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Abstract

The SUAAVE project is funded by EPSRC under the WINES wireless networking initiative
to consider issues of multiple aerial vehicles communicating and collaborating in performing
tasks, and involves teams from University College London, University of Ulster, and the Uni-
versity of Oxford. The focus of SUAAVE lies in the creation and control of swarms of UAVs
that are individually autonomous (i.e not under the direct realtime control of a human) but
that collaboratively self-organise: to sense the environment in the most efficient way possible;
to respond to node failures; and to report their findings to a base station on the ground. As the
focus is on developing algorithms, rather than rugged hardware, we are using small off-the-shelf
electric quad-rotor vehicles with payloads of a few hundred grams. Although the technology is
not tied to a particular scenario, we are basing our research on a search-and-rescue scenario,
whereby a swarm of vehicles are searching for a lost or injured person.
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1 Introduction

The SUAAVE project is funded by EPSRC un-
der the WINES wireless networking initiative
to consider issues of multiple aerial vehicles
communicating and collaborating in perform-
ing tasks, and involves teams from University
College London, University of Ulster, and the
University of Oxford. The project runs from
late 2008-2012, with focus on the creation and
control of swarms of UAVs that are individ-
ually autonomous (i.e., not under the direct
realtime control of a human) but that collabo-
ratively self-organise: to sense the environment
in the most efficient way possible; to respond
to node failures; and to report their findings to
a base station on the ground.

The novelty of these mobile sensor systems
is that their movement is controlled by fully
autonomous tasking algorithms with two im-
portant objectives: first, to increase sensing
coverage to rapidly identify targets; and, sec-
ond, to maintain network connectivity to en-
able real-time communication between UAVs
and ground-based crews. The project has four
main scientific themes: (i) wireless networking
as applied in a controllable free-space trans-
mission environment with three free directions
in which UAVs can move; (ii) control theory
as applied to aerial vehicles, with the intention
of creating truly autonomous agents that can
be tasked but do not need a man-in-the-loop
control in real time to operate and communi-
cate; (iii) artificial intelligence and optimisa-
tion theory as applied to a real search prob-
lem; (iv) data fusion from multiple, possibly
heterogeneous airborne sensors as applied to
construct and present accurate information to
situation commanders. The main experiments
will be based on a simplified search-and-rescue
scenario, with the idea that the UAVs will co-
operate to find a ‘victim’ in an unstructured
outdoor setting.

2 Hardware & Software

The hardware platforms we are using are off-
the-shelf, electrically-powered quad-rotors; a
number of such platforms have become com-
mercially available over the last few years
with similar characteristics and we are pur-
chasing a number from Ascending Technolo-
gies (www.asctec.de). Such a vehicle has the
advantage of being relatively easy to prepare,
control and fly and has a payload of a few
hundred grams. However, the disadvantage
over petrol-powered machines being their en-
durance — typically a few tens of minutes at
high load. However as an experimental plat-
form long endurance is not a priority for us.
The original flying machine has the ability
to reach autonomously GPS waypoints speci-
fied by the user but does not provide the com-
putation and communication abilities needed
for our research. We redesigned the central
structure of the quadrotor to provide sufficient
room for our computer board. As visible in
Figure 1 the design is based on a central car-
bon fibre foam core plate on top of which is
mounted the original UAV electronics. This
hosts the inertial sensors’ and the two ARM7
processors that run the state estimation and
the FCS (flight control system) algorithms.
Under the central plate we installed a 1.6
GHz Intel Atom board? with 1GB of ram, a
16GB SSD, two 802.11a/b/g/n wireless cards
and the necessary power stabilization circuitry.
A 1.3Mpix USB camera® and the 2100mAh
battery are mounted outside the bottom en-
closure. The on-board PC and the FCS are
connected through a serial link to exchange
commands and flight data. The bottom plas-

!The sensor suite include three gyros, a triaxial ac-
celerometer, three magnetic sensors and a pressure sen-
sor, in addition to a GPS receiver.

