstly, we point out that when considering the encoding of cl (and via that, lc) in fj
/c , our system provides more than

the traditional analysis of terms as functions: there are untypeable lc and cl-terms which have typeable images in oocl.

Example 64. Let δ be the cl-term S (S K K) (S K K). Notice that δ δ →∗ δ δ, i.e. has no head-normal form, and thus can only
be given the type ω (this is also true for �δ δ�). Now, consider the term t= S (K δ) (K δ). Notice that it is a normal form
(�t� has a normal form also), but that for any term t′ , S (K δ) (K δ) t′ →∗ δ δ. In a strict system, no functional analysis is
possible for t since φ → ω is not a type and so we can only type t with ω.13

In our type system however, we may assign several forms of type to �t�. Most simply, we can derive ∅ � �t� : S2,
but even though a ‘functional’ analysis via the app method is impossible, it is still safe to access the fields of the
object resulting from running �t� – both ∅ � �t� : 〈x : K1〉 and ∅ � �t� : 〈y : K1〉 are also easily derivable statements.
In fact, we can derive even more informative types: the expression �K δ� can be assigned types of the form σKδ =
〈app : (σ1) → 〈app : (σ2 ∩ 〈app : (σ2) → σ3〉) → σ3〉〉, and so we can also assign 〈x : σKδ〉 and 〈y : σKδ〉 to �t�. Notice that
the λ-term equivalent to t is λy.(λx.xx)(λx.xx), which is a weak normal form without a head-normal form. The ‘functional’
view is that such terms are observationally indistinguishable from terms without head-normal form. When encoded in fj

/c

however, our type system shows that these terms become meaningful (head-normalisable).

The second observation concerns principal types. In lc, each normal form has a unique most-specific type: i.e. a principal
type from which all the other assignable types may be generated (this property is important for practical type inference). It
is not clear if our intersection type system for fj

/c does enjoy such a property. Consider the following program:

class D extends Object {
D m() { return new D(); }

}

The expression new D() is a normal form, and so we can assign it a non-trivial type, but observe that the set of all types
which may be assigned to this expression is the infinite set {D, 〈m : () → D〉, 〈m : () → 〈m : () → D〉〉, . . .}, as illustrated in
Fig. 13.14 None of these types may be considered the most specific one, since whichever type we pick we can always derive
a more informative (larger) one. On the one hand, this is exactly what we want: we may make a series of any finite number
of calls to the method m and this is expressed by the types. On the other hand, this seems to indicate that a practical type
inference for our system will not be straightforwardly defined. Notice however that these types are not unrelated to one

12 It is true that our calculus retains class type annotations, however this is a syntactic legacy due to the fact that we would like our calculus to be
considered a true sibling of Featherweight Java, and nominal type annotations are ignored by the intersection type assignment system.
13 In other intersection type systems (e.g. [21]) φ → ω is a permissible type, but is equivalent to ω (that is ω � (φ → ω)�ω) and so semantics based on

these type systems identify terms of type φ → ω with terms that do not have a head-normal form.
14 That principal types can be infinitely large is also the case in lc, typically for terms with an infinite number of approximants (like a fixed-point

combinator). In lc however, this is only the case for terms without a normal form while in fj
/c this is also the case for some expressions having a normal

form.
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Fig. 13. Type derivations for a program without a principal type.

another: they each approximate the ‘infinite’ type 〈m : () → 〈m : () → . . .〉〉, which can be finitely represented by the recursive
type μX .〈m : () → X〉. This type concisely captures the reduction behaviour of new D(), showing that when we invoke the
method m on it we again obtain our original term. In lc such families of types arise in connection with fixed-point operators.
This is not a coincidence: the class D was recursively defined, and in the face of such self-reference it is then not surprising
that this is reflected in our type analysis.

Conclusions & Future Work

We have considered an approximation-based denotational semantics for class-based oo-programs and related this to a
type-based semantics defined using an intersection type approach. Our work shows that the techniques and strong results
of this approach can be transferred straightforwardly from other programming formalisms (lc and trs) to the oo-paradigm.
Through our characterisation results we have shown that our type system is powerful enough (at least in principle) to form
the basis for expressive analyses of oo-programs.

Our approach constitutes a subtle shift in the philosophy of static analysis for class-based oo. In the traditional (nominal)
approach, the programmer specifies the class types that each input to the program (field values and method arguments)
should have, on the understanding that the type checking system will guarantee that the inputs do indeed have these types.
Since a class type represents the entire interface defined in the class declaration, the programmer acts on the assumption
that they may safely call any method within this interface. Consequently, to keep up their end of the ‘bargain’, the pro-
grammer is under an obligation to ensure that the value returned by their program safely provides the whole interface of
its declared type.

