
Safe, Flexible Recursive Types for Featherweight

Java

Reuben N. S. Rowe

Imperial College London

Abstract. This paper presents a type assignment system with recursive
types for Featherweight Java, inspired by the work of Nakano. Nakano’s
innovation consists in adding a modal type constructor which acts to
control the folding of recursive types, resulting in a head-normalisation
guarantee. We build on this approach by introducing a second modal type
constructor which prevents the unfolding of types in contexts where doing
so results in non-termination. Moreover our system inherits the flexibility
of Nakano’s approach, allowing object-oriented features (such as binary
methods) to be typed in a safe and intuitive way. The work described
in this paper is preliminary, and no formal results are claimed. However,
we conjecture that our type system enjoys strong normalisation and we
motivate this by working through some apposite examples.

1 Introduction

Recursive types can be viewed as finite representations of infinite (but regu-

lar) types [8, Chapter 20]. For example, the recursive type T = µX.(A → X)
represents the infinite type satisfying the (recursive) equation T = A → T .
Alternatively, T can be understood to be the type obtained from ‘unfolding’
µX.(A → X) to A → (µX.(A → X)) an infinite number of times. The folded
and unfolded form, denoting the same (infinite) type, are considered to be equiv-
alent, and it is usual to freely exchange one for another during type assignment.

These types naturally capture the behaviour of entities which are (poten-
tially) infinite, or structures of indeterminate size such as lists or streams. Among
such entities are the objects of object-oriented (OO) programming systems. For
example, consider objects which are instances of the following Java classes:

class C {
C m() { return new C(); }

}

class Suc implements Nat {
Nat pred;

Nat add(Nat x) { return new Suc(this.pred.add(x)); }
}

In the first example, instances of class C have a method m which returns
another instance of C; thus given a C object, mmay be safely invoked any arbitrary
(and indeterminate) number of times. A natural (recursive) type describing this
behaviour could be, for instance, µX.〈m:() → X〉. The second example gives
a class containing a method add, representing addition on (positive) natural
numbers. The add method creates a new Suc object and thus, as in the previous
example, it may be invoked any arbitrary number of times.

Recursive types, then, provide an ideal mechanism for reasoning about object-
oriented programs. Indeed, much work (see e.g. [3, 1, 4, 2]) has already been done
on the type-theoretic relationship between recursive types and OO. The draw-
back to recursive types however is that in their unrestricted form they are log-

ically inconsistent - that is to say, they allow for the typing of non-convergent
(non-terminating) programs. This is not always a problem from a program anal-
ysis point-of-view, provided one is only interested in ensuring the partial correct-
ness of programs, but poses problems when constructing type-based semantics,
and also when reasoning about termination properties.

It is known that placing syntactic restrictions on recursive types – specifi-
cally, disallowing negative occurrences of recursively bound type variables (as
in the type µX.X → A) – restores convergence and logical consistency [6].
However, this approach poses a unique problem within the setting of OO. The
Suc example illustrates another feature of object-oriented programming: binary
methods. These are methods which take an argument of the same kind as the
object containing it - in the case of our example, the add method (belonging
to Suc objects) takes another Suc object as input (besides also returning one
as output). This is exactly the behaviour captured by recursive types contain-
ing negative self references, and one might expect to be able to assign a type
such as µX.〈m:X → X〉 to instances of Suc. Thus, such a restriction on types is
unsatisfactory for object-oriented programming.

Nakano has developed a system of recursive types for the λ-calculus, which
goes some way to addressing these issues [7]. In his system, there is no restric-
tion on the (negative) occurrence of recursively bound type variables, and by
introducing an additional type constructor •, a convergent system (up to head-
normalisation) is obtained. In previous work [9] the author studied semantics for
object-oriented programming based upon intersection types. The current work
is motivated by a failure of that work to provide fully decidable type inference
in the presence of recursively defined classes, such as those given in the example
above.

In this paper, we describe a variation on Nakano’s theme which we believe is
capable of providing a logically consistent and flexible foundation for OO type
theory. We chose to first focus on a system without intersections for simplicity
– such a system is easier to formulate and reason about (both formally and
informally), and since type systems without intersections are simpy special cases
of systems with intersections, the recursive- and intersection-based aspects of
the system can be dealt with orthogonally. We point out that the work is at
a preliminary stage, so we have no formal results to present. Rather, the aim

is simply to give evidence in support of our thesis in the form of typed (non)
examples. Due to space restrictions, we are unable to provide a comprehensive
explanation of the relevant background material, so we will assume that the
reader is familiar with the basics of type theory and type assignment, and the
author’s previous cited work.

