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those accessed by the module’s clients. The use of a logical connective gives rise to a form of dy-

namic partitioning, where we track the transfer of ownership of portions of heap storage between

program components. It also enables us to enforce separation in the presence of mutable data

structures with embedded addresses that may be aliased.

Categories and Subject Descriptors: D.2.4 [Software Engineering]: Software Program Verifica-

tion—Class invariants; D.3.3 [Programming Languages]: Language Constructs and Features—

Modules, packages

General Terms: Languages, Theory, Verification

Additional Key Words and Phrases: Separation logic, modularity, resource protection

ACM Reference Format:
O’Hearn, P. W., Yang, H., and Reynolds, J. C. 2009. Separation and information hiding. ACM Trans.

Program. Lang. Syst. 31, 3, Article 11 (April 2009), 50 pages. DOI = 10.1145/1498926.1498929

http://doi.acm.org/10.1145/1498926.1498929

1. INTRODUCTION

Modularity is a key concept that programmers wield in their struggle
against the complexity of software systems. When a program is divided into
conceptually distinct modules or components, each of which owns separate in-
ternal resources (such as storage), the effort required for understanding the
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program is decomposed into circumscribed, hopefully manageable, parts. And,
if separation is correctly maintained, we can regard the internal resources of
one module as hidden from its clients, which results in a narrowing of interface
between program components. The flipside, of course, is that an ostensibly mod-
ular program organization is undermined when internal resources are accessed
from outside a module.

It stands to reason that, when specifying and reasoning about programs,
if we can keep track of the separation of resources between program compo-
nents, then the resultant decomposition of the specification and reasoning tasks
should confer similar benefits.

To see why information hiding in specifications is important, suppose a pro-
gram makes use of n different modules. It would be unfortunate if we had
to thread descriptions of the internal resources of each module through steps
when reasoning about the program. Even worse than the proof burden would
be the additional annotation burden, if we had to complicate specifications of
user procedures by including descriptions of the internal resources of all mod-
ules that might be accessed. A change to a module’s internal representation
would necessitate altering the specifications of all other procedures that use it.
The resulting breakdown of modularity would doom any aspiration to scalable
specification and reasoning.

Mutable data structures with embedded addresses (pointers) have proven
to be a particularly obstinate obstacle to modularity. The problem is that it is
difficult to keep track of aliases, different copies of the same address, and so it
is difficult to know when there are no pointers into the internals of a module.
The purpose of this paper is to investigate proof rules for information hiding
using separation logic, a formalism for reasoning about mutable data structures
[Reynolds 2002].

Our treatment draws on the work of Hoare on proof rules for data abstraction
and for shared-variable concurrency [Hoare 1972a, 1972b, 1974]. In Hoare’s
approach each distinct module has an associated resource invariant, which
describes its internal state, and scoping constraints are used to separate the
resources of a module from those of client programs. We retain the resource
invariants, and add a logical connective, the separating conjunction ∗, to provide
a more flexible form of separation.

We begin in the next section by describing the memory model and the logic of
pre- and postconditions used in this work. We then describe our proof rules for
information hiding, followed by two examples, one a simple memory manager
module and the other a queue module. Both examples involve the phenomenon
of resource ownership transfer, where the right to access a data structure trans-
fers between a module and its clients. We work through proofs, and failed proofs,
of client code as a way to illustrate the consequences of the proof rules.

After giving the positive examples we present a counterexample, which
shows that our principal new proof rule, the hypothetical frame rule, is incom-
patible with the usual Hoare logic rule for conjunction; the new rule is thus un-
sound in models where commands denote relations, which validate conjunction.
The problem is that the very features that allow us to treat ownership transfer
lead to a subtle understanding where “Ownership is in the eye of the Asserter”.
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The remainder of the paper is occupied with a semantic analysis, and that anal-
ysis is the principle technical contribution of the paper. A crucial role is played
by the identification of the notion of a precise predicate, which requires the
Asserter to identify a definite portion of storage, unambiguously.

Familiarity with the basics of separation logic, as presented in Reynolds
[2002], would be helpful in reading the paper. We remind the reader in partic-
ular that the rules for disposing or dereferencing an address are such that it
must be known to point to something (not be dangling) in the precondition for a
rule to apply. For example, in the putative triple {true}[x] := 7{???}, where the
contents of heap address x is mutated to 7, there is no assertion we can use in
the postcondition to get a valid triple, because x might be dangling in a state
satisfying the precondition. So, in order to obtain any postcondition for [x] := 7,
the precondition must imply the assertion x �→– ∗ true that x is not dangling.

The local way of thinking encouraged by separation logic [O’Hearn et al.
2001] is stretched by the approach to information hiding described here. We
have found it useful to use a figurative language of “rights” when thinking
about specifications, where a predicate p at a program point asserts that “I
have the right to dereference the addresses in p here.”

1.1 Contextual Remarks

The link between modularity and information hiding was developed in papers
of Hoare and Parnas in the early 1970s [Hoare 1972a, 1972b; Parnas 1972a,
1972b]. Parnas emphasized that poor information distribution amongst compo-
nents could lead to “almost invisible connections between supposedly indepen-
dent modules,” and proposed that information hiding was a way to combat this
problem. Hoare suggested using scoping restrictions to hide a particular kind of
information, the internal state of a module, and showed how these restrictions
could be used in concert with invariants to support proof rules that did not need
to reveal the internal data of a module or component. These ideas influenced
many subsequent language constructs and specification notations.

Most previous formal approaches to information hiding work by assuming
a fixed, a priori, partitioning between program components, usually expressed
using scoping restrictions, or typing, or simply using cartesian product of state
spaces. In simple cases fixed partitioning can be used to protect internal re-
sources from outside tampering. But in less simple situations, such as when
data is referred to indirectly via addresses, or when resources dynamically
transfer between program components, correct separation is more difficult to
maintain. Such situations are especially common in low-level systems programs
whose purpose is to provide flexible, shared access to system resources. They
are also common in object-oriented programs.

The essential point is that fixed partitioning does not cope naturally with
systems whose resource ownership or interconnection structure is changing
over time. A good example is a resource management module that provides
primitives for allocating and deallocating resources, which are held in a local
free list. A client program should not alter the free list, except through the
provided primitives; for example, the client should not tie a cycle in the free
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list. In short, the free list is owned by the manager, and it is (intuitively) hidden
from client programs. However, it is entirely possible for a client program to
hold an alias to an element of the free list, after a deallocation operation is
performed; intuitively, the “ownership” of a resource transfers from client to
module on disposal, even if many aliases to the resource continue to be held by
the client code. In a language that supports address arithmetic the potential
difficulties are compounded: the client might intentionally or unintentionally
obtain an address used in an internal representation, just by an arithmetic
calculation.

A word of warning on our use of “module” before we continue: The concept of
module we use is just a grouping of procedures that share some private state.
The sense of “private” will not be determined statically, but will be the subject of
specifications and proof rules. This allows us to approach modules where correct
protection of module internals would be impossible to determine with a compile-
time check in current programming languages. The approach in this article
might conceivably be used to analyze the information hiding in a language that
provides an explicit module notation, but that is not our purpose here.

The point is that it is possible to program modules, in the sense of the word
used by Parnas, whether or not one has a specific module construct at one’s
disposal. For example, the pair of malloc() and free() in C, together with their
shared free list, might be considered as a module, even though their correct us-
age is not guaranteed by C’s compile-time checking. Indeed, there is no existing
programming language that correctly enforces information hiding of mutable
data structures, largely because of the dynamic partitioning issue mentioned
above, and this is an area where logical specifications are needed. We emphasize
that the issue is not one of “safe” versus “unsafe” programming languages; for
instance, middleware programs written in garbage-collected, safe languages,
often perform explicit management of certain resources, and there also owner-
ship transfer is essential to information hiding.

These contextual remarks do not take into account some recent work that
attempts to address the limitations of fixed partitioning and the difficulties
of treating mutable data structures with embedded addresses, including work
that followed on from the preliminary version of this article published in the
POPL’04 conference proceedings [O’Hearn et al. 2004]. We will say more on
some of the closely related work at the end of the article.

2. THE STORAGE MODEL

We consider a model where a heap is a finite partial function taking addresses
to values:

H def= Addresses ⇀fin Values.

This set has a partial commutative monoid structure, where the unit is the
empty function and the partial combining operation

∗ : H × H ⇀ H

is the union of partial functions with disjoint domains. More formally, we say
that h1#h2 holds for heaps h1 and h2 when dom(h1) ∩ dom(h2) = ∅. In that
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case, h1 ∗ h2 denotes the combined heap h1 ∪ h2. When h1#h2 fails, h1 ∗ h2 is
undefined. In particular, note that if h = h1 ∗ h2 then we must have that h1#h2.
The subheap order ≤ is subset inclusion of partial functions.

We will work with a RAM model, where the addresses are natural numbers
and the values are integers

Addresses
def= {0, 1, 2, . . .} Values

def= {. . . , −1, 0, 1, . . .}.
The results of this paper go through for other choices for Addresses and Values,
and thus cover a number of other naturally occurring models, such as the cons
cell model of Reynolds [2002] and the hierarchical memory model of Ahmed
et al. [2003]. Our results also apply to traditional Hoare logic, where there is
no heap, by taking the trivial model where Addresses is empty (and Values
nonempty).

To interpret variables in the programming language and logic, the state has
an additional component, the “stack”, which is a mapping from variables to
values; a state is then a pair consisting of a stack and a heap:

S def= Variables → Values States
def= S × H.

We treat predicates semantically in this paper, so a predicate is just a set of
states.

Predicates
def= P(States).

The powerset of states has the usual Boolean algebra structure, where ∧ is
intersection, ∨ is union, ¬ is complement, true is the set of all states, and
false is the empty set of states. We use p, q, r, sometimes with subscripts and
superscripts, to range over predicates. Besides the Boolean connectives, we will
need the lifting of ∗ from heaps to predicates:

p ∗ q def= {(s, h) | ∃h0, h1. h = h0 ∗ h1, and
(s, h0) ∈ p, and (s, h1) ∈ q}.

As a function on predicates we have a total map ∗ from Predicates × Predicates

to Predicates which, to the right of
def=, uses the partial map, ∗ : H ×H ⇀ H in its

definition. This overloading of ∗ will always be disambiguated by context. ∗ has
a unit emp, the set {(s, []) | s ∈ S} of states whose heap component is empty. It
also has an implication adjoint −∗ , though that will play no role in the present
article. Note that emp is distinct from the empty set false of states.

We use x �→ E to denote a predicate that consists of all pairs (s, h) where h is
a singleton in which x points to the meaning of E: h(s(x)) = [[E]]s. The points-to
relation x �→ E, F for binary cons cells is syntactic sugar for (x �→ E) ∗ (x + 1 �→
F ). We will also use quantifiers and recursive definitions in examples in what
should be a clear way.

The syntax for the programming language considered in this article is
given in Table I. For simplicity we consider parameterless procedures only.
We assume that all the procedure identifiers are distinct in any letrec
declaration. When procedure declarations do not have recursive calls, we write
let k1 = C1, . . . , kn = Cn in C to indicate this.
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Table I. Programming Language Syntax

Generic Syntax

C ::= BC | skip | C1; C2

| while B C | if B then C1 else C2 | letrec k1 = C1, ..., kn = Cn in C | k

RAM-specific Syntax

BC ::= x := E | x := [E] | [E] := E1 | x := cons(E1, . . . , En) | dispose(E)

E ::= x, y , . . . | 0 | 1 | E1 + E2 | E1 × E2 | E1 − E2

B ::= false | B1 ⇒ B2 | E1 = E2 | E1 < E2

RAM-specific Syntactic Sugar

x.i := E
def= [x + i − 1] := E

x := E.i
def= x := [E + i − 1]

The command x := cons(E1, . . . , En) allocates n consecutive cells, initializes
them with the values of E1, . . . , En, and stores the address of the first cell in x.
We could also consider a command for variable-length allocation. The contents
of an address E can be read and stored in x by x := [E], or can be modified
by [E] := F . The command dispose(E) deallocates the address E. In x := [E],
[E] := F and dispose(E), the expression E can be an arbitrary arithmetic
expression; so, this language allows address arithmetic.

This inclusion of address arithmetic does not represent a general commit-
ment to it on our part, but rather underlines the point that our methods do
not rely on ruling it out. In examples it is often clearer to use a field-selection
notation rather than arithmetic, and for this we use the following syntactic
sugar:

E.i := F def= [E + i − 1] := F x := E.i def= x := [E + i − 1].

Each command denotes a (nondeterministic) state transformer that faults when
heap storage is accessed illegally, and each expression determines a (heap
independent) function from stacks to values. The semantics will be given in
Section 7.

3. PROOF SYSTEM

The form of judgment we use is the sequent

� � {p}C{q},
which states that command C satisfies its Hoare triple, under certain hypothe-
ses. Hypotheses are given by the grammar

� ::= [] | {p}k{q}[X ], �

subject to the constraint that no procedure identifier appears twice. An assump-
tion {p}k{q}[X ] requires the parameterless procedure identifier k to denote a
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command which modifies only the variables appearing in set X and which sat-
isfies the indicated Hoare triple.

The commands are drawn from a language of while programs with param-
eterless procedures (Table I). The generic syntax includes procedure calls for
parameterless procedures k and a nonterminal BC for basic commands, which
can be instantiated in various ways depending on the storage model being used.
We give one such instantiation, corresponding to the RAM model.

3.1 Proof Rules for Information Hiding

Our main focus in this article is the

Hypothetical Frame Rule

�, {p1}k1{q1}[X 1], . . . , {pn}kn{qn}[X n] � {p}C{q}
�, {p1 ∗ r}k1{q1 ∗ r}[X 1, Y ], . . . , {pn ∗ r}kn{qn ∗ r}[X n, Y ] � {p ∗ r}C{q ∗ r}

where
—C does not modify variables in r, except through using k1, . . . , kn;

and
—Y is disjoint from judgment “�, {p1}k{q1}[X 1], . . . , {pn}k{qn}[X n] �

{p}C{q}”.

The idea behind these conditions is that we must be sure that client code does
not alter variables used within a module (which might occur in its invariant
r), and that we might have additional, “private” variables Y which cannot be
accessed by the client and which cannot appear in the interface specifications
of the module. The side conditions use notions which are as-yet-undefined, in
particular the “except through using” clause. The conditions will be made rigor-
ous in Section 10; in the examples in the following sections we will concentrate
on the role of ∗, and there will be no harm to understanding if the variable
conditions are skated over, or referred back to as necessary.

The hypothetical frame rule is so named because of its relation to the ordinary
frame rule from Isthiaq and O’Hearn [2001] and O’Hearn et al. [2001]. The
hypothetical rule allows us to place invariants on the hypotheses as well as
the conclusion of sequents, whereas the ordinary rule includes invariants on
the conclusion alone. (The ordinary frame rule is thus a special case of the
hypothetical rule, where n = 0.)

To explain the rule intuitively, suppose we have a module, which exports
a number of procedures ki. Here we mean “module” in an informal sense, a
grouping of procedures that implements an abstraction, and not necessarily an
explicit programming-language construct. There are two views of the module.
From the outside, where the internal resource is invisible, one uses interface
specifications {pi}ki{qi} of the procedures, which do not mention the resource
invariant r that describes the internal state of the module. The perspective is
different from inside the module; the operations operate on a larger state than
that visible to the client, preserving the invariant as well as satisfying interface
specifications. The hypothetical frame rule ties these two viewpoints together.
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The hypothetical frame rule is logician-friendly, suitable for theoretical anal-
ysis, but more programmer-friendly, derived rules are useful when reasoning
about programs. For example, we can formulate a proof rule for procedure dec-
larations, which perhaps more directly portrays the division between the two
sides of a module.