2MSM200X manufactured by Digital-Logic AG.

3Chameleon manufactured by Point Grey Research,
Inc.



Figure 1: UAV platform: RF safety module (a); GPS (b); battery (c); wifi antennas (d); camera
(e); base enclosure containing the PC (f); flight control system (g).

tic enclosure was realized using a 3D printing
process and has a grid structure in order to
be light and allow sufficient airflow for the in-
ternal electronics. Empirical testing revealed
that the computer board generates EMF ra-
diation at levels and frequencies that heavily
interferes with the GPS unit placed at the top
of the UAV. It was therefore necessary to coat
the bottom enclosure with multiple layers of
conductive paint in order to ensure the neces-
sary shielding.

After the modification the total weight of the
platform was raised to 850g; to compensate
the original propellers were substituted with
larger, stiffer and more efficient 9 inch three
blade propellers which provide more lift. The
retrofitted platform has currently a flight en-
durance of about 10 minutes with PC and cam-
era turned on.

Safety is a primary aspect in our project es-
pecially when testing novel control and coordi-
nation strategies; for this reason we equipped
our UAV with a custom designed RF safety
module completely independent from the on-

board computer. This module automatically
lands the vehicle when out of range from the
base station, but also allows to remotely land
the UAV or even to cut off the power to the
rotors in the eventuality of the on-board PC
becoming unresponsive. The overall system ar-
chitecture is shown in Figure 2.

2.1 Software architecure

As mentioned in the previous section, there
are several microprocessors on board the UAV,
some of which provide autopilot functional-
ity while others ensure the safety of the plat-
form. However, we strictly do not run any
project code directly on these microproces-
sors, as interfering with their normal opera-
tion might cause hardware failure, which is a
safety risk to both the platform and the re-
searchers. In stead, the code runs on the Intel
Atom board, which has significantly more com-
putational and memory resources. This board
has a single serial link that connects it to the
autopilot board, permitting us to send control



HL agent

-=mnmunications
\ &

distributedtask allocation

mission planning

peers .
black box | |

[reducedstate] [ tasks

sensing

logging agent

physical medium

L
! } fusion Fcondmomng

[ path planning &

safety systems waypoints generation
2 CLRCELEOHCLECT R PCEOREEELLT LY
: LL uav processing-H-Lconditioningle{ camera
H monitoring system
-—P[ waypoints following ]
rocessin additional
p 9 conditioning| sensors
[ LL stabilization ]
E H [processing}—Eon dmonin%
: emergency landing - battery rotors g;‘)t‘s&:g;gr,
: E——
‘mergencymanual klllswwtch] H I
: L E

Figure 2: Overall System Architecture

instructions and receive low level sensor data.

The software architecture that we chose was
centred around the concept of modularity. Our
goal was to have many distinct modules run-
ning as separate processes, each being respon-
sible for a single operational component of the
system. Not only does this make collaborative
project development significantly easier, but it
also makes the system robust to failure. For
example, if the high-level navigation code ter-
minates unexpectedly, the UAV is still capa-
ble of performing a software landing since the
remainder of the system remains operational.
Our base system contains the following base
modules, which are core to the reliable opera-
tion of the UAV:

1. Control Arbitrates communication with
the autopilot and safety systems over se-
rial connections.

2. Safety Monitors the messages sent be-

tween all system modules. From these
messages it infers the system state. In
the case where the system switches to an
undesirable state, it assumes control and
instructs the Control module to fly to a
safe zone and land.

3. Black-box - Records all inter-module
communication for the purposes of debug-

ging.

4. WaypointFollower Parses a list of GPS
waypoints and communicates with the
control module to have the UAV fly from
waypoint to waypoint, idling for a speci-
fied period.