2 FJ◦µ: Safe Recursive Types for OO

In this section we describe how we apply Nakano’s approach [7] to OO. The
system we describe is a variation on our previous work [9], which in turn is
based on Featherweight Java (FJ) [5], a formal model of the core operational
semantics of Java. We refer the reader to those papers for details elided here.

Definition 1 (FJ◦µ Predicates). The predicates (types) of FJ◦µ are formed
according to the following grammar (where X , like ϕ, ranges over predicate
variables):

σ ::= C | ϕ | •σ | ◦σ | 〈f :σ〉 | µX.〈m:(σn) → σ〉

with the restriction that any bound recursive predicate variables must be within
the scope of either the • or ◦ type constructors (under their respective µ binders).
The notation •r σ (◦r σ) is a shorthand for σ preceded by r occurrences of •
(◦), and •r+ σ (◦r+ σ) denotes the same thing, but indicates a strictly positive
number of occurrences of • or ◦.

The basic idea is that method invocations are allowed by types of the form
•r µX.〈m:(σ) → σ〉, but disallowed at types of the form ◦r+ µX.〈m:(σ) → σ〉.
Thus the ◦ constructor serves to control the unfolding of recursive types, and can
therefore be seen in some respect as the dual1 of the • constructor in Nakano’s
system where it is used to control the folding of recursive types.

We define a coercion relation on predicates which permits • types to turn
into ◦ types, and is used to determine when a method predicate can be safely
assigned to a new object instance.

Definition 2 (Coercion). The coercion relation ⊳ is the smallest preorder on
predicates satisfying:

σ ⊳ σ′ ⇒





•σ ⊳ • σ′

•σ ⊳ ◦ σ′

◦σ ⊳ ◦ σ′

The type assignment system for FJ◦µ is given by the rules in Figure 1. Γ is a
typing environment for variables, and Σ is a typing environment for classes (also
called a self environment), used to type new expressions and the self reference
variable this within the bodies of methods. These class environments contain a

1 Here we use this word in an informal sense, rather than its formal category-theoretic
sense.

(var) : (x 6= this)
Σ;Γ, x:σ ⊢ x:σ

(•) :
Σ;Γ ⊢ e:σ

Σ;Γ ⊢ e: •σ
(coerce) :

Σ;Γ ⊢ e:σ
(σ ⊳ σ′)

Σ;Γ ⊢ e:σ′

(fld) :
Σ;Γ ⊢ e: •r〈f :σ〉

Σ;Γ ⊢ e.f : •r σ
(invk) :

Σ;Γ ⊢ e0: •
r µX.〈m:(σn) → σ〉 Σ;Γ ⊢ e1: •

r σ′

1 . . . Σ;Γ ⊢ en: •
r σ′

n

Σ;Γ ⊢ e0.m(en): •
r(σ[µX.〈m:(σn) → σ〉/X])

(σ′

i = σi[µX.〈m:(σn) → σ〉/X] for each i∈n)

(self-obj) :
Σ, Ĉ:(σn) → σ;Γ ⊢ this:C

(self-fld) : (F(C) = fn, i∈n)
Σ, Ĉ:(σn) → σ;Γ ⊢ this:〈fi:σi〉

(self-meth) :
Σ, Ĉ:(σn) → σ;Γ ⊢ this: ◦σ

(inst-obj) :
Σ;Γ ⊢ e1:σ1 . . . Σ;Γ ⊢ en:σn

(F(C) = fn)
Σ;Γ ⊢ new C(en):C

(inst-fld1) : (inst-fld2) :
. . . Σ;Γ ⊢ ei: •

r σ . . .
(F(C) = fn, i∈n)

Σ;Γ ⊢ new C(en): •
r〈fi:σ〉

. . . Σ;Γ ⊢ ei: ◦
r σ . . .