Modular Nonrecursive Procedure Declaration Rule

� � {p1 ∗ r}C1{q1 ∗ r}
...

� � {pn ∗ r}Cn{qn ∗ r}
�, {p1}k1{q1}[X 1], . . . , {pn}kn{qn}[X n] � {p}C{q}
� � {p ∗ r}let k1 = C1, . . . , kn = Cn in C{q ∗ r}

In this rule k1, . . . kn is a grouping of procedures that share private state de-
scribed by resource invariant r. In a resource management module, the ki would
be operations for allocating and freeing resources, and r would describe unal-
located resources (perhaps held in a free list). The rule distinguishes two views
of such a module. When reasoning about the client code C, we ignore the in-
variant and its area of storage; reasoning is done in the context of interface
specifications {pi}ki{qi} that do not mention r. The perspective is different from
inside the module; the implementations Ci operate on a larger state than that
presented to the client, and verifications are performed in the presence of the
resource invariant. The two views, module and client, are tied up in the conclu-
sion of the rule.

The modular procedure rule is subject to variable conditions: we require a
set Y (of “private” variables), and the conditions are

—C does not modify variables in r, except through using k1, . . . , kn;

—Y is disjoint from judgment “�, {p1}k1{q1}[X 1], . . . , {pn}kn{qn}[X n] �
{p}C{q}”;

—Ci only modifies variables in X i, Y .

An important point is that the free variables of the resource invariant are
allowed to overlap with the X i. This often happens when using auxiliary vari-
ables to specify the behaviour of a module, as exemplified by the treatment of
the abstract variable Q in the queue module given later (Table IV).

It is also possible to consider initialization and finalization code. For instance,
if, in addition to the premises of the modular procedure rule, we have � �
{p}init{p ∗ r} and � � {q ∗ r}final{q}, then we can obtain

� � {p} init; (let k1 = C1, . . . , kn = Cn in C); final {q}.
In our examples we will not consider initialization or finalization since they
present no special logical difficulties.

In the modular procedure rule, the proof of {p}C{q} about the client in the
premises can be used with any resource invariant r. As a result, this reason-
ing does not need to be repeated when a module representation is altered, as
long as the alteration continues to satisfy the interface specifications {pi}ki{qi}.
ACM Transactions on Programming Languages and Systems, Vol. 31, No. 3, Article 11, Pub. date: April 2009.
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Table II. Module Specification Format

Interface Specifications

{p1}k1{q1}[X 1], . . . , {pn}kn{qn}[X n]

Resource Invariant: r

Private Variables: Y

Internal Implementations

C1, . . . , Cn

This addresses one of the points about reasoning that survives local changes
discussed in the Introduction.

However, the choice of invariant r is not specified by programming language
syntax let k1 = C1, . . . , kn = Cn in C in the modular procedure rule. In this it is
similar to the usual partial correctness rule for while loops, which depends on
the choice of a loop invariant. It will be convenient to consider an annotation no-
tation that specifies the invariant, and the interface specifications {pi}ki{qi}, as
a directive on how to apply the modular procedure rule; this is by analogy with
the use of loop invariant annotations as directives to a verification condition
generator.

We will use the format for module specifications in Table II. This instructs
us to apply the modular procedure rule in a particular way, to prove

�, Interface Specifications � {p}C{q}
for client code C, and to prove � � {pi ∗r}Ci{qi ∗r} for the bodies. We emphasize
that this module format is not officially part of our programming language or
even our logic; however, its role as a directive on how to apply the modular
procedure rule in examples will, we hope, be clear.

3.2 Other Proof Rules

3.2.1 Generic Rules. We have standard Hoare logic rules for various con-
structs, along with the rule of consequence and the rules for shrinking and
extending contexts.

�, {p}k{q}[X ] � {p}k{q}
p ⇒ p′ � � {p′}C{q′} q′ ⇒ q

� � {p}C{q}
� � {p ∧ B}C{p}

� � {p}while B C{p ∧ ¬B}
� � {p}C1{q} � � {q}C2{r}

� � {p}C1; C2{r}
� � {p ∧ B} C {q} � � {p ∧ ¬B} C′ {q}

� � {p} if B thenC elseC′{q}
� � {p}C{q}

�, {p′}k{q′}[X ] � {p}C{q}
�, {p′}k{q′}[X ] � {p}C{q}

� � {p}C{q} (k does not occur in C)

In addition, we allow for the context � to be permuted.
The standard rule for possibly recursive procedure declarations, which does

not hide a resource invariant, uses the procedure specifications in proofs of the
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bodies as follows:

�, {p1}k1{q1}[X 1], . . . , {pn}kn{qn}[X n] � {p1}C1{q1}
...

�, {p1}k1{q1}[X 1], . . . , {pn}kn{qn}[X n] � {pn}Cn{qn}
�, {p1}k1{q1}[X 1], . . . , {pn}kn{qn}[X n] � {p}C{q}

� � {p}letrec k1 = C1, . . . , kn = Cn in C{q}
where Ci only modifies variables in X i.

In case none of the ki are free in the Cj we can get a simpler rule, where the
{pi}ki{qi}[X i] hypotheses are omitted from the sequents for the Cj . Using let
rather than letrec to indicate the case where a procedure declaration happens
to have no recursive instances, we can derive the modular nonrecursive proce-
dure declaration rule of the previous section from the hypothetical frame rule
and the standard procedure rule just given. We can also derive a modular rule
for recursive declarations.

The ordinary frame rule is

� � {p}C{q}
� � {p ∗ r}C{q ∗ r}

where C does not modify any variables free in r.

This is a special case of the hypothetical rule, but we state it separately be-
cause the ordinary rule will be used without restriction, while we will place
restrictions on the hypothetical rule.

One rule of Hoare logic, which is sometimes not included explicitly in proof
systems, is the conjunction rule.

� � {p}C{q} � � {p′}C{q′}
� � {p ∧ p′}C{q ∧ q′}

The conjunction rule is often excluded because it is an example of an admissible
rule: one can (usually) prove a metatheorem, which says that if the premises are
derivable then so is the conclusion. However, it is not an example of a derived
rule: one cannot construct a generic derivation, in the logic, of the conclusion
from the premises. We will see in Section 6 that the hypothetical frame rule
can affect the admissible status of the conjunction rule.

3.2.2 RAM-Specific Axioms. Specific axioms are needed for any collection
BC of basic commands. Here are the “small axioms” appropriate to the RAM
model, where x, m, n are assumed to be distinct variables.

� � {E �→–} [E] := E1 {E �→ E1}
� � {E �→–} dispose(E) {emp}
� � {x = m ∧ emp}x := cons(E1, . . . , Ek)� � {x �→ E1[m/x], . . . , Ek[m/x] }
� � {x = n ∧ emp} x := E {x = (E[n/x]) ∧ emp}
� � {E �→n ∧ x = m} x := [E] {x = n ∧ E[m/x] �→n}.

ACM Transactions on Programming Languages and Systems, Vol. 31, No. 3, Article 11, Pub. date: April 2009.



Separation and Information Hiding • 11:11

Table III. Memory Manager Module

Interface Specifications

{emp}alloc{x �→–, –} [x]

{x �→–, –}free{emp} []

Resource Invariant: list( f )

Private Variables: f

Internal Implementations

if ( f = nil)then x := cons(–, –) (code for alloc)

else x := f ; f := x.2;

x.2 := f ; f := x; (code for free)

These small axioms describe the effect of each command on only one, or some-
times no, heap cells. Typically, these effects can be extended using the frame
rule: for example, we can infer {(x �→3) ∗ ( y �→4)}[x] := 7{(x �→7) ∗ ( y �→4)} by
choosing y �→4 as the invariant in the frame rule.

4. A MEMORY MANAGER

We consider an extended example, of an idealized memory manager that doles
out memory in chunks of size two. The specifications and code are given in
Table III.

The internal representation of the manager maintains a free list, which is a
singly-linked list of binary cons cells. The free list is pointed to by f , and the
predicate list( f ) is the representation invariant, where

list( f )
def⇐⇒ ( f = nil ∧ emp) ∨ (∃g . f �→–, g ∗ list(g )).

This predicate says that f points to a linked list (and that there are no other
cells in storage), but it does not say what elements are in the head components.

For the implementation of alloc, the manager places into x the address
of the first element of the free list, if the list is nonempty. In case the list is
empty the manager calls the built-in allocator cons to get an extra element.
The interaction between alloc and cons is a microscopic idealization of the
treatment of malloc in Section 8.7 of Kernighan and Ritchie [1988]. There,
malloc manages a free list but, occasionally, it calls a system routine sbrk to
request additional memory. Besides fixed versus variable sized allocation, the
main difference is that we assume that cons always succeeds, while sbrk might
fail (return an error code) if there is no extra memory to be given to malloc.
We use this simple manager because to use a more complex one would not add
anything to the points made in this section.

When a user program gives a cell back to the memory manager it is put on the
front of the free list; there is no need for interaction with a system routine here.

The form of the interface specifications are examples of the local way of
thinking encouraged by separation logic; they refer to small pieces of storage.
It is important to appreciate the interaction between local and more global
perspectives in these assertions. For example, in the implementation of free in
Table III the variable x contains the same address after the operation completes
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as it did before, and the address continues to be in the domain of the global
program heap. The use of emp in the postcondition of free does not mean that
the global heap is now empty, but rather it implies that the knowledge that x
points to something is given up in the postcondition. We say intuitively that
free transfers ownership to the manager, where ownership confers the right to
dereference.

It is interesting to see how transfer works logically, by considering a proof
outline for the implementation of free.

{list( f ) ∗ (x �→–, –)}
x.2 := f ;

{list( f ) ∗ (x �→–, f )}
{list(x)}

f := x;
{list( f )}
{list( f ) ∗ emp}.

The most important step is the middle application of the rule of consequence.
At that point we still have the original resource invariant list( f ) and the knowl-
edge that x points to something, separately. But since the second field of what
x points to holds f , we can obtain list(x) as a consequence. It is at this point
in the proof that the original free list and the additional element x are bundled
together; the final statement simply lets f refer to this bundled information.

A similar point can be made about how alloc effects a transfer from the
module to the client.

We now give several examples from the client perspective. Each proof, or
attempted proof, is done in the context of the interface specifications of alloc
and free.

The first example is for inserting an element into the middle of a linked list.

{( y �→a, z) ∗ (z �→c, w)}
alloc;

{( y �→a, z) ∗ (z �→c, w) ∗ (x �→–, –)}
{( y �→a, z) ∗ (x �→–, –) ∗ (z �→c, w)}
x.2 := z; x.1 := b; y .2 := x

{( y �→a, x) ∗ (x �→b, z) ∗ (z �→c, w)}.
Here, in the step for alloc we use the interface specification, together with the
ordinary frame rule.

If we did not have the modular procedure rule we could still verify this code,
by threading the free list through and changing the interface specification. That
is, the interface specifications would become

{list( f )}alloc{list( f ) ∗ x �→–, –}
{list( f ) ∗ x �→–}free{list( f )},

thus exposing the free list, and the proof would be

{( y �→a, z) ∗ (z �→c, w) ∗ list( f )}
alloc;
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{( y �→a, z) ∗ (z �→c, w) ∗ (x �→–, –) ∗ list( f )}
{( y �→a, z) ∗ (x �→–, –) ∗ (z �→c, w) ∗ list( f )}
x.2 := z; x.1 := b; y .2 := x

{( y �→a, x) ∗ (x �→b, z) ∗ (z �→c, w) ∗ list( f )}.
Although technically correct, this inclusion of the free list in the proof of
the client is an example of the breakdown of modularity described in the
Introduction.

One might wonder whether this hiding of invariants could be viewed as a
simple matter of syntactic sugar, instead of being the subject of a proof rule. We
return to this point in Section 6.

We can similarly reason about deletion from the middle of a linked list, but
it is more interesting to attempt to delete wrongly.

{( y �→a, x) ∗ (x �→b, z) ∗ (z �→c, w)}
free;

{( y �→a, x) ∗ (z �→c, w)}
y := x.2;

{???}.
This verification cannot be completed, because after doing the free operation
the client has given up the right to dereference x.

This is a very simple example of the relation between ownership transfer
and aliasing; after the free operation x and f are aliases in the global state,
and the incorrect use of the alias by the client has been rightly precluded by
the proof rules.

Similarly, suppose the client tried to corrupt the manager, by sneakily tying
a cycle in the free list.

{emp} alloc; free; x.2 := x {???}.
Once again, there is no assertion we can find to fill in the ???, because after
the free statement the client has given up the right to dereference x (emp will
hold at this program point). And, this protection has nothing to do with the fact
that knotting the free list contradicts the resource invariant. For, suppose the
statement x.2 := x was replaced by x.1 := x. Then the final assignment in this
sequence would not contradict the resource invariant, when viewed from the
perspective of the system’s global state, because the list( f ) predicate is relaxed
about what values are in head components. However, from the point of view
of the interface specifications, the client has given up the right to dereference
even the first component of x. Thus, separation prevents the client from access-
ing the internal storage of the module in any way whatsoever.

Finally, it is worth emphasizing that this use of ∗ to enforce separation
provides protection even in the presence of address arithmetic which, if used
wrongly, can wreak havoc with data abstractions. Suppose the client tries to ac-
cess some memory address, which might or might not be in the free list, using
[42] := 7. Then, for this statement to get past the proof rules, the client must
have the right to dereference 42, and therefore 42 cannot be in the free list (by
separation). That is, we have two cases

{42 �→– ∗ p} [42] := 7; alloc {42 �→7 ∗ p ∗ x �→–, –}
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Table IV. Queue Module, Parametric in P (v)

Interface Specifications

{Q = α ∧ z = n ∧ P (z)} enq {Q = α·〈n〉 ∧ emp} [Q]

{Q = 〈m〉·α ∧ emp} deq {Q = α ∧ z = m ∧ P (z)} [Q , z]

{emp} isempty? {(w = (Q = ε)) ∧ emp} [w]

Resource Invariant: listseg(x, Q , y) ∗ ( y �→–, –)

Private Variables: x, y , t

listseg Predicate Definition

listseg(x, α, y)
def⇐⇒ if x = y then (α = [] ∧ emp)

else (∃v, z, α′. (α = 〈v〉·α′ ∧ x �→v, z) ∗ P (v) ∗ listseg(z, α′, y))

Internal Implementations

Q := Q ·〈z〉; (code for enq)

t := cons(–, –); y .1 := z; y .2 := t; y := t

Q := cdr(Q); (code for deq)

z := x.1; t := x; x := x.2; dispose(t)

w := (x = y) (code for isempty?)

and

{p} [42] := 7; {???} alloc {???},
where p does not imply that 42 is in the domain of its heap. In the first case the
client has used address arithmetic correctly, and the 42 �→– in the precondition
ensures that 42 is not one of the cells in the free list. In the second case the
client uses address arithmetic potentially incorrectly, and the code might indeed
corrupt the free list, but the code is (in the first step) blocked by the proof rules.

5. THE EYE OF THE ASSERTER

In Table IV we give a queue module. In the specification we use a predicate
listseg(x, α, y) which says that there is an acyclic linked list from x to y that
has the sequence α in its head components. The variable Q denotes the sequence
of values currently held in the queue; it is present in the resource invariant, as
well as in the interface specifications. (Technically, we would have to ensure that
the variable Q was added to the s component of our semantics.) This exposing
of “auxiliary” variables is standard in module specifications, as is the inclusion
of assignment statements involving auxiliary variables whose only purpose is
to enable the specification to work.

This queue module keeps a sentinel at the end of its internal list, as is in-
dicated by ( y �→–, –) in the resource invariant. The sentinel does not hold any
value in the queue, but reserves storage for a new value.