Although the modules are operationally dis-
tinct, they must be able to communicate with
each other. It is clear that, for example, the
WaypointFollower module must communicate
periodically with the Control module to issue



actuation instructions. This implies that all
modules must subscribe to some messaging-
oriented (MOM) middleware that provides a
mechanism for inter-process communication.
A number of MOM frameworks already exist,
such as RCS%, The MOOS® and MQ4CPPS.
Our goal is to keep the system extensible as
possible, so we created an implementation-
agnostic interface for our software modules
that bind it to the MOM, while also defining
a strict message format for modules to adopt.
This allows us to switch to another MOM when
the need arises without changing any module
code.

For the time being we have chosen to use
The MOOS, as it is straightforward to use and
appears to have been designed with robotic ap-
plications in mind. The MOOS is based on a
publish/subscribe system that operates over a
TCP/IP network. When a module (MOOS-
App) initialises it first binds to a specific mes-
saging database (MOOSDB) and requests to
be notified when certain message types are re-
ceived by the MOOSDB. As such, the mes-
saging service operates in a star-like topology,
which is shown in Figure 3.

MOOSApp

MOOSApp MOOSDB

Community 1

MOOSApp

MOOSDB

Community 2

Figure 3: The MOOS architecture

In practice, each hardware unit in the net-
work (either a UAV or a ground station) runs
a single MOOSDB. It is clear that we can-

“http://www.isd.mel.nist.gov /projects/rcs/
Shttp://www.robots.ox.ac.uk/ mobile
Shttp://www.sixtyfourbit.org/mqdcpp.htm

not use one MOOSDB for the entire network,
since this makes the fundamental assumption
of perfect network connectivity. This is sel-
dom true for wireless networks and would cause
the messaging in disconnected hardware units
to break down. The MOOS also provides a
bridging mechanism (MOOSBridge) that al-
lows multiple MOOSDBs to communicate with
each other and, hence, forward messages be-
tween modules running on separate hardware
units. However, this works on a broadcast-like
mechanism, which is likely to scale poorly in
multi-hop wireless networks.

3 Communications

The UAV platform’s agility and ease of de-
ployment has the potential to turn them
into mobile and robust communication plat-
forms.  While a number of papers have
studied the problems of network connectiv-
ity maintenance and quality of service, in-
cluding [BRS04, BPDKHO09, CDB04, HSLOG6,
PBGY08, RZ07], they have often been theo-
retical in their approach to the problem space,
and make stringent assumptions about the op-
erating environment or the state of the net-
work. For example, common assumptions in-
clude accurate channel models and symmetric
links, known workloads, static locations or sim-
plistic movement models and so forth. Though
these assumptions enable us reduce the com-
plexity of the systems under investigation and
provide tractable solutions that focus on spe-
cific questions, their results cannot be taken
and applied directly to real operational plat-
forms.

The SUAAVE project aims to help bridge
the gap between theory and practise and ex-
tend the state of the art in two ways. Firstly,
we will perform a series of measurements tar-
geted at:

e Generating 802.11 performance data



based on in-air measurements and real
workloads.

e Devising new models to characterise the
performance of 802.11 on UAV, subject to
scenario details.

e Comparing proposed models of 802.11
characteristics and models with real data
and updating them.

And secondly, the application of Ad-Hoc and
Mesh networking to provide a communication
platform for UAV swarms, as opposed to the
traditional centralised communication models.
In particular, this involves:

e Ruggedising existing Ad-Hoc and Mesh
protocols which often make stringent de-
mands on the mobility and link failure
statistics that can be associated with
nodes, to function in this space.

e Applying the derived measurement mod-
els to guide the behaviour of UAVs when
performing network centric tasks.

e Developping new algorithms to support
QoS constrained services, such as sensor
data collection and video streaming.