In the approach suggested by our type system, by firstly removing the requirement to safely implement a full collection
of methods regardless of the input values, the programmer is afforded a certain expressive freedom. Secondly, while they
can no longer rely on the fact that all objects of a given class provide a particular interface, this apparent problem is
obviated by type inference, which presents the programmer with an ‘if-then’ input–output analysis of class constructors and
method calls. If a programmer wishes to create instances of some particular class (perhaps from a third party) and call
its methods in order to utilise some given functionality, it is then up to them to ensure that they pass appropriate inputs
(either field values or method arguments) that guarantee the behaviour they require.

We point out that our type system is not the only type system for oo in the literature with these characteristics: for
example, the work of Palsberg for the ς -calculus, which showed decidable type inference [57], and that of Eifrig, Smith and
Trifonov [38,37]. But our system is, we believe, the first such system which is faithful to a semantic model of the language,
and this is the main contribution of our work.

The case for the nominal type checking approach, based as it is on providing sound, decidable static analyses is a strong
one. Our full semantic system is obviously undecidable but we believe that decidable restrictions of our system exist which
could give it the edge over current approaches.

Our work has also highlighted where the oo-programming style differs from its functional cousin. In particular, we
have noted that because of oo’s facility for self-reference, it is no longer clear if all normal forms have a most specific (or
principal) type. The types assignable to such normal forms do however seem to be representable using recursive definitions.
This observation further motivates and strengthens the case (by no means a new concept in the analysis of oo) for the use
of recursive types in this area. Some recent work by Nakano [56] shows that a restricted but still highly expressive form
of recursive types can still guarantee head normalisation, and we hope to fuse this approach with our own to come to an
equally precise but more concise and practical type-based treatment of oo.

We would also like to reintroduce more features of full Java back into our calculus, to see if our system can accommodate
them whilst maintaining the strong theoretical properties that we have shown for the core calculus. For example, similar to
λμ [58], it seems natural to extend our simply typed system to analyse the exception handling features of Java.
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Appendix A. Proof of the Approximation Result

The following properties hold of derivation reduction. They are used in the proofs of Theorem 68 and Lemma 73.

Lemma 65.

1. SN (〈D,fld〉 :: � � e.f : σ) ⇔ SN (D :: � � e : 〈f : σ 〉).
2. SN (〈D,D1, . . . ,Dn, invk〉 :: � � e.m(en) : σ) ⇒ SN (D) & ∀i ∈ n[SN (Di)].
3. For neutral contexts C, SN (D :: � � C[x] : 〈m : (φn) → σ 〉) & ∀i ∈ n[SN (Di :: � � ei : φi)] ⇒ SN (〈D,D1, . . . ,Dn, invk〉 ::

� � C[x].m(en) : σ).
4. SN (〈Dn,obj〉 :: � � new C(en) : C) ⇔ ∃φn[∀i ∈ n[SN (Di :: � � ei : φi)]]
5. SN (〈D1, . . . ,Dn, join〉 :: � � e : σ1 ∩ · · · ∩ σn) ⇔ ∀i ∈ n[SN (Di :: � � e : σi)].
6. SN (D[�′ � �] :: �′ � e : φ) ⇔ SN (D :: � � e : φ).
7. Let C be a class such that F(C) = fn, then for all j ∈ n: SN (〈Dn,newF〉 :: � � new C(en) : 〈f j : σ 〉) ⇔

∃φn[σ � φ j & ∀i ∈ n[SN (Di :: � � ei : φi)]].
8. Let C be such that F(C) = fn, then for all j ∈ n: SN (D(p,σ ′)[D j] ::� � Cp[e j] : σ) & ∀i �= j ∈ n [∃φ[SN (Di :: � � ei : φ)]] ⇒

SN (D(p,σ ′)[〈〈Dn,newF〉,fld〉] :: � � Cp[new C(en).f j] : σ).
9. Let C be such that Mb(C,m) = (xn,eb) and Db :: this:ψ,x:φn � eb : σ ′ , then for all derivation contexts D(p,σ ′) and expres-

sion contexts C: SN (D(p,σ ′)[Db
S ] :: � � Cp[eb

S] : σ) & SN (D0 :: � � new C(e′) : ψ) & ∀i ∈ n[SN (Di :: � � ei : φi)] ⇒
SN (D(p,σ ′)[〈D,Dn, invk〉] :: � � Cp[new C(e′).m(en)] : σ), where

D = 〈Db,D0,newM〉 :: � � new C(e′) : 〈m : (φn) → σ ′〉,
S = 〈this : ψ �→ D0,x1 : φ1 �→ D1, . . . ,xn : φn �→ Dn〉, and
S = 〈this �→ new C(e′),x1 �→ e1, . . . ,xn �→ en〉.