An additional feature of the treatment of queues is the predicate P , which
is required to hold for each element of the sequence α. By instantiating P in
various ways we obtain versions of the queue module that transfer different
amounts of storage.

—P (v) = emp: plain values are transferred in and out of the queue, and no
storage is transferred with any of these values;
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—P (v) = v �→ –, –: binary cons cells, and ownership of the storage associated
with them, are transferred in and out of the queue;

—P (v) = list(v): linked lists, and ownership of the storage associated with
them, are transferred in and out of the queue.

To illustrate the difference between these cases, consider the following at-
tempted proof steps in client code.

{Q = 〈n〉·α ∧ emp}
deq

{Q = α ∧ z = n ∧ P (z)}
z.1 := 42

{???}.
In case P (v) is either emp or list(v) we cannot fill in ??? because we do not
have the right to dereference z in the precondition of z.1 := 42. However, if
P (v) is v �→ –, – then we will have this right, and a valid postcondition is
(Q = α ∧ z = n ∧ z �→ 42, –). Conversely, if we replace z.1 := 42 by code that
traverses a linked list then the third definition of P (v) will enable a verification
to go through, where the other two will not.

On the other hand there is no operational distinction between these three
cases: the queue code just copies values.

The upshot of this discussion is that the idea of ownership transfer we have
alluded to is not determined by instructions in the programming language
alone. Just what storage is, or is not, transferred depends on which definition
of P we choose. And this choice depends on what we want to prove.

This phenomenon, where “Ownership is in the eye of the Asserter,” can take
some getting used to at first. One might feel ownership transfer might be made
an explicit operation in the programming language. In some cases such a pro-
gramming practice would be useful, but the simple fact is that in real programs
the amount of resource transferred is not always determined operationally;
rather, there is an understanding between a module writer, and programmers
of client code. For example, when you call malloc() you just receive an ad-
dress. The implementation of malloc() does not include explicit statements
that transfer each of several cells to its caller, but the caller understands that
ownership of several cells comes with the single address it receives.

6. A CONUNDRUM

In the following 0 is the assertion emp that the heap is empty, and 1 says that
it has precisely one active cell, say x (so 1 is x �→–).

Consider the following instance of the hypothetical frame rule, where true
is chosen as the invariant:

{0 ∨ 1}k{0}[] � {1}k{false}
{(0 ∨ 1) ∗ true}k{0 ∗ true}[] � {1 ∗ true}k{false ∗ true}

The conclusion is definitely false in any sensible semantics of sequents. For
example, if k denotes the do-nothing command, skip, then the antecedent holds,
but the consequent does not.
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Table V. Counterexample Module

Interface Specifications

{0 ∨ 1}k{0} []

Resource Invariant

true

Internal Implementation

{true ∗ (0 ∨ 1)} (code for k)

skip;

{true ∗ 0}

However, we can derive the premise {0 ∨ 1}k{0}[] � {1}k{false} as follows.

{0 ∨ 1}k{0}
{1}k{0} Consequence

{0 ∨ 1}k{0}
{0}k{0} Consequence

{0 ∗ 1}k{0 ∗ 1} Ordinary Frame Rule

{1}k{1} Consequence

{1 ∧ 1}k{1 ∧ 0} Conjunction

{1}k{false} Consequence

This shows that we cannot have all of: the usual rule of consequence, the ordi-
nary frame rule, the conjunction rule, and the hypothetical frame rule. It also
shows that the idea of treating information hiding as syntactic sugar for proof
and specification forms should be approached with caution: one needs to be
careful that introduced sugar does not interact badly with expected rules, in a
way that contradicts them.

The counterexample can also be presented as a module, as in Table V. This
can be used to show a similar problem with the modular procedure rule.

Given this counterexample, the question is where to place the blame. There
are several possibilities.

(1) The specification {0 ∨ 1}k{0}. This is an unusual specification, since in the
programming languages we have been using there is no way to branch on
whether the heap is empty.

(2) The invariant true. Intuitively, a resource invariant should precisely iden-
tify an unambiguous area of storage, that owned by a module. The invariant
list( f ) in the memory manager is unambiguous in this sense, where true
is perhaps not.

(3) One of the rules of conjunction, consequence, or the ordinary frame rule.

The remainder of the paper is occupied with a theoretical analysis of this
situation. Our main results concentrate on possibilities (1) and (2) just listed.
We identify a technical notion of “precise” predicate, which picks out an unam-
biguous area of storage. By restricting the preconditions of procedure specifica-
tions to be precise, we obtain a sound semantics, and this reaction corresponds
to point (1). By restricting resource invariants to be precise we also obtain a
sound semantics, and this reaction corresponds to point (2).

In the conclusion we discuss other work that takes reaction (3).
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7. THE PROGRAMMING LANGUAGE MODEL

Until now in work on separation logic we have used operational semantics, but
in this paper we use a denotational semantics. By using denotational semantics
we will be able to reduce the truth of a sequent � � {p}C{q} to the truth of a
single semantic triple {p}[[C]]η{q}, where η maps each procedure identifier in
� to a “greatest” or “most general” relation satisfying its pre/post specification
[Schwarz 1974, 1977]. In the case of the hypothetical frame rule, we will be
able to compare two denotations of the same command for particular instan-
tiations of the procedure identifiers, rather than having to quantify over all
possible instantiations. Our choice to use denotational semantics here is en-
tirely pragmatic: The greatest relation is not always definable by a term in a
given programming language, but the ability to refer to it leads to significant
simplifications in proofs about the semantics.

The model we use is chosen for its simplicity. Only basic domain theory is
required, essentially, continuity and fixed-points. Commands are modelled as
relations, which are ordered by inclusion to form a complete partial order in
terms of which the constructs of our language are continuous. The model is
adequate for partial correctness, but not total correctness [Plotkin 1983].

7.1 Domains

To begin with, we divide the program state into two components, the “stack,”
which maps variables into values, and the “heap,” which is the H component
from the Section 2.

S def= Variables → Values

H def= L ⇀fin R

States
def= S × H.

Often the set Values can be taken to be the same as R, and this was done in
Section 2, but we do not require it, mathematically.

A command is interpreted as a relation

States ↔ States ∪ {fault}
satisfying certain properties defined below. Because we use a fault-avoiding
interpretation of triples, it would be possible to use the domain

States → P(States) ∪ {fault}
instead. Using the more general domain lets us see clearly that if a command
nondeterministically chooses between fault and some state, then the possibil-
ity of faulting will mean that the command is not well specified. This is not an
essential point; the more constrained domain could be used without affecting
any of our results.

This domain of relations is inappropriate for total correctness because it
does not include a specific result for nontermination, and our semantics will
not distinguish a command C from one that nondeterministically chooses C or
divergence. Note that divergence is distinguished from fault, which typically
occurs when an l-value not in the current state is accessed.

ACM Transactions on Programming Languages and Systems, Vol. 31, No. 3, Article 11, Pub. date: April 2009.



11:18 • P. W. O’Hearn et al.

Notation: If c : States ↔ States ∪ {fault} is a relation—that is, a subset of
States × (States ∪ {fault})—then we write a[c]b to indicate that (a, b) ∈ c.

We say that a relation c: States ↔ States ∪ {fault} is safe at a state (s, h)
when ¬(s, h) [c] fault. Intuitively, this means that when started at (s, h), the
“command” c does not dereference dangling pointers. The two locality properties
are:

(1) Safety Monotonicity: for all states (s, h) and heaps h1 such that h#h1, if c is
safe at (s, h), it is also safe at (s, h ∗ h1).

(2) Frame Property: for all states (s, h) and heaps h1 such that h#h1, if c is safe
at (s, h) and (s, h ∗ h1)[c](s′, h′), then there is a subheap h′

0 ≤ h′ such that

h′
0#h1, h′

0 ∗ h1 = h′ and (s, h)[c](s′, h′
0).

The poset LRel of “local relations” is the set of all such c satisfying these condi-
tions, ordered by subset inclusion:

LRel
def= {c: States ↔ States ∪ {fault} | c satisfies safety monotonicity

and the frame property}.
These local relations are exactly those that satisfy the ordinary frame rule.
Local relations inherit the domain structure from relations, ordered by subset
inclusion, which gives us access to fixed-points.

LEMMA 1. The poset LRel is a chain-complete partial order with the least
element. The least element is the empty relation, and the least upper bound of a
chain is given by the union of all the relations in the chain.

PROOF. Since the empty relation is in LRel, the poset LRel has the least el-
ement. To see that LRel is chain-complete, consider a chain {ci}i in LRel. We
need to show that

⋃
i ci satisfies safety monotonicity and the frame property.

Suppose that
⋃

i ci is safe at a state (s, h). Then, all of ci ’s are safe at (s, h). The
safety monotonicity of ci, then, says that ci is safe at all bigger states (s, h ∗ h1)
with h#h1. This gives the safety monotonicity of

⋃
i ci. For the frame property,

suppose that
⋃

i ci is safe at a state (s, h), and that (s, h ∗ h1)[
⋃

i ci](s′, h′) for
some h1, s′, h′ with h#h1. Then, there is some ci such that (s, h ∗ h1)[ci](s′, h′).
The frame property of ci gives a subheap h′

0 ≤ h′ such that (s, h)[ci](s′, h′
0) and

h′ = h′
0 ∗ h1. This h′

0 is the subheap required for the frame property of
⋃

i ci

because (s, h)[
⋃

i ci](s′, h′
0) and h′ = h′

0 ∗ h1.

7.2 The General Semantics

We consider a simple imperative programming language extended with param-
eterless procedures. For the moment, we assume that we are given an unspeci-
fied set of basic commands, and a fixed element A ∈ LRel for each basic command
A; the development of the semantics of the surrounding language is paramet-
ric in the choice of the sets L, R, and Values, and the basic commands. We will
separately instantiate the basic commands as appropriate to the RAM model.

The semantics is in Table VI. The meaning of a command is given in the
context of an environment η, which maps procedure identifiers to relations in
LRel. We presume a semantics which assigns a truth value to [[B]]s.
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Table VI. The General Semantics

Atomic Commands (Assumed)

A ∈ LRel

Functionality of Environments

η ∈ ProcIds → LRel

Functionality of Valuations

[[C]]η ∈ LRel

Valuations

for all (s, h) ∈ States and a ∈ States ∪ {fault},
[[A]]η

def= A

(s, h)[[[skip]]η]a
def⇐⇒ a = (s, h)

(s, h)[[[C1; C2]]η]a
def⇐⇒ (s, h)[seq([[C1]]η, [[C2]]η)]a

(s, h)[[[if B then C1 else C2]]η]a
def⇐⇒ (s, h)[[[B]] � [[C1]]η; [[C2]]η]a

(s, h)[[[while B C]]η]a
def⇐⇒ (s, h)[fix (λc ∈ LRel. ([[B]] � seq([[C]]η, c); [[skip]]η))]a

(s, h)[[[k]]η]a
def⇐⇒ (s, h)[η(k)]a

(s, h)[[[letrec k1 = C1, . . . , kn = Cn in C]]η]a
def⇐⇒ (s, h)[[[C]]η[k1 �→ d1, . . . , kn �→ dn]]a

where fix f gives the least fixed-point of f , and seq(c1, c2), b � c1; c2 and d1, . . . , dn
are defined as follows:

(d1, . . . , dn)
def= fix(λd1, . . . , dn ∈ LReln. (F1, . . . , Fn))

where Fi = [[Ci]]η[k1 �→ d1, . . . , kn �→ dn]

(s, h) [seq(c1, c2)] a
def⇐⇒ (∃(s′, h′). (s, h) [c1] (s′, h′) ∧ (s′, h′) [c2] a)

∨ ((s, h) [c1] fault ∧ a = fault)

(s, h) [b � c1; c2] a
def⇐⇒ if b(s) = true then (s, h)[c1]a else (s, h)[c2]a

LEMMA 2. For each command C, [[C]] is well-defined: for all environments
η, [[C]]η is in LRel, and [[C]]η is continuous for η when environments are ordered
pointwise.

PROOF. We use induction on the structure of C to show the lemma. When C
is a basic command the result holds by presumption.

When C = C1; C2, we first show that [[C1; C2]]η satisfies safety monotonicity
and the frame property so that it is in LRel; then, we will prove that [[C1; C2]]
is continuous. Consider a state (s, h) and an environment η such that [[C1; C2]]η
is safe at the state (s, h). Suppose that this [[C1; C2]]η is not safe at some big-
ger state (s, h ∗ h1) with h#h1. Then, we have either (s, h ∗ h1)[[[C1]]η]fault, or
(s, h ∗ h1)[[[C1]]η](s′, h′) and (s′, h′)[[[C2]]η]fault for some state (s′, h′). We get the
required contradiction in both cases. In the first case, since [[C1; C2]]η is safe
at (s, h), the [[C1]]η is also safe at (s, h). Therefore, because of the induction
hypothesis, the “command” [[C1]]η can not generate fault when run in the big-
ger state (s, h ∗ h1). This contradicts the assumption, (s, h ∗ h1)[[[C1]]η]fault. In
the second case, note that since [[C1]]η is safe at (s, h), the induction hypothe-
sis gives a subheap h′

0 of h′ such that the subheap h′
0 is disjoint from h1 (i.e.,

h′
0#h1) and satisfies h′ = h′

0 ∗ h1 and (s, h)[[[C1]]η](s′, h′
0). Since [[C1; C2]]η is safe

at (s, h), [[C2]]η should be safe at (s′, h′
0). Now, the induction hypothesis for C2
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implies that [[C2]]η is also safe at (s′, h′
0 ∗ h1); this contradicts our assumption

that (s′, h′)[[[C2]]η]fault holds. For the frame property, consider a heap h1 dis-
joint from the heap h, and a state (s′′, h′′) such that (s, h ∗ h1)[[[C1; C2]]η](s′′, h′′).
We must find a subheap h′′

0 of h′′ that satisfies

h′′
0#h1, h′′

0 ∗ h1 = h′′, and (s, h)[[[C1; C2]]η](s′′, h′′
0).

Since (s, h ∗ h1)[[[C1; C2]]η](s′′, h′′) holds, there is an intermediate state (s′, h′)
for this computation. That is, the state (s′, h′) satisfies (s, h ∗ h1)[[[C1]]η](s′, h′)
and (s′, h′)[[[C2]]η](s′′, h′′). Applying the induction hypothesis for C1 and then for
C2, we can find a subheap h′

0 of h′ and h′′
0 of h′′ such that the heap h′

0 satisfies
h′ = h′

0 ∗ h1 and (s, h)[[[C1]]η](s′, h′
0), and the heap h′′

0 satisfies h′′ = h′′
0 ∗ h1 and

(s′, h′
0)[[[C2]]η](s′′, h′′

0). The heap h′′
0 is the required subheap of h′′ for the frame

property of [[C1; C2]]η.
For the continuity of [[C1; C2]], it suffices to show that seq preserves the least

upper bound of a chain in LRel × LRel. Let {(ci, c′
i)}i be a chain in LRel × LRel. By

Lemma 1, their least upper bound is (
⋃

i ci,
⋃

j c′
j ). The following shows that

seq preserves this least upper bound:

(s, h)[seq(
⋃

i ci,
⋃

j c′
j )]a

⇐⇒ (∃(s′, h′). (s, h)[
⋃

i ci](s′, h′) ∧ (s′, h′)[
⋃

j c′
j ]a

) ∨ (
(s, h)[

⋃
i ci]a ∧ a = fault

)

⇐⇒ (∵ {(ci, c′
i)}i is a chain)

∃i.
(∃(s′, h′). (s, h)[ci](s′, h′) ∧ (s′, h′)[c′

i]a
) ∨ (

(s, h)[ci]a ∧ a = fault
)

⇐⇒
∃i. (s, h)[seq(ci, c′

i)]a
⇐⇒

(s, h)[
⋃

i(seq(ci, c′
i))]a.