(F(C) = fn, i∈n)
Σ;Γ ⊢ new C(en): ◦

r〈fi:σ〉

(inst-rec) :
Σ;Γ ⊢ e1: ◦

r+ σ1 . . . Σ;Γ ⊢ en: ◦
r+ σn

(C:(σn) → σ ∈Σ)
Σ;Γ ⊢ new C(en): ◦

r+ σ

(inst-meth1) :
Σ, Ĉ:(σn) → µX.〈m:(σ′

n′) → σ′〉;x1:σ
′′

1 , . . . , xn′ :σ′′

n′ ⊢ eb:σ
′′ Σ;Γ ⊢ ei: •

r σi (∀i∈n)
(∗)

Σ;Γ ⊢ new C(en): •
r µX.〈m:(σ′

n′) → σ′〉

(inst-meth2) :
Σ, Ĉ:(σn) → µX.〈m:(σ′

n′) → σ′〉;x1:σ
′′

1 , . . . , xn′ :σ′′

n′ ⊢ eb:σ
′′ Σ;Γ ⊢ ei: ◦

r+ σi (∀i∈n)
(∗)

Σ;Γ ⊢ new C(en): ◦
r+ µX.〈m:(σ′

n′) → σ′〉

∗ (M(C,m) = (xn′ , eb), σ
′[µX.〈m:(σ′

n′) → σ′〉/X] ⊳ σ′′, σ′′

i = σ′

i[µX.〈m:(σ′

n′) → σ′〉/X] for each i∈n′)

Fig. 1. Predicate Assignment for FJ◦µ

unique marked class, indicated by Ĉ and used to keep track of which class the
method body currently being typed appears in. The notation Σ represents the
self environment identical to Σ, except that no class is marked. Valid environ-
ments may only contain a single type statement for each variable or class. The
notation σ1[σ2/X] stands for the type obtained from σ1 by replacing all (free)
occurrences of X with σ2.

The key inference rules of the type system are the two (inst-meth) rules,
which assign a (recursive) method predicate to a new object (instance). Their
operation can be understood by viewing the new keyword as representing a func-
tion that constructs objects from class definitions. Since classes may themselves
create new objects according to their own definition (i.e. call their own new func-
tion), these functions are recursively defined. Thus the rule takes the familiar
form for typing a recursively defined term, in which the body of the term is typed
using an environment where recursive calls must be typed with the same type as
the body itself. There is a subtle twist however - since the type scheme for fixed
point operators in λ•µ is (•A → A) → A, recursively created objects must now
be typed not with µX.〈m:(σn) → σ〉, but with a bulleted version of this type.
Nakano’s approach would suggest using a • type, however in our system this
would permit recursive method invocations resulting in non-termination, and so

instead we use the type ◦µX.〈m:(σn) → σ〉, preventing such invocations. This
is enforced by the ◦r+ in the (inst-rec) and (self-meth) rules.

Using this type system, the examples from the introduction can be given
their expected types:

(inst-rec)
Ĉ:() → µX.〈m:() → •X〉 ⊢ new C(): ◦µX.〈m:() → •X〉

(inst-meth1)
⊢ new C():µX.〈m:() → •X〉

(self-fld)
Ŝuc:(σ) → σ;x: •σ ⊢ this:〈pred:σ〉

(fld)
Ŝuc:(σ) → S; x: •σ ⊢ this.pred:σ

(var)
Ŝuc:(σ) → σ; x: •σ ⊢ x: •σ

(invk)
Ŝuc:(σ) → σ; x: • σ ⊢ this.pred.add(x): •σ

(coerce)
Ŝuc:(σ) → σ; x: • σ ⊢ this.pred.add(x): ◦σ

(inst-rec)
Ŝuc:(σ) → σ; x: •σ ⊢ new Suc(this.pred.add(x)): ◦σ

(var)
y:σ ⊢ y:σ

(inst-meth1)
y:σ ⊢ new Suc(y):σ

where σ = µX.〈add:(•X) → •X〉.

It also prevents the typing of non-terminating programs. Consider the fol-
lowing classes (where the App interface declares the method app):

class D { D m() { return new D().m(); } }

class Y implements App {
App app(App x) { return x.app(new Y().app(x)); }

}

The methods in both these classes make recursive calls leading to non-
terminating behaviour: the expression new D().m() is unsolvable, as it reduces
only to itself; and the method invocation new Y().app(z), although it reduces
in one step to a head normal form, has the infinite reduction sequence:

new Y().app(z)→ z.app(new Y().app(z))

→ z.app(z.app(new Y().app(z)))→ . . .