Proof. These all follow straightforwardly from Definition 39. �
Our proof uses the well-known technique of computability [65]. As is standard, our notion is defined inductively over the

structure of types, and is defined in such a way as to guarantee that computable derivations are strongly normalising.

Definition 66 (Computability).

1. The set of computable derivations is defined as the smallest set satisfying the following conditions (where Comp(D)

denotes that D is a member of the set of computable derivations):

Comp(〈ω〉 :: � � e : ω)

Comp(D :: � � e : ϕ) ⇔ SN (D :: � � e : ϕ)

Comp(D :: � � e : C) ⇔ SN (D :: � � e : C)

Comp(D :: � � e : 〈f : σ 〉) ⇔ Comp(〈D,fld〉 :: � � e.f : σ)

Comp(D :: � � e : 〈m : (φn) → σ 〉) ⇔ (∀Dn [ ∀i ∈ n[Comp(Di :: �i � ei : φi)] ⇒
Comp(〈D[⋂� · �n � �],Di[⋂� · �n � �i], invk〉 :: ⋂� · �n � e.m(en) : σ) ])

Comp(〈D1, . . . ,Dn, join〉 :: � � e : σ1 ∩ · · · ∩ σn) ⇔ ∀i ∈ n[Comp(Di)]
2. A derivation substitution S is computable in �, if and only if, Comp(S(x:φ)) for all x:φ ∈ �.

Computability is preserved by weakening:

Lemma 67. Comp(D :: � � e : φ) ⇔ Comp(D[�′ � �] :: �′ � e : φ).

Proof. By straightforward induction on the structure of types; for the base cases, we use Lemma 65(6). �
The key property of computable derivations is that they are strongly normalising as shown in the first part of the

following theorem.
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Theorem 68.

1. Comp(D :: � � e : φ) ⇒ SN (D :: � � e : φ).
2. For neutral contexts C, SN (D :: � � C[x] : φ) ⇒ Comp(D :: � � C[x] : φ).

Proof. By simultaneous induction on the structure of types.

ω: By Definition 39 in the case of (1), and by Definition 66 in the case of (2).
ϕ,C: Immediate, by Definition 66.

〈f : σ 〉: 1. Comp(D :: � � e : 〈f : σ 〉) ⇒ (Definition 66) Comp(〈D,fld〉 :: � � e.f : σ) ⇒ (IH(1))
SN (〈D,fld〉 :: � � e.f : σ) ⇒ (Lemma 65) SN (D :: � � e : 〈f : σ 〉)

2. Assume SN (D :: � � C[x] : 〈f : σ 〉) with C a neutral context. Then SN (〈D,fld〉 :: � � C[x].f : σ) by Lemma 65.
Now, let C′ = C.f; notice that, by Definitions 25 and 26, C′ is neutral, and C[x].f = C′[x]. Thus SN (〈D,fld〉 ::
� � C′[x] : σ), and, by induction, Comp(〈D,fld〉 :: � � C′[x] : σ). Then, from the definition of C′ , it follows that
Comp(〈D,fld〉 :: � � C[x].f : σ), and by Definition 66, we have Comp(D :: � � C[x] : 〈f : σ 〉).

〈m : (φn) → σ 〉: 1. Assume Comp(D :: � � e : 〈m : (φn) → σ 〉). For each i ∈ n, we take a fresh variable x i and construct a
derivation Di as follows:
• If φi = ω then Di = 〈ω〉 :: �i � x i : ω, with �i = ∅;
• If φi is a strict predicate σ ′ then Di = 〈var〉 :: �i � x i : σ ′ , with �i = x i :σ ′;
• If φi = σ1 ∩ · · · ∩ σn′ for some n′ � 2 then Di = 〈D′

1, . . . ,D′
n′ , join〉 :: �i � x : σ1 ∩ · · · ∩ σn′ , with �i = x i :φi and

D′
j = 〈var〉 :: �i � x i : σ j for each j ∈ n′ .