When C = if B then C1 else C2, we note that the Boolean expression B
does not depend on the heap so that the value of B at a smaller state (s, h) is the
same as that at a bigger state (s, h∗h1). Moreover, both [[C1]]η and [[C2]]η already
satisfy safety monotonicity and the frame property by the induction hypothesis.
Therefore, [[C]]η also satisfies these two properties. For the continuity, it suffices
to show that for all Boolean functions b ∈ [S → {true, false}], and all chains
{ci}i and {c′

i}i of local relations, we have
(
b �

⋃
i

ci;
⋃

i

c′
i

) =
⋃

i

(
b � ci; c′

i

)
.

We show this equality as follows:

(s, h) [(b �
⋃

i ci;
⋃

i c′
i)] a

⇐⇒ if b(s) = true then (∃i. (s, h)[ci]a) else (∃i. (s, h)[c′
i]a)

⇐⇒ ∃i. if b(s) = true then (s, h)[ci]a else (s, h)[c′
i]a

⇐⇒ (s, h)[
⋃

i(b � ci; c′
i)]a.

The meaning of a procedure call k is a projection, which is a well-defined
continuous map from environments to local relations.

ACM Transactions on Programming Languages and Systems, Vol. 31, No. 3, Article 11, Pub. date: April 2009.



Separation and Information Hiding • 11:21

Table VII. The RAM Semantics

Expressions (Assumed)

[[E]]s ∈ Ints [[B]]s ∈ {true, false} (where s ∈ S).

Domains for the RAM model

Nats
def= {0, 1, . . . , 17, . . .} Ints

def= {. . . , −17, . . . , −1, 0, 1, . . . , 17, . . .}
Variables

def= {x, y , . . .} S
def= Variables → Ints

H
def= Nats ⇀fin Ints States

def= S × H
Valuations for Atomic Commands

for all (s, h) ∈ States and a ∈ States ∪ {fault},
(s, h)[x := E]a

def⇐⇒ a = (s[x �→ [[E]]s], h)

(s, h)[x := cons(E1, . . . , En)]a
def⇐⇒ ∃m. (m, . . . , m + n − 1 �∈ dom(h))

∧
(
a = (s[x �→ m], h ∗ [m �→ [[E1]]s, . . . , m + n − 1 �→ [[En]]s])

)

(s, h)[x := [E]]a
def⇐⇒ if [[E]]s ∈ dom(h) then a = (s[x �→ h([[E]]s)], h) else a = fault

(s, h)[[E] := E1]a
def⇐⇒ if [[E]]s ∈ dom(h) then a = (s, h[[[E]]s �→ [[E1]]s]) else a = fault

(s, h)[dispose(E)]a
def⇐⇒ if [[E]]s ∈ dom(h)

then a = (s, h′) for h′ s.t. h′ ∗ ([[E]]s �→ h([[E]]s)) = h
else a = fault

For the remaining cases of loop and procedure definition, we just observe that
the domain LReln is a cpo, and that the least fixed-point operator fix is, itself,
continuous from the domain of continuous functions of type LReln → LReln to
LReln. The conclusion follows from this because the functionals, for which we
take the least fixed-point in both cases, are well-defined continuous functions
from environments to continuous functions of type LReln → LReln.

7.3 A Particular Semantics: The RAM Model

We now instantiate the previous development for the RAM model. The domains
are set out, together with the valuations for basic commands, in Table VII.

The command x := cons(E1, . . . , En) allocates n consecutive cells, initializes
them with the values of E1, . . . , En, and stores the address of the first cell in x.
The contents of an address E can be read and stored to x by x := [E], or can
be modified by [E] := E1. The command dispose(E) deallocates the address E.
Note that in x := [E], [E] := E1 and dispose(E), the expression E can be an
arbitrary arithmetic expression; so, this language allows address arithmetic.
Also, note that dereferencing or disposing a pointer not in the domain of the
heap leads to a fault in the semantics.

We can now specify the element A ∈ LRel for each basic command. It is
a matter of straightforward checking to show that each of these definitions
satisfies safety monotonicity and the frame property, so we state

LEMMA 3. For each basic command A, we have A ∈ LRel.

It is entertaining to see the nondeterminism at work in the semantics of cons
in this model. In particular, since we are aiming for partial correctness, the
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semantics does not record whether a command terminates or not; for instance,
x := 1; y := 1 has the same denotation as a command that nondeterministically
picks either x := 1; y := 1 or divergence. Such a nondeterministic command
can be expressed in our language as

x := cons(0); dispose(x); y := cons(0); dispose( y);
if (x = y) then (x := 1; y := 1)

else (while (x = x) skip)

The reader may enjoy verifying that this is indeed equivalent to x := 1; y := 1
in the model.

8. SEMANTICS OF SEQUENTS

In this section we give a semantics where a sequent

� � {p}C{q}
says that if every specification in � is true of an environment mapping procedure
identifiers to local relations, then so is {p}C{q}.

To interpret sequents we define semantic cousins of the modifies clauses and
Hoare triples. If c ∈ LRel is a relation, then

—modifies(c, X ) holds if and only if whenever (s, h)[c](s′, h′) and y �∈ X , we have
that s( y) = s′( y).

—{p}c{q} holds if and only if for all states (s, h) in p,
(1) ¬((s, h) [c] fault); and
(2) for all states (s′, h′), if (s, h) [c] (s′, h′), the state (s′, h′) is in q.

Intuitively, triple {p}c{q} says that when started at a state in p, the relation c
does not generate a fault so that it only accesses cells already in h or newly
allocated during execution, and, if c ever terminates, it always produces a state
in q.

The interpretation of a sequent now works by quantifying over values in en-
vironments, and appealing to the semantic counterparts of triples and modifies
clauses.

Definition 4. [Validity of Sequents]
A sequent

{p1}k1{q1}[X 1] . . . , {pn}kn{qn}[X n] � {p}C{q}
holds in the standard semantics if and only if

for all environments η, if both {pi}η(ki){qi} and modifies(η(ki), X i) hold
for all 1 ≤ i ≤ n, the triple {p}([[C]]η){q} also holds.

It is interesting to see the position of this semantics on the sequents used
in the counterexample from Section 6. The standard semantics validates the
conjunction rule

� � {p}C{q} � � {p′}C{q′}
� � {p ∧ p′}C{q ∧ q′}
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and so also the instance of it

{0 ∨ 1}k{0}[] � {1}k{1} {0 ∨ 1}k{0}[] � {1}k{0}
{0 ∨ 1}k{0}[] � {1 ∧ 1}k{1 ∧ 0}

used in the derivation of {0 ∨ 1}k{0}[] � {1}k{false}. This concluding sequent
is true because any relation c ∈ LRel satisfying {0 ∨ 1}k{0} must diverge given
a state satisfying 1; thus, the triple {1 ∧ 1}k{1 ∧ 0}—which is equivalent
to {1}k{false}—will hold, since divergence makes a triple true in partial
correctness.

9. PRECISE PREDICATES

We know from the counterexample in Section 6 that we must restrict the hypo-
thetical frame rule in some way, if it is to be used with the standard semantics.
Before describing the restriction, let us retrace some of our steps. We had a sit-
uation where ownership could transfer between a module and a client, which
made essential use of the dynamic nature of ∗. But we had also got to a position
where ownership is determined by what the Asserter asserts, and this put us
in a bind: when the Asserter does not precisely specify what storage is owned,
different splittings can be chosen at different times using the nondeterministic
semantics of ∗; this fools the hypothetical frame rule (it is perhaps fortuitous
that the nondeterminism in ∗ has not gotten us into trouble in separation logic
before now). A way out of this problem is to insist that the Asserter precisely
nail down the storage that he or she is talking about.

Definition 5. [Precision] A predicate p is precise if and only if for all states
(s, h), there is at most one subheap hp of h for which (s, hp) ∈ p.

Intuitively, this definition says that for each state (s, h), a precise predicate
unambiguously specifies the portion of the heap h that is relevant to the pred-
icate. Formulae that describe data structures are often precise. Indeed, the
definition might be viewed as a formalization of a point of view stressed by
Richard Bornat, that for practically any data structure one can write a for-
mula or program that searches through a heap and picks out the relevant cells.
Bornat [2000] used this idea to expose the cells in a data structure in order to
give an approach to spatial separation in traditional logic. In separation logic
we express spatial separation using ∗, and have until now had less reason to
expose, or insist on unambiguous identification of, the cells in a data structure.

An example of a precise predicate is the following one for list segments:

listseg(x, y)
def⇐⇒ (x = y ∧ emp) ∨ (x �= y ∧ ∃z. (x �→–, z) ∗ listseg(z, y))

This predicate is true when the heap contains a noncircular linked list (and
nothing else), which starts from the cell x and ends with y . Note that because
of x �= y in the second disjunct, the predicate listseg(x, y) says that if x and
y have the same value in a state (s, h), the heap h must be empty. If we had
left x �= y out of the second disjunct, then listseg(x, y) would not be precise:
listseg(x, x) could be true of a heap containing a nonempty circular list from x
to x (and nothing else), and also of the empty heap, a proper subheap.
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If p is a precise predicate then there can be at most one way to split any given
heap up in such a way as to satisfy p ∗ q; the splitting, if there is one, must
give p the unique subheap satisfying it. This leads to an important property of
precise predicates.

LEMMA 6. [Distribution Lemma]
A predicate p is precise if and only if p ∗ − distributes over ∧:

for all predicates q and r, we have p ∗ (q ∧ r) = (p ∗ q) ∧ (p ∗ r).

PROOF. We show the only-if direction first. By the definition of ∗, predicate
p ∗ (q ∧ r) is always included in (p ∗ q) ∧ (p ∗ r) for all predicates p, q, r. So, it
suffices to show the other inclusion. Let (s, h) be a state in (p∗q)∧ (p∗r). Then,
heap h can be split into hp, hq , and also into h′

p, h′
r such that

(1) both (s, hp) and (s, h′
p) are in p,

(2) (s, hq) is in q and (s, h′
r ) is in r, and

(3) h = hp ∗ hr = h′
p ∗ h′

r holds.

Since predicate p is precise, hp = h′
p. So, hq = hr . The conclusion follows from

this.
For the if direction, suppose that p∗− distributes over ∧ but p is not precise.

Then, there is a state (s, h) and two different subheaps hp, h′
p of h with (s, hp) ∈ p

and (s, h′
p) ∈ p. Let q = {(s, h − hp)} and let r = {(s, h − h′

p)}, where for all
subheaps h′ ≤ h, heap h − h′ denotes h excluding those cells in h′. Then, (s, h)
is in (p ∗ q) ∧ (p ∗ r), but it is not in p ∗ (q ∧ r) because q ∧ r is the empty set.
This contradicts the distributivity of p ∗ −.

We also have closure properties of precise predicates.

LEMMA 7. For all precise predicates p and q, all (possibly imprecise) pred-
icates r, and Boolean expressions B, all the predicates p ∧ r, p ∗ q, and
(B ∧ p) ∨ (¬B ∧ q) are precise.

As a first hint of the relevance of the notion of precise predicate to the conun-
drum from Section 6, consider how an inference using the usual conjunction
rule

{p}k{q} {p′}k{q′}
{p ∧ p′}k{q ∧ q′}

relates to a putative inference after we place invariants on the premises and
the conclusion:

{p ∗ r}k{q ∗ r} {p′ ∗ r}k{q′ ∗ r}
{(p ∧ p′) ∗ r}k{(q ∧ q′) ∗ r} ?

We can almost perform this inference

(p ∧ p′) ∗ r ⇒ (p ∗ r) ∧ (p′ ∗ r)

{p ∗ r}k{q ∗ r} {p′}k{q′}
{(p ∗ r) ∧ (p′ ∗ r)}k{(q ∗ r) ∧ (q′ ∗ r)}

{(p ∧ p′) ∗ r}k{(q ∗ r) ∧ (q′ ∗ r)}
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and if we had one more implication

(q ∗ r) ∧ (q′ ∗ r)⇒(q ∧ q′) ∗ r,

then we would obtain the putative conclusion, using the usual rule of conse-
quence.

Alas, as we have seen, this implication fails in general: take q = 0, q′ = 1
and r = true. But, if r is precise then the implication goes through, because of
the distribution lemma, and the putative conclusion is then fully justified.

This gives us a hint of the relevance of precision; now we undertake to provide
a detailed analysis. Before presenting the soundness proof of the hypothetical
frame rule in the standard semantics, we clarify the side conditions for the rule.

10. VARIABLE CONDITIONS

We repeat the hypothetical frame rule, with its side conditions.

Hypothetical Frame Rule

�, {p1}k1{q1}[X 1], . . . , {pn}kn{qn}[X n] � {p}C{q}
�, {p1 ∗ r}k1{q1 ∗ r}[X 1, Y ], . . . , {pn ∗ r}kn{qn ∗ r}[X n, Y ] � {p ∗ r}C{q ∗ r}
where
—C does not modify variables in r, except through using k1, . . . , kn;

and
—Y is disjoint from “�, {p1}k{q1}[X 1], . . . , {pn}k{qn}[X n] � {p}C{q}”.

As a first comment, note that in the rule we are using comma between the
X i and Y for union of disjoint sets; the form of the rule therefore assumes that
X i and Y are disjoint.

The disjointness requirement for Y enforces that we do not observe the
changes of a variable in Y while reasoning about C; as a result, reasoning
in client code is independent of variables in Y . We give a technical definition
of several variants on a notion of disjointness of a set of variables X from a set
of variables, a command, a predicate, or a judgment. X is disjoint from a set
Y if their variables do not overlap; X is disjoint from a command C if X does
not intersect with the free variables of C; X is disjoint from predicate r if the
predicate is invariant under changes to values of variables in X ; X is disjoint
from judgment �′ � {p}C{q} if it is disjoint from p, q, C in the concluding triple
and also from p′, q′, Y for all {p′}k{q′}[Y ] in �′. This defines the second side
condition.

The first side condition can be made rigorous with a relativized version of
the usual notion of set of variables modified by a command. We describe this
using a set Modifies(C)(�) of variables associated with each command. The two
most important clauses in the definition concern procedure call.

Modifies(k)(�) = X , if {p}k{q}[X ] ∈ �

Modifies(k)(�) = ∅, otherwise.

The upshot is that Modifies(C)(�) reports those variables modified by C, except
that it doesn’t count any procedure calls for procedures not in �.
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For the other commands, the relativized notion of modifies set is defined
usual. For a compound command C with immediate subcommands C1, . . . , Cn,
the set Modifies(C)(�) is the union ∪iModifies(Ci)(�). Two of the basic commands
are as follows:

Modifies(x := E)(�) = {x} Modifies([x] := E)(�) = {}.

For [x] := E the modifies set is empty because the command alters the heap
but not the stack.

We are now in a position to state the first side condition rigorously: it means

Modifies(C)(�) is disjoint from r.

The modifies conditions for the the ordinary frame and recursive procedure
rules do not mention the “except through” clause. These can be formalized by
taking � in Modifies(C)(�) to be the entire context of the premise.

An important point is that the free variables of the resource invariant are
allowed to overlap with the X i. This often happens when using auxiliary vari-
ables to specify the behaviour of a module, as exemplified by the treatment of
the auxiliary variable Q in the queue module in Table IV.