4 Control

We require an integrated approach, where by
each UAV takes into account the limitations of
their resources and the current state of their
peers when pursuing their objectives. For in-
stance, a UAV should not blindly follow a path
toward its target, if that path takes it through
a prohibited flight zone, or leaves it with in-
sufficient battery power to return to its home
base. Other examples could be restrictions
or limits on the amount of on-board memory
to capture locally acquired sensor data when
Instead,
it should consider alternative actions, such as
giving up its objective or asking for assistance

communications are not available.

from other UAVs. For this reason, it is es-
sential that any such decision process should
operate within the bounds and constraints of
a wider safety management protocol (SMP)
for ensuring none of the risks mentioned in
the previous section lead to real-life disasters.
Moreover, for such an SMP to be verifiably
implemented in a safe and reliable manner, it
must eliminate these risks in the simplest way
possible, without placing undue restrictions on
the high level decision processes that we wish
to develop. We propose a basic safety archi-
tecture for the SUAAVE project, to mitigate
the risks associated with operating UAVs in,
or near, publicly accessible areas. In particu-
lar, we wish to avoid the risks of personal in-
jury (both the UAV operators and the general
public), damage to property through collisions,
and any legal consequences due to unplanned
landing of UAVs on private property.

4.1 Safety Management Protocol

(SMP) Function

Phases of Operation To ensure safe flight,
each UAV should perform a number of self-
diagnostics and safety checks, not only at the
start of each mission, but also periodically dur-
ing normal flight. Moreover, should any of
these checks fail, it is essential that we have
clear procedures in place to either recover from
failure, or to abort flight in the safest possible
way. With this in mind, we propose that, from
the moment it is switched on until the end of
its mission, each UAV should move through
five phases of operation:

1. Pre-flight bootstrap, during which the
UAV performs initial diagnostic checks
before taking to the air;

2. In-flight self diagnostics, where by the
UAV makes further checks that must be
performed during flight;

3. Operation, in which the UAV actively



pursues its high-level goals;

4. Recovery, in which the UAV attempts to
recover from any detected error; and

5. Abort, through which the UAV attempts
to land as safely as possible, following and
unrecoverable error.

The conditions that lead to transitions between
these phases are illustrated by the state dia-
gram in Figure 4, and in more detail by the
activity diagram in Figure 5. In particular, a
UAV can only reach the operation phase if all
initial checks have completed successfully, and
will only remain there so long as ongoing self-
diagnostics can verify that the system is func-
tioning normally. If this is not case, the UAV
can either attempt to recover from failure, or
abort its mission entirely.

Manual
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Bootstrap
failed

Pre-flight
bootstrap

Bootstrap
success

Recovery
failed

Diagnostics
failed
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monitoring

» Operation I

Dynamic
tasking
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Figure 4: State transition diagram for the
phases of operation

The following subsections describe each of
these phases in more detail.

Pre-Flight Bootstrap When a UAV is first
switched on, it should ensure that all resources
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Figure 5: Activity diagram for the phases of
operation

necessary for safe flight are present and in
working condition. As far as possible, this
should be done before the craft becomes air-
borne. In particular, while on the ground, each
UAV should ensure that

e A communication link can be established
with a manned base station, possibly us-
ing a routing protocol and other UAVs;

e The GPS location system is active and
reporting that the UAV is located at its
designated home; and

e All onboard sensors are available and can
respond to control signals; Only if the
above checks have been completed suc-
cessfully, should the UAV proceed to the
following phases of operation. Otherwise,
the only advisable course of action is the
abort the mission immediately and seek
human intervention.

In-Flight Self Diagnostics Once the above
checks have been passed, and assuming the
UAV has been assigned a task that requires
flight, it should perform any remaining di-
agnostics that must be performed in flight.



Specifically, to ensure that the GPS system and
helicopter rotators are operating normally, we
propose that the following three steps are per-
formed in order”.

1. The UAV should raise to a height of 1-
2 metres of the ground and hold its po-
sition for 45-120 seconds. Where GPS
is available this should allow GPS Lock.
The location should be verified against
the reported GPS location, and ideally
some other sensor. For example, if a set
of red dots are placed on the ground, it
should be possible to verify location us-
ing onboard cameras.