Notice that each Di is in normal form, so SN (Di) for each i ∈ n. Notice also that Di :: �i � C[x i] : φi for each i ∈ n
where C is the neutral context [ ]. So, by the second induction Comp(Di) for each i ∈ n.
Then, by Definition 66,

Comp(〈D′,D′
n, invk〉 :: �′ � e.m(xn) : σ)

where D′ = D[�′ � �] and D′
i = Di[�′ � �i] for each i ∈ n with �′ = ⋂

� · �n . So, by the first induction,
SN (〈D′,D′

n, invk〉). Lastly, by Lemma 65(2) we have SN (D′), and by Lemma 65(6), SN (D).
2. Assume SN (D :: � � C[x] : 〈m : (φn) → σ 〉) with C a neutral context. Also, assume that there exist derivations

D1, . . . ,Dn such that: Comp(Di :: �i � ei : φi) for each i ∈ n. Then, by the first induction, SN (Di :: �i � ei : φi)

for each i ∈ n. Let �′ = ⋂
� · �n; notice that, by Definition 18, �′ � � and �′ � �i for each i ∈ n. Then, by

Lemma 65(6), SN (D[�′ � �]) and SN (Di[�′ � �i]) for each i ∈ n. By Lemma 65(3) we then have

SN (〈D′,D′
1, . . . ,D

′
n, invk〉 :: �′ � C[x].m(en) : σ)

where D′ = D[�′ � �] and D′
i = Di[�′ � �i] for each i ∈ n. Take the context C′ = C.m(en); notice that, since

C is neutral, by Definitions 25 and 26, C′ is also a neutral context and C[x].m(en) = C′[x]. Thus, by the second
induction,

Comp(〈D′,D′
1, . . . ,D

′
n, invk〉 :: �′ � C[x].m(en) : σ).

So, by Definition 66, we have Comp(D :: � � C[x] : 〈m : (φn) → σ 〉).
σ1 ∩ · · · ∩ σn,n � 2: By induction. �

A consequence of Theorem 68 is that identity (derivation) substitutions are computable in their own environments.

Lemma 69. Let � be a type environment; then Id� is computable in �.

Proof. Let � = x:φ , then Id� = 〈x:φ �→D :: � � x : φ〉 with each Di in normal form and thus SN (Di). Notice also that,
since x i = C[x i] where C is the empty context [ ], SN (Di :: � � C[x] : φi) for each i ∈ n. Then Comp(Di) by Theorem 68(2).
Thus, for each x:φ ∈ �, Comp(S(x:φ)) and so, by Definition 66, Id� is computable in �. �

Also using Theorem 68, we can show that computability is closed for derivation expansion – that is, if D′ is com-
putable and D →D D′ , then also D is computable. This property will be important when showing the replacement lemma
(Lemma 73) below.

We first show the following property of weakening for derivation contexts and substitutions, which we will use to prove
two auxiliary expansion lemmas that are needed for the proof of the replacement lemma.
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Lemma 70. Let D(p,σ ) :: � � Cp : φ be a derivation context and D :: � � e : σ be a derivation. Also, let [�′ � �] be a weakening.
Then

D(p,σ )[D][�′ � �] =D(p,σ )[�′ � �][D[�′ � �]]

Proof. By induction on the structure of derivation contexts. �
Lemma 71 (Field Expansion). Let C be a class such that F(C) = fn, then for all j ∈ n: if Comp(D(p,σ ′)[D j] :: � � Cp[e j] : σ) and
∀i �= j ∈ n [∃φ[Comp(Di :: � � ei : φ)]], then Comp(D(p,σ ′)[〈〈Dn,newF〉,fld〉] :: � � Cp[new C(en).f j] : σ).

Proof. By induction on the structure of strict types.

ϕ: Assume Comp(D(p,σ ′)[D j] ::� � Cp[e j] : ϕ) and ∃φ[Comp(Di :: � � ei : φ)] for each i ∈ n such that i �= j. By Theorem 68,
SN (D(p,σ ′)[D j] :: � � Cp[e j] : ϕ) and ∃φ[SN (Di :: � � ei : φ)] for each i ∈ n such that i �= j. Then by Lemma 65(8) we
have

SN (D(p,σ ′)[〈〈Dn,newF〉,fld〉] :: � � Cp[new C(en).f j] : ϕ)

And, by Definition 66, Comp(D(p,σ ′)[〈〈Dn,newF〉,fld〉] :: � � Cp[new C(en).f j] : ϕ).
C: Similar to the previous case.
〈f : σ 〉: Assume Comp(D(p,σ ′)[D j] :: � � Cp[e j] : 〈f : σ 〉) and ∃φ[Comp(Di :: � � ei : φ)] for each i ∈ n such that i �= j. By

Definition 66, Comp(〈D(p,σ ′)[D j],fld〉 :: � � Cp[e j].f : σ). Take the contexts C′ and D′ such that: C′
0·p = Cp .f and