The complexity of modifies clauses is a general irritation in program logic,
and one might feel that this problem with modifies clauses could be easily
avoided, simply by doing away with assignment to variables, so that the heap
component is the only part of the state that changes. While this is easy to do
semantically, obtaining a satisfactory program logic is not as straightforward.
The most important point is the treatment of auxiliary variables. For example,
in the queue module the variable Q is used in interface specifications as well
as the invariant. If we were to try to place this variable into the heap then
separation would not allow us to have it in both an interface specification and
an invariant. It is important that Q can appear in client assertions, but can-
not be altered by client code, and the detailed syntactic conditions on variables
are designed to allow this. It has been suggested that fractional permissions,
a method of sharing read access to heap cells, can also deal with these uses of
auxiliary variables [Bornat et al. 2005; Parkinson et al. 2006]; while an allur-
ing suggestion, further work is needed to understand the connection between
permissions and auxiliary variables.

10.1 On Existentials and Free Variables

In O’Hearn et al. [2001] and Reynolds [2002] there is an inference rule for
introducing existential variables in preconditions and postconditions.

{p}C{q}
{∃x.p}C{∃x.q} x �∈ free(C)

The side condition cannot be stated in the formalism of this paper. For, a proce-
dure specification {p}k{q}[X ] identifies the variables, X , that k might modify,
but not those that k might read from.
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We can get around this problem by adding a free variable component to the
sequent form, thus having

(Y ) � � {p}C{q}.
This constrains the variables appearing in C and all the procedures ki, but
not the preconditions and postconditions. This would allow us to describe the
existential rule as

(Y ) � � {p}C{q}
(Y ) � � {∃x.p}C{∃x.q} x �∈ Y

Another reasonable approach is to have a distinct class of “logical” variables,
that cannot be assigned to in programs. For technical simplicity, we do not
explicitly pursue either of these extensions in the current paper.

11. SOUNDNESS OF THE HYPOTHETICAL FRAME RULE

From now on we assume the standard notion of validity of sequents, as in
Definition 4. Our task now is to prove the main result:

THEOREM 8. [Soundness Theorem]

(a) The hypothetical frame rule is sound for fixed preconditions p1, . . . , pn if and
only if p1, . . . , pn are all precise.

(b) The hypothetical frame rule is sound for a fixed invariant r if and only if r
is precise.

This result covers the queue and memory manager examples, where the
preconditions and invariants are all precise.

The remainder of this section contains the proof of this theorem, aided by
several preparatory steps which help to simplify what has to be proven.

—Rule decomposition. We decompose the hypothetical frame rule into two sim-
pler rules, one of which involves the addition of modifies sets without adding
invariants, and the other of which involves the addition of invariants without
extending modifies sets.

—The greatest relation. We identify the greatest relation for a specification
{p}k{q}[X ], which is the greatest local relation satisfying the specification.
This allows us to reduce the truth of a sequent, which officially involves
quantification over all environments, to the truth of a single triple for a single
environment.

—Simulation. To show the soundness of the hypothetical frame rule we need to
connect the meaning of a command in one context to its meaning in another
with an additional invariant and additional modifies sets. We develop a notion
of simulation relation between commands to describe this connection.

11.1 Rule Decomposition

Our first simplification decomposes the hypothetical rule into two simpler
rules.
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Modifies Weakening

�, {p1}k1{q1}[X 1], . . . , {pn}kn{qn}[X n] � {p}C{q}
�, {p1}k1{q1}[X 1, Y ], . . . , {pn}kn{qn}[X n, Y ] � {p}C{q}

where Y is disjoint from “�, {p1}k1{q1}[X 1], . . . , {pn}kn{qn}[X n] �
{p}C{q}”

Simple Hypothetical Frame Rule

�, {p1}k1{q1}[X 1], . . . , {pn}kn{qn}[X n] � {p}C{q}
�, {p1 ∗ r}k1{q1 ∗ r}[X 1], . . . , {pn ∗ r}kn{qn ∗ r}[X n] � {p ∗ r}C{q ∗ r}

where Modifies(C)(�) is disjoint from r and for all {p′}k{q′}[X ] in �,
the modifies set X is disjoint from r

Note that these rules are specific instances of the hypothetical frame rule: the
first rule is obtained by taking the set {(s, []) | s ∈ S} for a resource invariant,
and the second rule by taking the empty set for Y . In fact, the hypothetical
frame rule is equivalent to these rules because it is derivable from them:

�, {p1}k1{q1}[X 1], . . . , {pn}kn{qn}[X n] � {p}C{q}
�0, {p1}k1{q1}[X 1], . . . , {pn}kn{qn}[X n] � {p}C{q}

�0, {p1}k1{q1}[X 1, Y ], . . . , {pn}kn{qn}[X n, Y ] � {p}C{q}
�0, {p1 ∗ r}k1{q1 ∗ r}[X 1, Y ], . . . , {pn ∗ r}kn{qn ∗ r}[X n, Y ] � {p}C{q}

�, {p1 ∗ r}k1{q1 ∗ r}[X 1, Y ], . . . , {pn ∗ r}kn{qn ∗ r}[X n, Y ] � {p ∗ r}C{q ∗ r}

Here �0 is a subcontext of � containing specifications of only those procedures
that appear in C. The derivation first uses the rule for shrinking contexts,
and removes specifications for uncalled procedures from �. Next, it applies the
modifies weakening and the simple hypothetical frame rule, and adds first Y
and then r. Finally, the derivation restores � by extending �0. In the deriva-
tion, we shrink and extend �, in order to ensure that the side condition of the
hypothetical frame rule implies that of the simple hypothetical rule.

11.2 Greatest Relation

For a specification {p} − {q}[X ], we consider the greatest local relation
great(p, q, X ) in LRel satisfying the (semantic) triple {p}great(p, q, X ){q} and
the modifies clause modifies(great(p, q, X ), X ).

Such greatest relations were introduced by Schwarz in the 1970s; he called
them “generic commands” [Schwarz 1974, 1977]. Researchers in program re-
finement have worked with an analogous concept [Morgan 1988; Morris 1987],
often under the name “specification statements” and often using predicate
transformers rather than relations. The only twist in the present work is that
in defining the greatest relation we consider only those that satisfy the locality
properties of commands in separation logic (safety monotonicity and the frame
property), and so our definition must reflect this.
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The relation great(p, q, X ) exists for all specifications {p} − {q}[X ], and can
be defined as follows:

(s, h)[great(p, q, X )]fault
def⇐⇒ (s, h) �∈ p ∗ true

(s, h)[great(p, q, X )](s′, h′) def⇐⇒
(1) s( y) = s′( y) for all variables y �∈ X ; and
(2) ∀hp, h1. (hp ∗ h1 = h ∧ (s, hp) ∈ p) =⇒ (∃h′

q . h′
q#h1 ∧ h′

q ∗ h1 = h′ ∧ (s′, h′
q) ∈ q)

The first equivalence says that the relation great(p, q, X ) is safe at (s, h) just
when p holds in (s, hp) for some subheap hp of h. Note that this equivalence im-
plies the safety monotonicity of great(p, q, X ). The second equivalence is about
state changes. The first condition in this equivalence means that great(p, q, X )
can modify only those variables in X , and the second condition that the output
(s′, h′) is produced by a deallocation of a subheap of h in p followed by an allo-
cation of a new heap in q: great(p, q, X ) demonically chooses a subheap hp of
the initial heap h that satisfies p (i.e., (s, hp) ∈ p), and disposes all cells in hp;
then, it angelically picks from q a new heap h′

q (i.e., (s′, h′
q) ∈ q) and allocates

h′
q to get the final heap h′.

LEMMA 9. The relation great(p, q, X ) is in LRel.

PROOF. We only show that great(p, q, X ) satisfies the frame property. Con-
sider states (s, h), (s′, h′) and a heap h0 such that great(p, q, X ) is safe at state
(s, h), h0#h, and (s, h ∗ h0)[great(p, q, X )](s′, h′). Since great(p, q, X ) is safe at
(s, h), there is a subheap hp ≤ h such that (s, hp) ∈ p. Then, since (s, h ∗
h0)[great(p, q, X )](s′, h′), relation great(p, q, X ) preserves heap (h − hp) ∗ h0,
so the final heap h′ is (h − hp) ∗ h0 ∗ h′

q for some h′
q with (s′, h′

q) ∈ q. Now, we
claim that (s, h)[great(p, q, X )](s′, (h − hp) ∗ h′

q) holds. Since s and s′ differ only
for some variables in X , we will just show that for all splittings mp ∗ m = h of
h, if (s, mp) is in p, there is a subheap m′

q of (h − hp) ∗ h′
q such that

m′
q#m, h′

q ∗ (h − hp) = m′
q ∗ m, and (s′, m′

q) ∈ q.

We use (s, mp ∗ m ∗ h0)[great(p, q, X )](s′, h′) to obtain such subheap m′
q of h′.

Because (s, mp ∗ m ∗ h0)[great(p, q, X )](s′, h′), there exists a heap m′
q such that

m′
q#(m ∗ h0), h′ = m′

q ∗ m ∗ h0, and (s′, m′
q) ∈ q.

Since h′
q ∗ (h− hp) ∗ h0 = h′ = m′

q ∗ m ∗ h0, we have h′
q ∗ (h− hp) = m′

q ∗ m. Thus,
this m′

q is the required subheap.

LEMMA 10 (Greatestness). The greatest relation great(p, q, X ) satisfies {p}−
{q} and modifies(−, X ), and is the greatest such: for all local relations c, we have

{p}c{q} ∧ modifies(c, X ) =⇒ c ⊆ great(p, q, X ).

PROOF. It is straightforward to see, from the definition, that great(p, q, X )
satisfies both {p} − {q} and modifies(−, X ). To see that great(p, q, X ) is indeed
greatest, let’s consider a relation c in LRel with {p}c{q} and modifies(c, X ). When
(s, h)[c]fault holds, no subheap h0 of h is in p (i.e., (s, h0) �∈ p): if (s, hp) were in
p for some subheap hp of h, then c is safe at (s, hp) because {p}c{q} holds; thus,
c is also safe at (s, h) by the safety monotonicity, and this gives the required
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contradiction. Therefore, if (s, h)[c]fault, then (s, h)[great(p, q, X )]fault. Now,
consider states (s, h), (s′, h′) such that (s, h)[c](s′, h′). We need to show the two
conditions for the state change of great(p, q, X ) hold for the states (s, h) and
(s′, h′). The condition for the stack holds: because of modifies(c, X ), the stacks s
and s′ differ only for some variables in X . For the condition for the heap, consider
a splitting hp ∗ h0 = h of h such that (s, hp) is in p. Since {p}c{q} holds, c is safe
at (s, hp). Therefore, the frame property of c implies that there is a subheap h′

q
of h′ such that h′

q ∗h0 = h′ and (s, hp)[c](s′, h′
q). Now, since {p}c{q} holds and the

initial state (s, hp) is in p, the final state (s′, h′
q) must be in q. Therefore, (s, h)

and (s′, h′) satisfy the condition for the heap change of great(p, q, X ).

The greatest environment for a context � is the greatest environment satis-
fying all the procedure specifications in �. It maps a procedure identifier k to
great(p, q, X ) when the context � has the specification {p}k{q}[X ]; otherwise,
it maps k to the greatest relation in LRel, which is States × (States ∪ {fault}).
The greatest environment for � is well-defined because of Lemma 9, and it is
the greatest environment satisfying � because of Lemma 10.

We use the greatest environments to interpret a sequent � � {p}C{q} in a
simpler way that avoids universal quantification over command meanings. In
this interpretation, a sequent � � {p}C{q} just means that {p}([[C]]η){q} holds
for the greatest environment η satisfying �. The new interpretation is implied
by the old one because it considers just a single environment satisfying �; in
fact, it is equivalent to the old interpretation, because [[C]] maps a greater
environment to a greater relation but a greater relation satisfies fewer triples.

LEMMA 11. A sequent � � {p}C{q} holds if and only if the triple {p}([[C]]η){q}
holds for the greatest environment η satisfying �.

PROPOSITION 12. For all predicates p, q, p′ and q′, commands C, and contexts
� and �′, we have the following equivalence: the proof rule

� � {p}C{q}
�′ � {p′}C{q′}

holds if and only if we have

{p}([[C]]η){q} =⇒ {p′}([[C]]η′){q′}
for the greatest environments η and η′ that, respectively, satisfy � and �′.

11.3 Simulation

Let R : States ↔ States be a binary relation between states. For c, c′ in LRel, we
say that c simulates c′ upto R, denoted c[sim(R)]c′, if and only if the following
two properties hold:

—Generalized Safety Monotonicity: if c is safe at (s, h), and (s, h)[R](s′, h′), then c′

is safe at (s′, h′).
—Generalized Frame Property: if c is safe at (s, h) and we have that (s, h)[R](s′, h′)

and (s′, h′)[c′](s′
1, h′

1), then there is a state (s1, h1) such that (s, h)[c](s1, h1) and
(s1, h1)[R](s′

1, h′
1).
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Intuitively, c[sim(R)]c′ says that for R-related initial states (s, h) and (s′, h′),
when we have enough resources at (s, h) to run c safely, we also have
enough resources at (s′, h′) to run c′ safely; in that case, every computation
(s′, h′)(s′

1, h′
1) . . .(s′

n, h′
n) . . . of c′ from (s′, h′) can be simulated by some computa-

tion (s, h)(s1, h1) . . . (sn, hn) . . . of c with (si, hi)[R](s′
i, h′

i).
We can give an alternate characterization of c[sim(R)]c′ using Hoare triples

for c and c′. For each predicate p, let R(p) be the image of p by R, that is, the
predicate {(s′, h′) | ∃(s, h) ∈ p. (s, h)[R](s′, h′)}.

LEMMA 13. Local relations c and c′ are related by sim(R) if and only if for
all predicates p, q, we have

{p}c{q} =⇒ {R(p)}c′{R(q)}.
PROOF. We show the only-if direction first. Suppose that a triple {p}c{q} holds.

Pick a state (s′, h′) from the predicate R(p). We need to show that the command
c′ is safe at this state (s′, h′), and that if c′ can produce a state (s′

1, h′
1) when

run in (s′, h′) (that is, (s′, h′)[c′](s′
1, h′

1)), this “final” state (s′
1, h′

1) is in R(q). Since
(s′, h′) is in R(p), there is a state (s, h) in p that is related to (s′, h′) by R. Then
c is safe at this state (s, h) because the triple {p}c{q} holds. Now, generalized
safety monotonicity implies that c′ is also safe at (s′, h′). Consider a state (s′

1, h′
1)

that is one of the possible final states of c′ from (s′, h′) (that is, (s′, h′)[c′](s′
1, h′

1)).
Then, the generalized frame property says that there is a state (s1, h1) such that

(s, h)[c](s1, h1) and (s1, h1)[R](s′
1, h′

1).

It suffices to show that (s1, h1) is in q, because, then, the state (s′
1, h′

1) is in R(q).
We note that c satisfies the triple {p}c{q}, and that (s, h) is in the precondition
p of this triple. Thus, (s1, h1), which is one of the possible final states of c from
(s, h), is in q.

For the other direction, consider states (s, h) and (s′, h′) such that c is safe
at (s, h), and the states (s, h) and (s′, h′) are related by R. Then, c satisfies the
triple

{{(s, h)}}c{{(s1, h1) | (s, h)[c](s1, h1)}}.
From this triple, we obtain a triple {p′}c′{q′} for c′ by assumption where p′ and
q′ are defined as follows:

(s0, h0) ∈ p′ def⇐⇒ (s, h)[R](s0, h0)

(s0, h0) ∈ q′ def⇐⇒ ∃(s1, h1). (s, h)[c](s1, h1) ∧ (s1, h1)[R](s′
1, h′

1).