2. The UAV should attempt to perform a
full rotation, and verify this ability using
onboard sensors.

3. The UAV should move a set distance in
6 directions: up, down, north, south, east
and west. Again, success should be ver-
ified using the GPS, and other on board
Sensors.

In addition to these tests, many of the diag-
nostics performed in the pre-flight bootstrap
could be repeated periodically during flight.
Together, these checks should ensure that a
complete set of system control and status vari-
ables are continually monitored to ensure safe
operation. For example, these could include
flight and other control variables, communica-
tion links, sensor, CPU and other hardware re-
sources (see Figure 5).

Operation and Monitoring Having per-
form all initial checks successfully a UAV can
then proceed with the mission assigned to it.
With reference to the software architecture de-
scribed, this means that the safety layer and

"One possible problem with these proposed steps is
that the GPS may also play an active role in direct-
ing these maneuvers. If this is the case, then checking
the movements for consistency with the GPS may have
limited value.

other APIs can dynamically accept tasks from
the application layer, while continuing to mon-
itor the status of critical resources (see Fig-
ure 5). In general, these task requests could
take a variety of forms, including communica-
tion with a base station or other UAVs, re-
quests for resource status information or to
perform specific manoeuvres. The precise form
that requests from the application layer may
take will depend on both the applications re-
quirements, and the ease with which their
safety can be verified. For example, the eas-
iest way to allow the application layer to spec-
ify movement is through a stream of GPS way-
points. For many high-level decision processes,
this level of detail may be sufficient, and it
is also straightforward to verify such requests
against the SMP. It is also worth mention-
ing that, as far as possible, the application
layer should use available status information
to avoid making decisions that would lead to
breaches of the SMP. In any event, it is during
this phase of operation that the safety layer
should guard against risky operation, by deny-
ing requests from the application layer that
would violate the SFP. Most importantly, this
means that requests to move to a way point
outside the safe flight zone should be denied,
along with any course that risks collision with
known objects or other UAV flight paths. Re-
quests to move beyond the range of safe land-
ing zones (given current battery life) are also
prime candidates for service denial. In addition
to denial of service requests, further precau-
tions could be taken by periodically repeating
some of the checks from the previous phases.
The precise timing of each check could be pre-
specified by configuration parameters, or could
be a matter of some more detailed investiga-
tion. In any case, choosing the frequency of
each check is a trade-off between its cost in
terms of resources used, and the benefit in
terms of risk minimisation.



Recovery and Abort Sequence In the
event that something does go wrong (some es-
sential resource becomes inoperative, or the
application layer becomes unresponsive) then
a UAV may attempt to recover from the fail-
ure, or execute an abort sequence to land the
UAV as safely as possible. For example, recov-
ery or abort procedures should be initiated in
the following scenarios:

1. The UAV looses its communication link
to a manned base station®

2. The application layer crashes or becomes
unresponsive

3. The UAV’s battery level becomes danger-
ously low

4. The UAV receives a manual abort signal
from a manned base station

5. The UAV CPU develops unrecoverable er-

rors

Precisely which, if any, such failures can be
recovered from, without the need to abort op-
eration, is up for debate. However, the most
likely candidates involve communication. For
instance, if a constant communication link is
deemed necessary (for example, to receive a
manual abort signal) then the UAV may move
in the direction of a known transmitter to at-
tempt to re-establish communication. Poten-
tially, each type of failure could have a number
of recovery procedures specified that are at-
tempted until one succeeds or they all fail. For
many types of failures, however, the only sensi-
ble procedure may be to abort operation com-
pletely. As with recovery procedures, each type
of failure may result in a different set of abort
procedures being attempted in order, until one

81n theory, we may wish to explore scenarios where
UAVs can leave communication range to assume com-
pletely autonomous control. However, during test
flights, we shall maintain a consistent link with a
manned base station for safety considerations. Loss of
communication for test purposes will be simulated in
the application layer.

succeeds. In particular, the following four rou-
tines are applicable in all cases, and could be
attempted in the stated order to minimise the
cost of the failure.