D′
(0·p,σ ′) = 〈D(p,σ ′),fld〉 :: � � Cp .f : σ . Notice that

〈D(p,σ ′)[D j],fld〉 :: � � Cp[e j].f : σ = D′
(0·p,σ ′)[D j] :: � � C′

0·p[e j] : σ ,

so we have Comp(D′
(0·p,σ ′)[D j] :: � � C′

0·p[e j] : σ). Then by induction we have

Comp(D′
(0·p,σ ′)[〈〈Dn,newF〉,fld〉] :: � � C′

0·p[new C(en).f j] : σ),

so by the definition of derivation contexts,

Comp(〈D(p,σ ′)[〈〈Dn,newF〉,fld〉],fld〉 :: � � Cp[new C(en).f j].f : σ).

Then, by Definition 66, we have Comp(D(p,σ ′)[〈〈Dn,newF〉,fld〉] :: � � Cp[new C(en).f j] : 〈f : σ 〉).
〈m : (φn′) → σ 〉: Assume Comp(D(p,σ ′)[D j] :: � � Cp[e j] : 〈m : (φn′) → σ 〉) and that ∃φ[Comp(Di :: � � ei : φ)] for each i �=

j ∈ n. Now, take arbitrary derivations D′
1, . . . ,D′

n′ such that, for each k ∈ n′ , Comp(D′
k :: �k � e′

k : φk). By Definition 66,

Comp(〈D′,D′′
n′ , invk〉) :: �′ � Cp[e j].m(e′

n′) : σ ,

where �′ = ⋂
� · �n′ , D′ = D(p,σ ′)[D j][�′ � �], and D′′

k =D′
k[�′ � �k] for each k ∈ n.

By Lemma 70, D′ =D(p,σ ′)[D j][�′ � �] = D(p,σ ′)[�′ � �][D j[�′ � �]]; take the contexts C′ and D′ such that: C′
0·p =

Cp .m(e′
n′) and D′

(0·p,σ ′) = 〈D(p,σ )[�′ � �],D′′
n′ , invk〉 :: �′ � Cp .m(e′

n′) : σ . Notice that

〈D′,D′′
n′ , invk〉 = D′

(0·p,σ ′)[D j[�′ � �]] :: �′ � C′
0·p[e j] : σ ,

then we have Comp(D′
(0·p,σ ′)[D j[�′ � �]]). Now, by Lemma 67, ∃φ[Comp(Di[�′ � �] :: �′ � ei : φ)] for each i �= j ∈ n.

Then by induction,

Comp(D′
(0·p,σ ′)[〈〈D1[�′ � �], . . . ,Dn[�′ � �],newF〉,fld〉] :: �′ � C′

0·p[new C(en).f j] : σ)

So by the definition of D′ ,
Comp(〈D(p,σ ′)[�′ � �][〈〈D1[�′ � �], . . . ,Dn[�′ � �],newF〉,fld〉],D′′

n′ , invk〉
::�′ � Cp[new C(en).f j].m(e′

n′) : σ)

And then, by Definition 29,

Comp(〈D(p,σ ′)[�′ � �][〈〈Dn,newF〉,fld〉[�′ � �]],D′′
n′ , invk〉 :: �′ � Cp[new C(en).f j].m(e′

n′) : σ)

And by Lemma 70

Comp(〈D(p,σ ′)[〈〈Dn,newF〉,fld〉][�′ � �],D′′
n′ , invk〉 :: �′ � Cp[new C(en).f j].m(e′

n′) : σ)

Since the derivations D′
1, . . . ,D′

n′ were arbitrary, the following implication holds:

∀D′
n′ [∀i ∈ n′[Comp(D′

i :: �i � e′
i : φi)] ⇒ Comp(〈D,D′′

n′ , invk〉 :: �′ � Cp[new C(en).f j].m(e′
n′) : σ)

where D =D(p,σ )[〈〈Dn,newF〉,fld〉][�′ � �]. Thus, by Definition 66,

Comp(D(p,σ ′)[〈〈Dn,newF〉,fld〉] :: � � Cp[new C(en).f j] : 〈m : (φn′) → σ 〉) �
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Lemma 72 (Method Expansion). Let Mb(C,m) = (xn,eb) and Db ::�′ � eb : σ ′ with �′ = this:ψ,x:φn, then for contexts D(p,σ ′)
and C: if Comp(D(p,σ ′)[Db

S ] :: � � Cp[eb
S] : σ), Comp(Di :: � � ei : φi) for all i ∈ n, and Comp(D0 :: � � new C(e′) : ψ), then

Comp(D(p,σ ′)[〈D,Dn, invk〉] :: � � Cp[new C(e′).m(en)] : σ),

where D = 〈Db,D0,newM〉 :: � � new C(e′) : 〈m : (φn) → σ ′〉, S = 〈this:ψ �→D0,x:φ �→Dn〉, and S is the term substitution
induced by S .