Since c′ satisfies the triple {p′}c′{q′} and the state (s′, h′) is in the precondition
p′ of this triple, c′ is safe at (s′, h′). For the generalized frame property, consider
a “final” state (s′

1, h′
1) of c′ from (s′, h′) (that is, (s′, h′)[c′](s′

1, h′
1)). This final state

(s′
1, h′

1) is in q′ because {p′}c′{q′} holds and (s′, h′) is in p′. Now, the definition of
the postcondition q′ gives the required state: it says that there exists a state
(s1, h1) such that (s, h)[c](s1, h1) and (s1, h1)[R](s′

1, h′
1).

The simulation relation for environments, also denoted sim(R), is defined
pointwise: two environments η, η′ are related by sim(R) if and only if for all
procedure identifiers k, we have η(k)[sim(R)]η′(k).
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We use the simulation for environments to further simplify the meaning of
a proof rule, building on Proposition 12. Let R be a relation between states. We
say that a command C is independent of R if and only if every basic command
A in C simulates itself upto R, and every Boolean expression B in C maps
R-related states to the same value:

A[sim(R)]A ∧ (∀(s, h), (s′, h′). (s, h)[R](s′, h′) =⇒ [[B]]s = [[B]]s′).

PROPOSITION 14. Let � and �′ be contexts, and let η and η′ be the greatest
environments satisfying � and �′, respectively. Consider a set P of commands
such that all commands in P are independent of R. Then, the following proof
rule holds for all predicates p, q and all commands C in P

� � {p}C{q}
�′ � {R(p)}C{R(q)}

if we have η[sim(R)]η′. Moreover, the converse holds if P contains the procedure
call k for every procedure identifier k.

We note two special cases of this proposition, which are related to the rule of
modifies weakening and the simple hypothetical frame rule, respectively. The
first case is when the proposition is instantiated with a relation RY for a set Y
of variables. The relation RY relates two states when the states differ only for
variables in Y :

(s, h)[RY ](s′, h′) def⇐⇒ (h = h′ ∧ ∀x ∈ Variables. x �∈ Y ⇒ s(x) = s′(x)).

Note that the image RY (p) of a predicate p is just p if the set Y is disjoint from
p; and a command C is independent of RY if Y is disjoint from the command
C. For this relation RY , the proposition implies the following: for all contexts �

and �′, if the greatest environments for � and �′ are related by sim(RY ), then
the proof rule

� � {p}C{q}
�′ � {p}C{q}

holds for all predicates p, q and commands C such that Y is disjoint from p, q,
and C. Note that the rule of modifies weakening is a special case of the given
proof rule.

The second case instantiates the proposition with a relation Rr for a predicate
r. The relation Rr relates states (s, h) and (s′, h′) when we can obtain (s′, h′) from
(s, h) by allocating a new heap in r:

(s, h)[Rr ](s′, h′) def⇐⇒ (s = s′ ∧ ∃h1 ∈ Heaps. h1#h ∧ h1 ∗ h = h′ ∧ (s, h1) ∈ r).

For all predicates p, the image Rr (p) of a predicate p is p∗ r. Thus, for relation
Rr , the proposition says the following: let � and �′ be contexts, and P a set
of commands such that all the commands in P are independent of Rr , and all
procedure calls k are in P; then, the proof rule

� � {p}C{q}
�′ � {p ∗ r}C{q ∗ r}
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holds for all predicates p and q and commands C in P if and only if the greatest
environments for � and �′ are related by sim(R). We use this instantiation to
handle the simple hypothetical frame rule.

We prove Proposition 14 using Proposition 12, Lemma 13, and an additional
lemma that says that a command preserves the simulation. Consider a relation
R between states, and contexts � and �′ for procedure identifiers. Let η and η′

be the greatest environments for the contexts � and �′, respectively. We first
simplify the meaning of a proof rule as follows:

∀C ∈ P, p, q.
(
� � {p}C{q} =⇒ �′ � {R(p)}C{R(q)})

⇐⇒ ∀C ∈ P, p, q.
({p}[[C]]η{q} =⇒ {R(p)}[[C]]η′{R(q)}) (∵ Proposition 12)

⇐⇒ ∀C ∈ P. [[C]]η[sim(R)][[C]]η′ (∵ Lemma 13).

When the set P contains k for all procedure identifiers k, this simplified mean-
ing implies that the environments η and η′ are related by sim(R). So, the only-if
direction of Proposition 14 holds. For the other direction, we use a lemma which
says that C maps sim(R)-related environments to sim(R)-related local relations.

LEMMA 15. For all commands C and state relations R, if C is independent
of R, then we have

∀η, η′. η[sim(R)]η′ =⇒ ([[C]]η)[sim(R)]([[C]]η′).

Since all commands in P are independent of R, this lemma says, η[sim(R)]η′ is
enough to ensure [[C]]η[sim(R)][[C]]η′ for all commands C in P. This shows the
if direction of Proposition 14.

PROOF. [Lemma 15] We prove the lemma by induction on the structure of C.
Consider the case that C is a basic command A. Since C is independent of R,
the relation A is related to itself by sim(R).

For the remaining cases, we consider states (s, h) and (s′, h′) such that they
are related by R, and the relation [[C]]η is safe at (s, h). In each case, we show
that

(1) the relation [[C]]η′ is safe at (s′, h′); and

(2) for all states (s′
1, h′

1), if (s′, h′)[[[C]]η′](s′
1, h′

1), then there is a state (s1, h1) such
that

(s, h)[[[C]]η](s1, h1) and (s1, h1)[R](s′
1, h′

1).

Consider the case of C = C1; C2. The safety of [[C1; C2]]η at (s, h) implies that
[[C1]]η is safe at the same state. We show that [[C1; C2]]η′ is safe at (s′, h′) by
contradiction. Suppose that [[C1; C2]]η′ faults when run in (s′, h′). Then, either
[[C1]]η′ is not safe at (s′, h′), or the state (s′, h′) is related to some state (s′

1, h′
1) by

[[C1]]η′ but [[C2]]η′ is not safe at this state (s′
1, h′

1). The first case is impossible: the
induction hypothesis for C1 implies that [[C1]]η′ must be safe at (s′, h′), because
[[C1]]η is safe at (s, h). The second case is not possible, either. The induction hy-
pothesis says that there exists a state (s1, h1) satisfying (s, h)[[[C1]]η](s1, h1) and
(s1, h1)[R](s′

1, h′
1). Then, [[C2]]η is safe at (s1, h1), because [[C1; C2]]η is safe at (s, h)

and [[C1]]η can produce (s1, h1) when run in (s, h) (that is, (s, h)[[[C1]]η](s1, h1)).
Now, the induction hypothesis for C2 implies that [[C2]]η′ must be safe at (s′

1, h′
1).
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For the second requirement for sim(R), consider states (s′
1, h′

1), (s′
2, h′

2) for
which we have

(s′, h′)[[[C1]]η′](s′
1, h′

1) and (s′
1, h′

1)[[[C2]]η′](s′
2, h′

2).

Because of the induction hypothesis for C1, there exists a state (s1, h1) such that
(s, h)[[[C1]]η](s1, h1) and (s1, h1)[R](s′

1, h′
1). Now, the induction hypothesis for C2

says that there exists a state (s2, h2) for which we have (s1, h1)[[[C2]]η](s2, h2)
and (s2, h2)[R](s′

2, h′
2). This state (s2, h2) is the required one for the second re-

quirement for sim(R).
When C is if B then C1 else C2 or a procedure call k, it is straightforward to

show that the two requirements are satisfied. The case of the conditional state-
ment directly follows from the induction hypothesis for C1 and C2, because the
independence of C with R ensures that [[B]]η and [[B]]η′ map R-related states
to the same values. The case of the procedure call follows from η[sim(R)]η′.

For the remaining cases of loop and procedure definition, it suffices to show
that sim(R) is a complete relation.

(1) ⊥[sim(R)]⊥ for the empty local relation ⊥, and

(2) if ci[sim(R)]c′
i for all i ∈ I , we have⋃

i∈I

ci[sim(R)]
⋃
i∈I

c′
i.

The first is straightforward since ⊥ is safe at all states and it does not re-
late any states. For the second, consider two families of commands, {ci}i∈I and
{c′

i}i∈I , such that ci[sim(R)]c′
i. When

⋃
i∈I ci is safe at a state (s, h), all ci are

safe at (s, h). For all states (s′, h′), if (s, h) and (s′, h′) are related by R, all c′
i

are safe at state (s′, h′) because ci[sim(R)]c′
i. Therefore,

⋃
i∈I c′

i is also at (s′, h′).
To complete the proof, we only need to prove the generalized frame property:
for all states (s, h), (s′, h′), and (s′

1, h′
1), if

⋃
i∈I ci is safe at state (s, h), and we

have (s, h)[R](s′, h′) and (s′, h′)[
⋃

i∈I c′
i](s

′
1, h′

1), then there exists a state (s1, h1)
such that (s, h)[

⋃
i∈I ci](s1, h1) and (s1, h1)[R](s′

1, h′
1). Such a state (s1, h1) can be

obtained as follows. Since (s′, h′)[
⋃

i∈I c′
i](s

′
1, h′

1), there is some i in I such that
c′

i produces (s′
1, h′

1) when run in (s′, h′) (that is, (s′, h′)[c′
i](s

′
1, h′

1)). Moreover, the
corresponding ci is safe at (s, h), because

⋃
i∈I ci is safe at (s, h). Now, we use

ci[sim(R)]c′
i and (s, h)[R](s′, h′), and get a state (s1, h1) such that (s, h)[ci](s1, h1)

and (s1, h1)[R](s′
1, h′

1). This state is the required one because (s, h)[ci](s1, h1)
entails (s, h)[

⋃
i∈I ci](s1, h1).

11.4 Soundness of Modifies Weakening

We use a particular simulation relation to prove that

PROPOSITION 16. The rule of modifies weakening is sound.

Suppose that we apply the rule to extend the modifies clauses by a set Y of
variables. To simplify the rule in this case, we instantiate Proposition 14 with
a relation RY : States ↔ States, contexts

“�, {p1}k1{q1}[X 1], . . . , {pn}kn{qn}[X n]”
and “�, {p1}k1{q1}[X 1, Y ], . . . , {pn}kn{qn}[X n, Y ]”,
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and a set PY of commands. The relation RY relates two states when they differ
at most for variables in Y

(s, h)RY (s1, h1)
def⇐⇒ h = h1 ∧ (∀x ∈ Variables. x �∈ Y ⇒ s(x) = s1(x)),

and the set PY consists of commands C such that Y is disjoint from C. The set
PY satisfies the side condition of Proposition 14 for the if direction, because PY

contains only those commands from which Y is disjoint, and all such commands
are independent of RY . Proposition 14 implies that the following weakening
rule holds for all commands C in PY , and all predicates p, q such that Y is
disjoint from p, q

�, {p1}k1{q1}[X 1], . . . , {pn}kn{qn}[X n] � {p}C{q}
�, {p1}k1{q1}[X 1, Y ], . . . , {pn}kn{qn}[X n, Y ] � {p}C{q}

if for each {p}k{q}[X ] in �, we have great(p, q, X )[sim(RY )]great(p, q, X ), and
for all i, we have great(pi, qi, X i)[sim(RY )]great(pi, qi, X i ∪ Y ). Here, we write
{p}C{q} in the conclusion instead of {R(p)}C{R(q)}, because if Y is disjoint
from a predicate p′, the image R(p′) is the same as p′. Also, we ignore pro-
cedure identifiers that do not appear in antecedents of the sequents, because
the greatest environments map such procedure identifiers to the greatest local
relation States × (States ∪ {fault}) in LRel, and this local relation is related to
itself by sim(R) for all R. We show that this sufficient condition is implied by
the side condition of modifies weakening.

LEMMA 17. Let Y be a set of variables. For all predicates p, q and sets X of
variables, if Y is disjoint from all of p, q and X , then for all subsets Y0 of Y ,
we have

great(p, q, X )[sim(RY )]great(p, q, X ∪ Y0).

PROOF. Consider states (s, h) and (s1, h1) such that they are related by RY

and great(p, q, X ) is safe at (s, h). We first show that great(p, q, X ∪Y0) is safe at
(s1, h1). Since great(p, q, X ) is safe at (s, h), heap h has a subheap hp such that
(s, hp) is in p. This subheap hp is also a subheap of h1, because (s, h)[RY ](s1, h1)
implies that h and h1 are the same. Moreover, state (s1, hp) is in p. The reason is
that, because (s, h)[RY ](s1, h1), the stacks s and s1 differ only for some variables
in Y , and Y is disjoint from p. Thus, great(p, q, X ∪ Y0) is safe at (s1, h1).

For the generalized frame property, suppose that great(p, q, X ∪Y0) produces
a state (s′

1, h′
1) when run in (s1, h1). Let s′ be the stack that is the same as s′

1 except
that s′ stores s( y) for each variable y in Y . Then, we have (s′, h′

1)[RY ](s′
1, h′

1).
We will show that (s, h) and (s′, h′

1) are related by great(p, q, X ). The definition
of great(p, q, X ) requires that s and s′ differ only for some variables in X . This
requirement is satisfied because for every variable y ∈ Y , we have s( y) = s′( y)
by definition; and for every variable z �∈ X ∪ Y , we have the following:

s(z) = s1(z) (∵ (s, h)[RY ](s1, h1))
= s′

1(z) (∵ (s1, h1)[great(p, q, X ∪ Y0)](s′
1, h′

1))
= s′(z).

For the other requirement of great(p, q, X ), consider a splitting mp ∗ m = h of
h such that (s, mp) is in p. Since Y is disjoint from p, state (s1, mp) is also in
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p; therefore, (s1, h1)[great(p, q, X ∪ Y0)](s′
1, h′

1) gives a splitting m′
q ∗ m′ = h′

1

of h′
1 such that (s′

1, m′
q) ∈ q and m′ = m. Since Y is disjoint from q, state

(s′, m′
q) is also in q; thus, the splitting m′

q ∗ m′ = h′
1 is the required one for

(s, h)[great(p, q, X )](s′, h′
1).

11.5 Soundness of the Simple Hypothetical Frame Rule

We again use particular simulation relations, this time to prove results about
the simple hypothetical frame rule.

PROPOSITION 18.

(a) The simple hypothetical frame rule is sound for fixed preconditions
p1, . . . , pn if and only if p1, . . . , pn are all precise.

(b) The simple hypothetical frame rule is sound for a fixed invariant r if and
only if r is precise.

Theorem 8 follows from this proposition, and the soundness of modifies weak-
ening. The remainder of the section is devoted to proving the proposition.

Consider a predicate r, and a context “�, {p1}k1{q1}[X 1], . . . , {pn}kn{qn}[X n]”,
such that all the modifies clauses in � are disjoint from r (i.e., for every
{p′}k′{q′}[X ′] in �, the set X ′ is disjoint from r). We will use this predicate and
context for a resource invariant and procedure specifications, respectively. To
prove the proposition we instantiate Proposition 14 with the following relation
Rr : States ↔ States, contexts �1 and �2, and set Pr of commands:

(s, h)[Rr ](s1, h1)
def⇐⇒ (s = s1) ∧ (∃hr . h1 = h ∗ hr ∧ (s, hr ) ∈ r)

�1
def= �, {p1}k1{q1}[X 1], . . . , {pn}kn{qn}[X n]

�2
def= �, {p1 ∗ r}k1{q1 ∗ r}[X 1], . . . , {pn ∗ r}kn{qn ∗ r}[X n]

C ∈ Pr
def⇐⇒ Modifies(C)(�) is disjoint from r

Intuitively, Rr relates states (s, h) and (s1, h1) just when (s1, h1) can be obtained
from (s, h) by adding a new heap in r; so, the image Rr (p) of a predicate p is
just p ∗ r.