Return Home In the first instance, the
UAV should assess whether it has sufficient re-
sources to return to its designated home loca-
tion for convenient recovery, and do so if pos-
sible.

Land at Alternative Safe Landing Zone
If returning home is not possible, then the UAV
should attempt to land at an alternative des-
ignated Safe Landing Zone.

Use Sensors to identify Safe Landing
Zone If a designated landing zone cannot
be reached (due to insufficient resources) or
identified (due to GPS failure) alternative sen-
sors may be used to identify a safe landing
zone. For example, this could be achieved us-
ing known landmarks or other visual cues, such
as the colour of the ground.

Land Immediately by Controlled De-
scent If all else fails, and assuming flight con-
trols are still operational, the UAV should at-
tempt to land by controlled descent. The rate
of descent should be chosen so that anyone be-
neath the UAV has sufficient time to identify
and avoid it.

5 Search operations with

smart UAVs

The capacity to search and explore a previ-
ously unknown environment is a fundamental
task for a number for autonomous systems,
and swarms of UAV platforms provide a unique
way to explore an large and difficult to access
terrains. However, their deployment, control



and coordination is not a trivial task. Con-
trollers must account for numerous condition,
including energy limitations and sensitivity to
environmental hazards (in the form of natu-
ral obstacles or wind). When multiple UAVs
are used, the complexity of coordination means
that they are normally flown in a fixed forma-
tion relative to one another at a fixed altitude
above the ground.

One way to mitigate these limitations is to
automate the operations of the UAVs. If the
UAVs can perform in-flight collaborations and
self-organise, they offer a possibility to opti-
mise their strategies to sense the environment
in the more efficient manner possible.

When multiple UAVs are deployed, the sen-
sory data they collect can be shared and fused
to generate a complete picture of the environ-
ment — which can in turn guide the search
process. This task is all the more challenging
as any solution that will be proposed needs to
account for limitations in terms of processing,
memory storage, energy consumption, network
availability and so on. Several control strate-
gies can be considered; biology-inspired search
techniques such as ant algorithms are popu-
lar due to their simplicity and low complexity,
they however lack tight convergence bounds.
Potential-based approaches, popular in path
planning, can be extended to search and rescue
operations.

Some previous work has been carried out on
stochastic optimisation and control for UAVs
using Markov Decision Processes (MDPs).
These are stochastic since agents (UAVs) are
uncertain of the external environment and its
future states. The MDP maps states to ac-
tions (the policies). Optimal policies may
be learned using dynamic programming so-
lutions although more recent work has fo-
cussed on scalable, approximate, sub-optimal
solutions [SCO02]. The agents may also be
uncertain of their own actions and those of
other agents e.g. we might only exchange in-

formation between agents occasionally in or-
der to reduce bandwidth consumption. This
leads to Partially Observable Markov Deci-
sion Processes (POMDP) [LK07] where again
there are challenges in providing scalable so-
lutions. In such situations we can estimate
unknown states from the available knowledge
(from sensors etc). Where we have multiple
heterogeneous agents, each agent may have
their own POMDP and exchange knowledge
from time to time [DCO7]. Decentralised ap-
proaches are well suited to coordinated con-
trol, for example, token-based team coordi-
nation using POMDP has been proposed by
[XSSL06], where the MDP is approximated by
a POMDP. A multi-thread architecture has
been employed for autonomous rotorcrafts op-
erating under centralised control and carry-
ing out search and rescue missions [TKF06].
Here the threads represent different optimisa-
tion goals and stochastic control was achieved
via MDPs and POMDPs.