Proof. By induction on the structure of strict types.

ϕ: Assume Comp(D(p,σ ′)[Db
S ] :: � � Cp[eb

S] : ϕ), Comp(D0 :: � � new C(e′) : ψ), and, for each i ∈ n, Comp(Di ::
� � ei : φi). Then by Theorem 68

SN (D(p,σ ′)[Db
S ] :: � � Cp[eb

S] : ϕ), SN (D0 :: � � new C(e′) : ψ), and SN (Di :: � � ei : φi)

for each i ∈ n. Then SN (D(p,σ ′)[〈D,Dn, invk〉] :: � � Cp[new C(e′).m(en)] : ϕ) by Lemma 65(9), where

D = 〈Db,D0,newM〉 :: � � new C(e′) : 〈m : (φn) → σ ′〉
And, by Definition 66, Comp(D(p,σ )[〈D,Dn, invk〉]).

C: Similar to the previous case.
〈f : σ 〉: Assume Comp(D(p,σ ′)[Db

S ] :: � � Cp[eb
S] : 〈f : σ 〉), Comp(D0 :: � � new C(e′) : ψ), and Comp(Di :: � � ei : φi) for

all i ∈ n. By Definition 66, it follows that Comp(〈D(p,σ ′)[Db
S ],fld〉 :: � � Cp[eb

S].f : σ). Take the contexts C′ and D′
such that C′

0·p = Cp .f and D′
(0·p,σ ′) = 〈D(p,σ ′),fld〉 :: � � Cp .f : σ . Notice that

〈D(p,σ ′)[Db
S ],fld〉 :: � � Cp[eb

S].f : σ = D′
(0·p,σ ′)[Db

S ] :: � � C′
0·p[eb

S] : σ
So we have Comp(D′

(0·p,σ ′)[Db
S ] :: � � C′

0·p[eb
S] : σ), and then by induction

Comp(D′
(0·p,σ ′)[〈D,Dn, invk〉] :: � � C′

0·p[new C(e′).m(en)] : σ)

where D = 〈Db,D0,newM〉 :: � � new C(e′) : 〈m : (φn) → σ ′〉. So by the definition of D′ ,

Comp(〈D(p,σ ′)[〈D,Dn, invk〉],fld〉 :: � � Cp[new C(e′).m(en)].f : σ)

Then, by Definition 66, Comp(D(p,σ ′)[〈D,Dn, invk〉]).
〈m′ : (φ′

n′) → σ 〉: Assume Comp(D(p,σ ′)[Db
S ] :: � � Cp[eb

S] : 〈m′ : (φ′
n′) → σ 〉), Comp(D0 :: � � new C(e′) : ψ), and, for all

i ∈ n, Comp(Di :: � � ei : φi). Now, take D′
1, . . . , D′

n′ such that Comp(D′
k :: �k � e′′

k : φ′
k) for each k ∈ n′ . By Definition 66,

Comp(〈D′,D′′
n′ , invk〉 :: �′ � Cp[eb

S].m′(e′′
n′) : σ), where �′ = ⋂

� · �n′ , D′ = D(p,σ ′)[Db
S ][�′ � �], and D′′

k =
D′

k[�′ � �k] for each k ∈ n′ . Then, by Lemma 70, D′ = D(p,σ ′)[Db
S ][�′ � �] = D(p,σ ′)[�′ � �][Db

S [�′ � �]]. Take
the contexts C′ and D′ such that C′

0·p = Cp .m′(e′′
n′) and D′

(0·p,σ ′) = 〈D(p,σ ′)[�′ � �],D′′
n′ , invk〉 :: �′ � Cp .m′(e′′

n′) : σ .
Notice that

〈D′,D′′
n′ , invk〉 = D′

(0·p,σ ′)[Db
S [�′ � �]] :: �′ � C′

0·p[eb
S] : σ

So we have

Comp(D′
(0·p,σ ′)[Db

S [�′ � �]] :: �′ � C′
0·p[eb

S] : σ)

So, by Lemma 34 Comp(D′
(0·p,σ ′)[Db

S[�′ ��]]). Now, by Lemma 67, Comp(D0[�′ � �] :: �′ � new C(e′) : ψ) and
Comp(Di[�′ � �] :: �′ � ei : φi) for all i ∈ n. Thus, by induction,