The set Pr satisfies the side condition of Proposition 14 for the if direction,
because for each command C in Pr , the set Modifies(C)(�) is disjoint from r,
and such command C is independent of Rr . To see why independence holds,
suppose that the set Modifies(C)(�) of a command C is disjoint from r. Every
Boolean expression depends only on the stack, and Rr -related states have the
same stack, so C trivially satisfies the constraint that its Boolean expression
maps Rr -related states to the same value. Thus, for the independence of C with
Rr , we only need to show that every basic command A in C is related to itself by
sim(Rr ). Note that since Modifies(C)(�) is disjoint from r, each basic command
A in C changes only those variables that are disjoint from r. The following
lemma says that every such local relation is related to itself by sim(Rr ).

LEMMA 19. Let r be a predicate and c a local relation in LRel. If there is a set
X of variables such that modifies(c, X ) holds and X is disjoint from r, we have
c[sim(Rr )]c.
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PROOF. Consider Rr -related states (s, h) and (s1, h1) such that c is safe at
(s, h). By the definition of (s, h)[Rr ](s1, h1), stacks s and s1 are the same and
there exists a subheap hr of h1 such that

hr#h, hr ∗ h = h1, and (s1, hr ) ∈ r.

For generalized safety monotonicity, we need to show that c is also safe at (s1, h1);
the local relation c is safe at that state because c satisfies safety monotonicity
and state (s1, h1) is an extension of (s, h) (that is, (s1, h1) = (s, h ∗ hr )). For
the generalized frame property, consider a state (s′

1, h′
1) that can be produced

by c when c is run in (s1, h1) (that is, (s1, h1)[c](s′
1, h′

1)). We must find a state
(s′, h′) such that (s, h)[c](s′, h′) and (s′, h′)[Rr ](s′

1, h′
1). Note that we have (s, h ∗

hr )[c](s′
1, h′

1) since (s1, h1) and (s, h ∗ hr ) are the same. The frame property of c
for (s, h ∗ hr )[c](s′

1, h′
1), then, gives a heap m′ such that

m′#hr , m′ ∗ hr = h′
1, and (s, h)[c](s′

1, m′).

Moreover, since c only changes variables that are disjoint from r, and (s, hr ) is
in r, the state (s′

1, hr ) is also in r; so, (s′
1, m′)[Rr ](s′

1, h′
1) holds. This state (s′

1, m′)
is the required (s′, h′).

The set Pr also satisfies the side condition for the only-if direction of Propo-
sition 14, because all the modifies clauses in � are disjoint from r. The side
condition requires that Pr should contain the call of every procedure k, and it
can be proved by the case analysis on k as follows. If k appear in �, by the choice
of r and �, the set Modifies(k)(�) should be disjoint from r, which gives k ∈ Pr .
Otherwise, the set Modifies(k)(�) is empty, so it is disjoint from r. This means
that k belongs to Pr , as required.

Thus, using Proposition 14, we have established the following for Rr , �1, �2,
and Pr :

LEMMA 20. The following rule holds for all predicates p, q and all com-
mands C in Pr

�, {p1}k1{q1}[X 1], . . . , {pn}kn{qn}[X n] � {p}C{q}
�, {p1 ∗ r}k1{q1 ∗ r}[X 1], . . . , {pn ∗ r}kn{qn ∗ r}[X n] � {p ∗ r}C{q ∗ r}

if and only if, for all i, we have great(pi, qi, X i)[sim(Rr )]great(pi ∗ r, qi ∗ r, X i)
and for each {p′}k{q′}[X ] in �, we have great(p′, q′, X )[sim(Rr )]great(p′, q′, X ).

We use the lemma to prove Propositions 18. The proof also uses the following
properties, which will be shown below.

—If a set X of variables is disjoint from a predicate r, then for all predicates
p, q, great(p, q, X )[sim(Rr )]great(p, q, X ) (Proposition 21).

—A predicate p is precise if and only if great(p, q, X )[sim(Rr )]
great(p ∗ r, q ∗ r, X ) holds for all predicates q, r and all sets X of variables
(Proposition 23(a)).

—A predicate r is precise if and only if great(p, q, X )[sim(Rr )]
great(p ∗ r, q ∗ r, X ) holds for all predicates p, q and all sets X of variables
(Proposition 23(b)).
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Postponing the proofs of these facts for a moment, we complete the main
proof.

PROOF. [of Proposition 18]
Proposition 21 establishes the “side condition” for each {p}k{q}[X ] in � in

Lemma 20, and the only-if direction of Proposition 23(a) establishes that

great(pi, qi, X i)[sim(Rr )]great(pi ∗ r, qi ∗ r, X i).

Thus, we may apply the first (sufficient) part of Lemma 20 to show the sound-
ness (if direction) part of Proposition 18(a). Similarly, we can use Proposition
23(b) with Lemma 20 to show the if direction of Proposition 18(b).

We still need to show the only-if directions. Suppose that the simple hypo-
thetical frame rule is sound for a fixed invariant r. We will show that for all
predicates p1, q1 and all sets X 1 of variables, great(p1, q1, X 1)[sim(Rr )]great(p1∗
r, q1 ∗ r, X 1) holds; this implies that r is precise by the if direction of Proposi-
tion 23(b). Since the simple hypothetical frame rule is sound for r, the following
holds for all predicates p1, q1, p, q, sets X 1 of variables, and commands C such
that Modifies(C)(∅) is disjoint from r:

{p1}k1{q1}[X 1] � {p}C{q}
{p1 ∗ r}k1{q1 ∗ r}[X 1] � {p ∗ r}C{q ∗ r}

Here we take the empty context for � in the hypothetical rule. Thus, the side
condition for the only-if direction of Proposition 14 holds for Pr . Now, Proposi-
tion 14 gives the required

∀p1, q1, X 1. great(p1, q1, X 1)[sim(Rr )]great(p1 ∗ r, q1 ∗ r, X 1).

This establishes the only-if direction of Proposition 18(b).
The other case for fixed preconditions is proved similarly. Suppose that the

simple hypothetical frame rule is sound for the fixed preconditions p1, . . . , pn.
Then, the following instance of the rule holds for all predicates p, q, r, q1, . . . , qn,
commands C and sets X 1, . . . , X n of variables if Modifies(C)(∅) is disjoint from r:

{p1}k1{q1}[X 1] . . . {pn}kn{qn}[X n] � {p}C{q}
{p1 ∗ r}k1{q1 ∗ r}[X 1] . . . {pn ∗ r}kn{qn ∗ r}[X n] � {p ∗ r}C{q ∗ r}

Since Pr satisfies the side condition of Proposition 14 for the only-if direction,
the proposition says that each precondition pi satisfies

∀q, r, X . great(pi, q, X )[sim(Rr )]great(pi ∗ r, q, X ).

This property of each pi implies that pi is precise by Proposition 23(a). This
establishes the only-if direction of Proposition 18(a).

All that remains is to show the propositions whose proofs we postponed.

PROPOSITION 21. For all predicates p, q and sets X of variables, if X is dis-
joint from r, we have

great(p, q, X )[sim(Rr )]great(p, q, X ).

PROOF. This proposition follows from Lemma 19 because the relation
great(p, q, X ) satisfies modifies(great(p, q, X ), X ).
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We prove the remaining propositions using the following observations: gener-
alized safety monotonicity for great(p, q, X )[sim(Rr )]great(p∗r, q ∗r, X ) always
holds, irrespective of whether p or r is precise, and both great(p, q, X ) and
great(p ∗ r, q ∗ r, X ) modify only those variables in X .

The following lemma will be used in the proof.

LEMMA 22. We have great(p, q, X )[sim(Rr )]great(p∗r, q ∗r, X ) if and only if
for all states (s, h) and (s′

1, h′
1), if

1. great(p, q, X ) is safe at (s, h), and
2. there is a heap hr such that (s, hr ) ∈ r and (s, h∗hr )[great(p∗r, q∗r, X )](s′

1, h′
1),

then heap h′
1 can be split into two heaps h′ and h′

r (i.e., h′
1 = h′ ∗ h′

r ) such that

3. (s′
1, h′

r ) is in r, and
4. whenever h is split into m and mp satisfying (s, mp) ∈ p, heap h′ can also be

split into the heap m and some m′
q satisfying (s′

1, m′
q) ∈ q.

PROOF. We focus on the if direction because the other direction follows
straightforwardly from the definitions of sim(Rr ) and great(p, q, X ). Suppose
that

(a) great(p, q, X ) is safe at a state (s, h), and

(b) the state (s, h) is related to (s1, h1) by Rr .

Then

(c) s and s1 are the same, and h1 has a subheap hr such that h ∗ hr = h1 and
(s, hr ) ∈ r.

For generalized safety monotonicity, it suffices to show that great(p∗ r, q ∗ r, X )
is safe at (s, h ∗ hr ); equivalently, (s, h ∗ hr ) is in p ∗ r ∗ true. This holds because
great(p, q, X ) is safe at (s, h) and so, the state (s, h) is in p ∗ true.

For the generalized frame property, consider a state (s′
1, h′

1) such that

(d) (s1, h1)[great(p ∗ r, q ∗ r, X )](s′
1, h′

1).

We need to find a state (s′, h′) that satisfies

(s, h)[great(p, q, X )](s′, h′) and (s′, h′)[Rr ](s′
1, h′

1).

The condition 1 in the if clause of the lemma holds for (s, h) by the assumption
(a) above. The condition 2 holds for (s, h) and (s′

1, h′
1) by the property (c) and

assumption (d). Thus, the if clause of the lemma gives a splitting h′ ∗ h′
r = h′

1

of h′
1 satisfying the two properties 3 and 4 in the statement of the lemma. We

show that (s′
1, h′) is the required state. Since (s′

1, h′
r ) is in r, state (s′

1, h′) is related
to (s′

1, h′
1) by Rr . For (s, h)[great(p, q, X )](s′

1, h′), the requirement (2) from the
definition of great holds because it is precisely the property 4 of the splitting
h′ ∗ h′

r from the statement of the lemma; and the remaining requirement (1)
from the definition of great holds since s and s′

1 can differ only for variables in
X , because we know (s, h ∗ hr )[great(p ∗ r, q ∗ r, X )](s′

1, h′
1) from (d) and (c).
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PROPOSITION 23.

(a) A predicate p is precise if and only if great(p, q, X )[sim(Rr )]great(p ∗ r, q ∗
r, X ) holds for for all predicates r and q, and sets X of variables.

(b) A predicate r is precise if and only if great(p, q, X )[sim(Rr )]great(p∗r, q∗r, X )
holds for all predicates p, q and sets X of variables.

PROOF. We first prove the only-if directions of (a) and (b) using Lemma 22;
assuming p or r precise, we show that great(p, q, X )[sim(Rr )]great(p∗r, q∗r, X )
holds.

Suppose that properties 1 and 2 from the statement of Lemma 22 hold. We
must find a splitting of h′

1 into h′ and h′
r making properties 3 and 4 hold.

Since great(p, q, X ) is safe at (s, h), state (s, h) is in p∗true. Thus, heap h can
be partitioned into hp, h0 (i.e., h = hp ∗ h0) such that (s, hp) ∈ p. Since (s, h ∗ hr )
is related to (s′

1, h′
1) by great(p ∗ r, q ∗ r, X ), heap h′

1 can be split into the heap
h0 and heaps h′

q , h′
r (i.e., h′

1 = h0 ∗ h′
q ∗ h′

r ) such that state (s′
1, h′

q) is in q and
state (s′

1, h′
r ) is in r. The heaps h′

q ∗ h0 and h′
r form the sought partitioning of h′

1

(taking h′ to be h′
q ∗ h0). Property 3 is immediate. For property 4, we have two

subcases.

(a) Assume p precise. We know that hp ∗ h0 = h is a splitting of h such that
(s, hp) ∈ p is true, thus satisfying the antecedent of 4 (taking m = h0,
mp = hp). Furthermore, since p is precise this can be the only splitting
satisfying the antecedent, so to satisfy property 4 it suffices to show its
consequent for this particular splitting. The consequent asks for a splitting
m ∗ m′

q = h′ for some m′
q where (s′

1, m′
q) ∈ q. Our candidate m′

q is the heap
h′

q which we obtained above, and m has been chosen as h0. We know that
state (s′

1, h′
q) is in q, and we defined h′ to be h0 ∗h′

q , so we obtain the desired
consequent just requested. This establishes property 4, and we finished the
proof of the only if part of (a).

(b) Assume r precise. Consider a splitting mp ∗m = h of h such that (s, mp) ∈ p.
For property 4 we need to split h′

q ∗ h0 into the heap m and some m′
q that

satisfies (s′
1, m′

q) ∈ q. Note that mp ∗ hr and m form a splitting of h ∗ hr ,
and that (s, mp ∗ hr ) is in p ∗ r. Therefore, we can use (s, h ∗ hr )[great(p ∗
r, q ∗ r, X )](s′

1, h′
1) to split h′

1 into the heap m and two heaps m′
q , m′

r (i.e.,
h′

1 = m′
q ∗ m′

r ∗ m) such that (s′
1, m′

q) is in q and (s′
1, m′

r ) is in r. Since r is
precise, and h′

r and m′
r are both subheaps of h′

1, and we know that (s′
1, h′

1) ∈ r,
it follows that m′

r must be equal to h′
r ; this and the identities h′

1 = m′
q∗m′

r ∗m
and h′

1 = h0 ∗ h′
q ∗ h′

r then imply that m′
q ∗ m = h′

q ∗ h0. These heaps m′
q and

m thus give us the splitting of h′
q ∗ h0 that we were after. This completes

the proof of the only if part of (b).

We show the if part of (a) by contradiction. Suppose that p is not precise.
Then, there are states (s, h1) and (s, h2) in p whose heaps are different but
consistent: for all l in dom(h1) ∩ dom(h2), the r-values h1(l ) and h2(l ) are the
same. Let s, h1, h2 be such stack and heaps such that the cardinality of dom(h1∪
h2) is the least. Let h be h1 ∩ h2, and let h′

i be hi − h for i = 1, 2. Let q be the
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predicate {(s, [])}, and let r be the predicate defined by

r = {(s, h′
1 ∗ h ∗ h′

2), (s, [])} ∪ {(s, m) | ∃m0. m ∗ m0 = h′
1 ∗ h ∗ h′

2 ∧ (s, m) ∈ p}.
We show that

(1) (s, h′
1 ∗ h ∗ h′

2) [great(p ∗ r, q ∗ r, X )] (s, h′
1 ∗ h ∗ h′

2) holds; but

(2) heap h′
1 ∗ h ∗ h′

2 can not be partitioned into two heaps m′ and m′
r such that

(s, m′
r ) is in r and (s, h′

1 ∗ h ∗ h′
2)[great(p, q, X )](s, m′) holds.

Then, since (s, []) is in r and great(p, q, X ) is safe at (s, h′
1 ∗ h ∗ h′

2), these two
facts contradict the assumption that great(p, q, X )[sim(Rr )]great(p∗r, q ∗r, X ).
For the first fact, consider a splitting of h′

1 ∗ h ∗ h′
2 into heaps mp, mr , m such

that state (s, mp) is in p and state (s, mr ) is in r.

—When mr is the empty heap [], we split h′
1 ∗ h ∗ h′

2 to the empty heap [],
the heap mp and the heap m. This ([] ∗ mp) ∗ m is the required splitting for
(s, h′

1 ∗ h∗ h′
2)[great(p∗ r, q ∗ r, X )](s, h′

1 ∗ h∗ h′
2). It is because (s, []) is in q and

(s, mp) is in r by the definition of r.

—When mr is h′
1 ∗ h ∗ h′

2, both mp and m are empty. The required partitioning
of h′

1 ∗ h ∗ h′
2 is ([] ∗ (h′

1 ∗ h ∗ h′
2)) ∗ [], because (s, []) is in q and (s, h′

1 ∗ h ∗ h′
2) is

in r.