POMDPs have been used for high level deci-
sion making for UAVs tasked with search and
strike [STAT03], with a limited fuel supply.
Performance prediction of an unmanned air-
borne vehicle multi-agent system has been dis-
cussed by [LD06] where UAV control agents
in a dynamic multi-agent system have a set
of goals such as final destination and inter-
mediate positions. An important aspect of
the UAV control problem is ad-hoc commu-
nications network management. In relation
to this goal, multiagent POMDPs have been
used for network routing [RGO03] where the
state space is: location of nodes, buffer states,
and transmission success/failure status, while
the actions are: send packet or remain idle.
[BBHO8] have developed a MDP-based solu-
tion for UAV mission control that incorporates
fuel consumption into the objective function
for UAV surveillance missions. In addition,
the multiple goals can be conflicting and may
change over time. Such issues are discussed for

10



UAV control by [RFF09] who adapt a MDP
planner to a UAV coordination problem where
plans are generated separately over time for
each agent and then coordinated. However,
many of these solutions are developed under
the assumptions that the speed and alttitude of
the UAV are constant. The quadrotors we are
using, however, are low speed, low altitude and
highly agile. The impact of these constraints,
coupled with the tradeoff off in the resolution
of the search algorithms, means that new the-
oretical analysis of search algorithms must be
conducted [WST10].

In the scenario we envisage in SUAAVE, the
UAVs require intelligent communication, com-
mand and control [FDABO5], in particular: ra-
dio network intelligence, including multi-hops,
mission level task control e.g. optimal search
strategies and, intelligent flight control. Con-
trol is complex in UAV environments because
of unpredictable delays and losses in wireless
communication alongside a need to optimise
over multiple objectives and multiple param-
eters. Much of control theory has been de-
veloped for tightly coupled control systems in
which delays are small and predictable and
there is no loss; however, investigations into
mechanisms by which account can be taken of
the distributed and stochastic nature of sys-
tems such as we envisage are underway [DCOT].
In our situation, the only control loops that are
critically dependent on delay are those that in-
volve UAV safety. For these, rather than at-
tempt to solve the general problem, we will
seek solutions that are approximate

However, while previous work has attempted
to use approaches such as MDPs, POMDPs
and, more generally, Reinforcement Learning,
it has often focussed on one aspect of the over-
all optimisation problem while we attempt in
SUAAVE to develop general overall search and
rescue strategies. Previous work has also been
mainly tested in software, via simulation, while
our approach has the advantage of using a real
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test-bed. We therefore must develop solutions
which are lightweight, efficient and safe. In our
approach, the UAV control mechanisms will
therefore be incorporated into a multi-agent
setting, where the agents are tasked with ad-
dressing multiple heterogeneous (and possibly
conflicting) goals e.g. maximising the proba-
bility of a successful search while minimising
energy consumption. Types of agents we must
consider include: flight (particularly separa-
tion and navigation), communication, multi-
hop, safety and search agents.

Overall, search and rescue operations with
a swarm of UAVs present a great number of
challenges as efficiency needs to be balanced
with practicality. One of our the main chal-
lenges therefore involves implementing search
techniques capable of leveraging the swarm to
collaborate in order to achieve a common task,
while at the same time respecting the real and
hard limitations of the platforms.

6 Data Fusion/Image Pro-

cessing

Given payload limitations our experimental ve-
hicles’ main video sensor will be a lightweight
video camera, possibly augmented with a crude
(but low weight) infra-red camera and common
gimbal mount. (So in particular we do not
expect to carry zoom lenses.) The on-board
processor is easily capable of taking a video
stream at 10Hz and applying simple filters at
frame rate; anything more intelligent has to
be applied to the filter output. In our earlier
work we have applied the Mean-Shift filter to
track ‘blobs’ [HCO7]; this worked well for track-
ing, but we need something more intelligent for
searching. (In our tracking work the initial tar-
get was selected by a human.) We have so far
experimented with the Viola/Jones algorithm
for feature detection [VJO04], which is learning
based; one presents a number of examples of