Both of these expressions are untypable in FJ◦µ, since the presence of the ◦ type
constructor prevents the typing of the recursive method invocations which lead
to the non-termination.

(inst-rec)
D̂:() → µX.〈m:() → ϕ〉 ⊢ new D(): ◦µX.〈m:() → ϕ〉

(invk)
D̂:() → µX.〈m:() → ϕ〉 0 new D().m()

(inst-meth1)
0 new D():µX.〈m:() → ϕ〉

(invk)
0 new D().m()

(var)
Ŷ:() → σ;x:τ ⊢ x:τ

(inst-rec)
Ŷ:() → σ; x:τ ⊢ new Y(): ◦σ

(invk)
Ŷ:() → σ; x:τ 0 new Y().app(x)

(invk)
Ŷ:() → σ;x:τ 0 x.app(new Y().app(x))

(inst-meth1)
0 new Y():σ

(var)
z:τ ⊢ z:τ

(invk)
z:τ 0 new Y().app(z)

σ = µX.〈app:(µY.〈app:(• •X) → •X〉) → •X〉, τ = µY.〈app:(• •σ) → • σ〉.

3 Conclusions

We have presented a type system for a variant of Featherweight Java which as-
signs recursive types to class-based object-oriented programs. It is inspired by
previous work on head normalising recursive types for Lambda Calculus, and
we give several examples which show that our type system (a) types (persis-
tently) normalising terms with intuitive recursive types; and (b) does not type
non-terminating programs. Our contribution consists in showing how Nakano’s
approach can be applied to OO and, more importantly, in its extension in the
form of the second type constructor ◦. The latter in particular is a novel contribu-
tion of this paper. We conjecture that our system types only strongly normalising
(i.e. terminating) terms, and proving this is an important task of future research.

A principal type for a term is a type from which all other types assignable to
that term can be generated. If a type assignment system has the principal type
property, then a principal type exists for all typeable terms. Such a property
is the key component of any algorithm for deciding type assignment, and thus
typeability. Our motivation in carrying out this research was to obtain a type sys-
tem for Featherweight Java of the same flavour as our previous work, but with fi-

nite (and thus decidable) principal types for objects. We feel the system presented
in this paper is a good candidate. Take our first example from the introduction:
if the set of principal types for this program in FJ◦µ is {C, µX.〈m:() → •X〉},
then by ‘unfolding’ this set in a similar way to that described in the introduction
(i.e. by replacing the recursive components, •X , by other types in the set) we
obtain the infinite set {C, 〈m:() → C〉, 〈m:() → 〈m:() → C〉〉, . . .}, which is the set
of principal types for this example in our system without recursive types.

The next step of future research, after showing normalisation and (finite)
principal typings for this system, will be to add intersections to the type system
as in our previous work in order to build a fully abstract semantics based on our
recursive types. It is our ultimate aim to then construct decidable type inference
systems for this augmented type assignment resulting in expressive, powerful
and practical type based analysis of class-based OO programs.

References

1. M. Abadi and L. Cardelli. A Theory Of Objects. Springer-Verlag New York, Inc.,
Secaucus, NJ, USA, 1996.

2. C. Anderson, P. Giannini, and S. Drossopoulou. Towards type inference for
javascript. In ECOOP, pages 428–452, 2005.

3. K. Fisher, F. Honsell, and J. C. Mitchell. A Lambda Calculus of Objects and
Method Specialization. Nordic J. of Computing, 1(1):3–37, 1994.

4. N. Glew. An Efficient Class and Object Encoding. In Proceedings of OOPSLA00,
pages 311–324, 2000.

5. A. Igarashi, B. Pierce, and P. Wadler. Featherweight Java: A Minimal Core Cal-
culus for Java and GJ. In OOPSLA, pages 132–146, 1999.

6. N.P. Mendler. Recursive Types and Type Constraints in Second Order Lambda
Calculus. In Proceedings of LICS’87, pages 30–36. IEEE, 1987.

7. H. Nakano. A Modality for Recursion. In LICS, pages 255–266, 2000.
8. Benjamin C. Pierce. Types and Programming Languages. MIT Press, 2002.
9. R. Rowe and S. van Bakel. Approximation Semantics and Expressive Predicate

Assignment for Object-Oriented Programming. In TLCA, pages 229–244, 2011.