Comp(D′
(0·p,σ ′)[〈D′′,D1[�′ � �], . . . ,Dn[�′ � �], invk〉] :: �′ � C′

0·p[new C(e′).m(en)] : σ)

where D′′ = 〈Db,D0[�′ � �],newM〉 :: �′ � new C(e′) : 〈m : (φn) → σ ′〉. So by the definition of D′

Comp(〈D(p,σ ′)[�′ � �][〈D′′,D1[�′ � �], . . . ,Dn[�′ � �], invk〉],
D′′

n′ , invk〉 :: �′ � Cp[new C(e′).m(en)].m′(e′′
n′) : σ )

Then, by Definition 29,

Comp(〈D(p,σ ′)[�′ � �][〈D,Dn, invk〉[�′ � �]],D′′
n′ , invk〉 :: �′ � Cp[new C(e′).m(en)].m′(e′′

n′) : σ)

where D = 〈Db,D0,newM〉 :: � � new C(e′) : 〈m : (φn) → σ ′〉. And by Lemma 70

Comp(〈D(p,σ ′)[〈D,Dn, invk〉][�′ � �],D′′
n′ , invk〉 :: �′ � Cp[new C(e′).m(en)].m′(e′′

n′) : σ)

So, by Definition 66, we have Comp(D(p,σ ′)[〈D,Dn, invk〉]). �
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The final piece of the strong normalisation proof is the derivation replacement lemma, which shows that when we
perform derivation substitution using computable derivations we obtain a derivation that is overall computable. In [16],
where an approximation result is shown for combinator systems, this lemma must be proved using an encompassment
relation on terms. Since we have sub-derivations for the constituents of each redex that will appear during reduction, we
are able to prove the replacement lemma by straightforward induction on the structure of derivations.

Lemma 73 (Replacement). If D :: � � e : φ and S is a derivation substitution computable in �, then Comp(DS ).

Proof. By induction on the structure of derivations. The (newF) and (newM) cases are particularly tricky, and use Lem-
mas 71 and 72 respectively. Let � = x1:φ′

1, . . . ,xn′ :φ′
n′ and S = 〈x′:φ′′ �→D′ :: �′ � e′′ : φ′′

n′′ 〉 with � ⊆ dom(S). Also, let S
be the term substitution induced by S .

(ω): Immediately by Definition 66, since DS = 〈ω〉 :: �′ � eS : ω.
(var): Then D :: � � x : σ . We examine the different possibilities for DS :

• x:σ ∈ �, so x = x′
i for some i ∈ n′′ and D′

i :: �′ � e′′
i : σ . Then DS = D′

i . Since S is computable in � it follows that
Comp(D′

i), and so Comp(DS ).
• x:φ ∈ � for some φ � σ , so φ = σ1 ∩ · · · ∩ σn with σ = σi for some i ∈ n. Also, x = x′

j for some j ∈ n′′ and D′
j ::

�′ � e′′
j : φ, so D′

j = 〈D′′
n, join〉 with D′′

k :: �′ � e′′
j : σk for each k ∈ n. Now, by Definition 32, DS = D′′

i :: �′ � e′′
j : σi .

Since S is computable in �, Comp(D′
j) and then, by Definition 66, Comp(D′′

k ) for each k ∈ n. Thus, in particular

Comp(D′′
i ) and so Comp(DS ).

(fld): Then D = 〈D′,fld〉 :: � � e.f : σ and D′ :: � � e : 〈f : σ 〉. By induction, Comp(D′S :: �′ � eS : 〈f : σ 〉).
Then, by Definition 66, Comp(〈D′S ,fld〉 :: �′ � eS.f : σ). Notice that 〈D′S ,fld〉 =DS and so Comp(DS ).

(invk): Then D = 〈D0,Dn, invk〉 ::� � e0.m(en) : σ with D0 ::� � e0 : 〈m : (φn) → σ 〉 and Di ::� � ei : φi for each i ∈ n. By
induction, we have Comp(D0

S ::�′ � e0
S : 〈m : (φn) → σ 〉) and ∀i ∈ n [Comp(Di

S ::�′ � ei
S : φi)]. Then, by Definition 66,

Comp(〈D0
S [�′′ � �′],D1

S [�′′ � �′], . . . ,Dn
S [�′′ � �′], invk〉 :: �′′ � e0

S.m(e1
S, . . . ,en

S) : σ)

where �′′ = ⋂
�′ · �n and �i = �′ for each i ∈ n. Notice that �′′ = �′ and that for all D :: � � e : φ, D[� � �] = D,

so Comp(〈D0
S ,D1

S , . . . ,Dn
S , invk〉). Notice that 〈D0

S ,D1
S , . . . ,Dn

S , invk〉 =DS .
(join), (obj): By induction.
(newF): Then D = 〈Dn,newF〉 :: � � new C(en) : 〈f j : σ 〉 with F(C) = fn and j ∈ n, and there is some φn such that