camera shots to the learning algorithm with
examples of what is to to be learnt (and with-
out), and the system produces a small amount
of code that identifies that feature in gen-
eral. The Viola/Jones algorithm works well,
but only when given many (say, thousands)
of training examples first which have usually
to be tagged by hand. It also requires a lot
of computer time in this phase — so much so
that only a super-computer cluster is practi-
cal [FAHCO09] — but the resultant classification
code can easily be run in real-time. Quite apart
from the human time required then, obtain-
ing enough footage from aerial cameras can be
problematical; however the learning phase can
be primed with computer-generated synthetic
images to greatly reduce the amount of real
footage needed. We have begun investigating
the utilty of SURF descriptors [SWJT10] and
we will shortly be testing related techniques,
such as the use of HOG descriptors [DT05],
which require a less arduous training phase.

Learning techniques are good at finding pat-
terns, but less effective at generalisation. So,
for example, a classifier designed to spot a per-
son standing may have trouble when presneted
with a picture of a person sheltering behind a
wall, even if the person is in full view. Deal-
ing with such situations is likely to require the
on-board programs to search within the image,
which can be time-consuming. Whether our
vehicles will be able to deal with complex vi-
sual situations is still an unknown; part of our
results will be to quantify how much processing
is required.

Once the ‘interesting features’ have been
identified in an image sequence we then have
to apply some probabilistic reasoning to them,
partially so we can avoid flagging up false pos-
itives and partially to sensibly combine read-
ings taken at different times and from different
positions. Dealing with continuous hypotheses
has traditionally been the province of Gaussian
techniques such as the Kalman filter and its
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many variants; non-Gaussian distributions can
also be tackled in a methodical setting, but the
memory and processing required to estimate an
arbitrary distribution can be an issue. What-
ever distributions are used, one research issue
is to combine sequences of hypotheses in a re-
liable and effective manner. Here part of the
problem is to deal with the large number of hy-
potheses that are typically generated with real
image sequences without them swamping the
processor; but another, more insiduous, prob-
lem is to combine the probability distributions
without over-boosting the results [JUO1]. This
can occur when readings reinforce each other
when they should not; most reasoning systems
assume large degrees of indepence between the
random variables, which may be true initially
but after subsequent chains of reasoning may
be invalid. Deciding which chains are valid and
which are not can be subtle, but important if
the combination of readings is to be effective.
We shall investigate the use of various subop-
timal but robust distributed data fusion algo-
rithms based on Covariance Intersection [JUO1]
and its generalisation [JBUOG].

7 Conclusions

SUAAVE is a little unusual among projects
involvings collections of UAVs in its empha-
sis on the networking between vehicles. Small
electric vehicles have the potential to be low-
cost and applied in many situations; but their
small payloads and low inertia make their con-
trol a problem and their radio environment
one which is fraught with potential difficul-
ties. Whilst buying vehicles off-the-shelf for
this project we were aware of how cutting-edge
such devices would be; and indeed, we have
had to use time in this project modifying the
vehicles for our purposes. (Nevertheless the
internal architecture of the vehicles has made
them relatively straightforward to deal with.)



So far the activities within SUAAVE have
been focussed on getting single vehicles air-
borne in a safe manner, and the basic cam-
era functionality working. With the new fly-
ing season upon us the emphasis moves to
multi-vehicle cooperation: first testing the ra-
dio communications to and between vehicles,
and then getting the vehicles to share infor-
mation during the search process. We are also
capturing images from our on-board cameras
for bench testing of algorithms, with the aim
of then installing those on the vehicles them-
selves.

Considerable emphasis has been placed on
the safety of the vehicles, both by use of a
‘dead-mans handle’ system, but also by think-
ing carefully about the flight states and the
transitions between them. The goal for the
end of the project is to demonstrate a number
(say, 10) of these vehicles engaging in coop-
erative tasks in a reasonably realistic outdoor
environment.
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