Di :: � � ei : φi for each i ∈ n with φ j = σ . By induction, Comp(Di
S :: � � ei : φi) for each i ∈ n. Now, take D(0,σ ) =

〈[ ]〉 and C = [ ]. Notice that D(0,σ )[D j
S ] :: � � C[e j

S] : σ = D j
S :: � � e j

S : φ j and so Comp(D(0,σ )[D j
S ]). Then by

Lemma 71,

Comp(D(0,σ )[〈〈Di
S , . . . ,Dn

S ,newF〉,fld〉] :: � � C[new C(e1
S, . . . ,en

S).f j] : σ),

and from the definitions of D(0,σ ) and C that

Comp(〈〈Di
S , . . . ,Dn

S ,newF〉,fld〉 :: � � new C(e1
S, . . . ,en

S).f j : σ)

Then, by Definition 66, Comp(〈Di
S , . . . ,Dn

S ,newF〉 :: � � new C(e1
S, . . . ,en

S) : 〈f j : σ 〉). Notice that 〈Di
S , . . . ,Dn

S ,

newF〉 =DS and so Comp(DS ).
(newM): Then D = 〈Db,D0,newM〉 :: � � new C(e) : 〈m : (φn) → σ 〉 with Mb(C,m) = (x′′

n′ ,eb) such that both Db ::
�′′ � eb : σ and D0 :: � � new C(e) : ψ where �′′ = this:ψ,x′′

n :φ . By induction, we have Comp(D0
S :: �′ �

new C(e)S : ψ). Now, assume that for every i ∈ n there exist a derivation Di :: �i � e′
i : φi such that Comp(Di). Let

�′′′ = ⋂
�′ · �n; notice that �′′′ � �i for each i ∈ n so by Lemma 67 Comp(Di[�′′′ � �i] :: �′′′ � e′

i : φi) for each i ∈ n.
Also �′′′ � �′ and so then too by Lemma 67 we have

Comp(D0
S [�′′′ � �′] :: �′′′ � new C(e)S : ψ).

Now consider the derivation substitution

S ′ = 〈this:ψ �→ D0
S [�′′′ � �′], x′′:φ �→ D[�′′′ � �]n〉

Notice that S ′ is computable in �′′ and applicable to Db . So by induction, Comp(Db
S ′ :: �′′′ � eb

S′ : σ) where S′ is
the term substitution induced by S ′ . Taking the derivation context D(0,σ ) = 〈[ ]〉 and the expression context C = [ ],
notice that D(0,σ )[Db

S ′ ] :: �′′′ � C[eb
S′ ] : σ =Db

S ′ :: �′′′ � eb
S′ : σ and so Comp(D(0,σ )[Db

S ′ ] :: �′′′ � C[eb
S′ ] : σ). From

Lemma 72 we then have

Comp(D(0,σ )[〈D′,D1[�′′′ � �1], . . . ,Dn[�′′′ � �n], invk〉] :: �′′′ � C[new C(e)S.m(e′
n)] : σ)

where D′ = 〈Db,D0
S [�′′′ � �′],newM〉. So, from the definitions of D(0,σ ) and C,
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Comp(〈D′,D1[�′′′ � �1], . . . ,Dn[�′′′ � �n], invk〉 :: �′′′ � new C(e)S.m(e′
n) : σ).

Notice that D′ =DS [�′′′ � �′]. So, by Definition 66, it follows that Comp(DS :: �′ � new C(e)S : 〈m : (φn) → σ 〉). �
Using this result, we can show that all valid derivations are computable.

Lemma 74. D :: � � e : φ ⇒ Comp(D :: � � e : φ).

Proof. Suppose � = x1:φ1, . . . ,xn:φn , and take the identity substitution Id� which is computable in � by Lemma 69. Then
from Lemma 73 we have Comp(DId�), and since by Proposition 36 DId� =D it follows that Comp(D). �

Then the strong normalisation result for derivation reduction follows directly.

Theorem 41 (Strong Normalisation for Derivation Reduction). If D :: � � e : φ then SN (D).

Proof. By Lemma 74 and Theorem 68(1). �
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