—When mr is a subheap of h′
1 ∗ h ∗ h′

2 satisfying p (that is, (s, mr ) ∈ p), either
heap mp is (h′

1 ∗ h ∗ h′
2) − mr , or both mp and mr are empty. The reason is

that if mp is a strict subheap of (h′
1 ∗ h ∗ h′

2) − mr , then the cardinality of
mp ∪ mr is strictly smaller than that of h1 ∪ h2; because both (s, mp) and
(s, mr ) are in p, the heaps mp and mr must be equal, which, under mr#mp,
implies mp = mr = []. When mp is (h′

1 ∗ h ∗ h′
2) − mr , the required splitting

of h′
1 ∗ h ∗ h′

2 is ([] ∗ (h′
1 ∗ h ∗ h′

2)) ∗ [], because (s, []) is in q and (s, h′
1 ∗ h ∗ h′

2)
is in r. In the other case, where both mp and mr are empty, the splitting
([] ∗ []) ∗ (h′

1 ∗ h ∗ h′
2) of h′

1 ∗ h ∗ h′
2 becomes the required one, because (s, []) ∈ q

and (s, []) ∈ r.

For the second fact, note that great(p, q, X ) can not relate (s, h′
1 ∗ h ∗ h′

2) to any
states, because two different substates (s, h1) and (s, h2) of (s, h′

1 ∗ h ∗ h′
2) are in

p, but q is the singleton set. This completes the proof of the if part of (a).
We prove the if direction of (b) by contradiction. Suppose that r is not pre-

cise. Then, r has states (s, h1) and (s, h2) such that h1 and h2 are different but
consistent: for all l in dom(h1) ∩ dom(h2), we have h1(l ) = h2(l ). We pick such
s, h1, h2 in such a way that the cardinality of dom(h1 ∪ h2) is the least. Let h
be the restriction of h1 to dom(h1) ∩ dom(h2), and let h′

1 and h′
2 be h1 − h and

h2 − h, respectively. Since h1 is different from h2, at least one of h′
1 and h′

2 must
be nonempty. Without loss of generality, we assume that h′

1 is not empty. Define
predicate p to be the set {(s, h′

1), (s, [])}, and predicate q the set {(s, h′
2), (s, [])}.

We claim that great(p, q, X )[sim(Rr )]great(p∗r, q ∗r, X ) does not hold. To prove
this claim, we show that

(1) (s, h′
1 ∗ h ∗ h′

2) [great(p ∗ r, q ∗ r, X )] (s, h′
1 ∗ h ∗ h′

2) holds; but

(2) there are no splittings of h′
1 ∗ h ∗ h′

2 into heaps m, mr such that (s, mr ) is in
r and (s, h′

1)[great(p, q, X )](s, m) holds.
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Note that the claim follows from these two, because (s, h ∗ h′
2) is in r and

great(p, q, X ) is safe at (s, h′
1). That is, if we establish 1 and 2, we will have

contradicted the generalized frame property.
For 1, from the definition of great it suffices to show that

3. for every partitioning of h′
1 ∗ h∗ h′

2 into three parts mp, mr , and m, if (s, mp)
is in p and (s, mr ) is in r, heap h′

1 ∗ h ∗ h′
2 can be split into the heap m and

some heaps m′
q and m′

r such that (s, m′
q) is in q and (s, m′

r ) is in r.

Let mp ∗mr ∗m be a partitioning of h′
1 ∗h∗h′

2 such that (s, mp) is in p and (s, mr )
is in r. Because of the definition of p, heap mp is either h′

1 or []. We consider
these two cases separately:

—When mp is h′
1, heap mr must be equal to h ∗ h′

2 because r can not contain
a state whose stack is s and whose heap is a strictly smaller subheap of h′

2:
since h′

1 is not empty, if r did have such a state, the s, h1, h2 could not be the
least in terms of the cardinality of dom(h1 ∪ h2). So, m is the empty heap [].
We split h′

1 ∗ h ∗ h′
2 three ways, into h′

2, h′
1 ∗ h, and the empty heap []. Since

h′
1 ∗ h is h1, state (s, h′

1 ∗ h) is in r so that (s, h′
2 ∗ (h′

1 ∗ h)) is in q ∗ r. Therefore,
the splitting (h′

2 ∗ h′
1 ∗ h) ∗ [] = h′

1 ∗ h ∗ h′
2 is the required one for property 3

above.

—When mp is the empty heap, we partition h′
1 ∗ h ∗ h′

2 to [], mr and m. The
splitting ([] ∗ mr ) ∗ m of h′

1 ∗ h ∗ h′
2 is the required one for property 3 because

(s, []) is in q and (s, mr ) is in r.

For 2 suppose, toward contradiction, that there is a splitting m∗mr = h′
1∗h∗h′

2

of h′
1 ∗ h ∗ h′

2 making both (s, mr ) ∈ r and (s, h′
1)[great(p, q, X )](s, m) true. Since

(s, []) is in p and (s, h′
1)[great(p, q, X )](s, m) holds, heap h′

1 must be a subheap
of m. Moreover, since (s, h′

1) is in p and (s, h′
1)[great(p, q, X )](s, m) holds, state

(s, m) must be in q. Therefore, q must have a state whose heap has h′
1 as a

subheap. But, q does not have such a state: h′
1 is not a subheap of [] or h′

2. Thus,
we have the required contradiction.

12. SUPPORTED AND INTUITIONISTIC PREDICATES

We consider two further special classes of predicates, which can be used to
furnish further sufficient conditions for the soundness of the hypothetical frame
rule. A supported predicate is one where, for any given heap, if the collection
of subheaps satisfying the predicate is not empty, it has a least element. An
intuitionistic predicate is one whose truth is invariant under heap enlargement.
These kinds of predicate are of interest in situations, such as in a garbage
collected language, where one would like to write loose specifications which
state that a certain data structure is present in memory, without worrying
about whether there are additional cells.

Definition 24. [Supported and Intuitionistic Predicates]
A predicate p is supported if and only if for all states (s, h), when h has a subheap
h′ satisfying (s, h′) ∈ p, there is a least subheap hp of h with (s, hp) ∈ p: for
all subheaps h′ of h, if (s, h′) satisfies p, we have hp ≤ h′. A predicate p is
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intuitionistic if and only if for every state (s, h), if (s, h) ∈ p and h ≤ h′ then also
(s, h′) ∈ p.

Supported predicates do not ensure unique heap splittings in the way that
precise ones do. However, if p is supported and q intuitionistic then we can
choose a canonical splitting: make the heap for p be the least possible one, and
enlarge the heap for q as much as necessary.

The reader will have noticed intuitive similarity between the concepts of
precise and supported predicates. For each precise predicate p, the predicate
p ∗ true is intuitionistic and supported. In fact, there is a converse map from
intuitionistic supported predicates to precise predicates.

LEMMA 25. If a predicate p is precise, the predicate p ∗ true is intuitionistic
and supported, and if a predicate q is intuitionistic and supported, the predicate
q ∧ ¬(q ∗ ¬emp) is precise. Moreover, we have

((p ∗ true) ∧ ¬((p ∗ true) ∗ ¬emp)) = p

for all precise predicates p, and

(q ∧ ¬(q ∗ ¬emp)) ∗ true = q

for all intuitionistic supported predicates q.

PROOF. For each predicate p, we have the following equivalences:

(s, h) ∈ p ∗ true ⇐⇒ ∃h′ ≤ h. (s, h′) ∈ p
(s, h) ∈ (p ∧ ¬(p ∗ ¬emp)) ⇐⇒ (s, h) ∈ p and ∀h′ < h. (s, h′) �∈ p

With these equivalences, it is straightforward to show that if p is precise, the
predicate p ∗ true is intuitionistic and supported. Next, we will show that for
every intuitionistic supported predicate p, the predicate p ∧ ¬(p ∗ ¬emp) is
precise. Consider a state (s, h) such that h has a subheap h′ such that (s, h′) ∈
p ∧ ¬(p ∗ ¬emp). Because of the above equivalence for p ∧ ¬(p ∗ ¬emp), state
(s, h′) is in p, but for all strict subheaps h′′ of h′, we have (s, h′′) �∈ p. Since p is
supported, h′ is the unique subheap of h such that (s, h′) ∈ p and h′ is the least
such. This shows that p ∧ ¬(p ∗ ¬emp) is precise.

It remains to show that

—if p is intuitionistic and supported, we have (p∧¬(p∗¬emp)) ∗ true = p; and

—if p is precise, we have ((p ∗ true) ∧ ¬((p ∗ true) ∗ ¬emp)) = p.

We show the first implication as follows:

(s, h) ∈ ((p ∧ ¬(p ∗ ¬emp)) ∗ true)

⇐⇒ ∃h′ ≤ h. (s, h′) ∈ (p ∧ ¬(p ∗ ¬emp))

⇐⇒ ∃h′ ≤ h. ((s, h′) ∈ p and (∀h′′ < h′. (s, h′′) �∈ p))

⇐⇒ (s, h) ∈ p (∵ p is intuitionistic and supported).
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The second implication holds because of the following:

(s, h) ∈ (p ∗ true ∧ ¬((p ∗ true) ∗ ¬emp))

⇐⇒ ((s, h) ∈ p ∗ true and ∀h′ < h. (s, h′) �∈ p ∗ true)

⇐⇒ (s, h) ∈ p (∵ p is precise).

THEOREM 26. The hypothetical frame rule is sound in the following cases:

(a) the preconditions p1, . . . , pn are supported, and the postconditions q1, . . . , qn

are intuitionistic; or
(b) the resource invariant r is supported, and the postconditions q1, . . . , qn are

intuitionistic.

Notice that the first point does not contradict the only if part of Theorem 8(a),
because it mentions postconditions in addition to preconditions. Likewise, the
second point does not contradict Theorem 8(b), because it mentions postcondi-
tions as well as the resource invariant.

The proof of this theorem makes use of the decomposition into modifies weak-
ening and the simple hypothetical frame rule, and goes as in Section 11.5, with
the following key proposition (in place of Proposition 23).

PROPOSITION 27.

(a) If a predicate p is supported and a predicate q is intuitionistic, then

great(p, q, X )[sim(Rr )]great(p ∗ r, q ∗ r, X )

holds for all predicates r and sets X of variables.
(b) If a predicate r is supported and a predicate q is intuitionistic, then

great(p, q, X )[sim(Rr )]great(p ∗ r, q ∗ r, X )

holds for for all predicates p and sets X of variables.

PROOF. We prove (a) using Lemma 22. Consider states (s, h), (s′
1, h′

1) and a
heap hr such that great(p, q, X ) is safe at (s, h), state (s, hr ) is in r, and (s, h∗hr )
and (s′

1, h′
1) are related by great(p ∗ r, q ∗ r, X ). Since great(p, q, X ) is safe at

(s, h) and p is supported, heap h can be split into hp and h0 such that hp is the
least subheap of h that makes (s, hp) ∈ p hold. Since (s, h ∗ hr )[great(p ∗ r, q ∗
r, X )](s′

1, h′
1) and (hp ∗ hr ) ∗ h0 = h ∗ hr , we can partition h′

1 into the heap h0

and some heaps h′
q and h′

r such that (s′, h′
q) ∈ q and (s′, h′

r ) ∈ r. We claim that
h′

q ∗ h0 and h′
r form the required partitioning of h′

1 by Lemma 22. Since (s′, h′
r )

is in r, it suffices to show that for all splittings mp ∗ m = h of h, if the state
(s, mp) is in p, heap (h′

q ∗h0) can be split into the heap m and some heap m′
q (i.e.,

m ∗ m′
q = h′

q ∗ h0) such that (s′, m′
q) is in q. Consider a splitting mp ∗ m = h of h

such that the state (s, mp) is in p. Heap mp must have hp as a subheap, because
hp is the least heap such that (s, hp) ∈ p. So, m must be a subheap of h0. We
split the heap h′

q ∗ h0 into h′
q ∗ (h0 − m) and m. The state (s′, h′

q ∗ (h0 − m)) is in
q because q is intuitionistic and (s′, h′

q) is already in q. Thus, this partitioning
(h′

q ∗ (h0 − m)) ∗ m is the required one, and we have finished the proof of (a).
We also prove (b) using Lemma 22. Consider states (s, h), (s′

1, h′
1) and a heap

hr such that great(p, q, X ) is safe at (s, h), state (s, hr ) is in r, and (s, h ∗ hr ) and

ACM Transactions on Programming Languages and Systems, Vol. 31, No. 3, Article 11, Pub. date: April 2009.



Separation and Information Hiding • 11:45

(s′
1, h′

1) are related by great(p ∗ r, q ∗ r, X ). Since great(p, q, X ) is safe at (s, h),
heap h can be split into hp, h0 (i.e., h0 ∗ hp = h) such that (s, hp) ∈ p. Since
(s, h ∗ hr )[great(p ∗ r, q ∗ r, X )](s′

1, h′
1) and hp ∗ hr ∗ h0 = h ∗ hr , we can partition

the heap h′
1 into the heap h0 and some heaps h′

q , h′
r (i.e., h′

q ∗ h′
r ∗ h′

0 = h′
1) such

that (s′, h′
q) is in q and (s′, h′

r ) is in r. In particular, we can partition h′
1 in such a

way that h′
r is the least subheap of h′

1 such that (s′, h′
r ) ∈ r, because the invariant

r is supported and the postcondition q is intuitionistic. The splitting (h′
q ∗h0)∗h′

r
of h′

1 is the required one by Lemma 22. To see the reason, suppose that h is split
into mp and m such that (s, mp) ∈ p. Since (s, h∗hr )[great(p∗r, q ∗r, X )](s′

1, h′
1),

we can split h′
1 into the heap m and some heaps m′

q , m′
r such that (s′, m′

q) is in q
and (s′, m′

r ) is in r. Heap m′
r has h′

r as a subheap because h′
r is the least subheap

of h′
1 satisfying (s′, h′

r ) ∈ r. Now, we can partition heap (h′
q ∗h0) into m′

q ∗(m′
r −h′

r )
and m, where m′

r −h′
r is the restriction of m′

r to those cells in dom(m′
r )−dom(h′

r ).
Since q is intuitionistic and (s′, m′

q) is in q, state (s′, m′
q ∗ (m′

r − h′
r )) is also in q.

This gives the conclusion.

13. CONCLUSION

This article has two main contributions. First, we described a new inference
rule, the hypothetical frame rule, which gives a powerful way of hiding resources
when reasoning about heap-manipulating programs. Second, we provided a
theoretical analysis of when the new rule is sound.

The theoretical work was nontrivial, and to ease it we focused attention on
a simplified programming language with parameterless procedures only. The
extension to first-order procedures is probably not difficult: we could follow the
ideas of Hoare [1971] and Cook [1978] in the treatment of procedures in Hoare
logic, which utilizes certain anti-aliasing conditions. The extension to higher-
order procedures is another matter. Proof rules for higher-order procedures are
generally difficult, quite apart from issues of information hiding.

Perhaps the most significant previous work that addresses information hid-
ing in program logics, and that confronts mutable data structures, is that of
Leino and Nelson [2002]. They use auxiliary variables (like our use of the vari-
able Q in Table IV) to specify modules, and they develop a subtle notion of
“modular soundness” that identifies situations when clients cannot access the
internal representation of a module. This much is similar in spirit to what
we are attempting, but on the technical level we are not sure if there is any
relationship between the separating conjunction and their notion of modular
soundness.

The information-hiding problems caused by pointers have been a concern
for a number of years in the object-oriented types community, beginning with
Hogg’s colorful declaration “that objects provide encapsulation is the big lie
of object-oriented programming” [Hogg 1991]. A focal point of that work has
been a concept of “confinement,” which disallows or controls pointers into data
representations. Some confinement systems use techniques similar to regions,
with control over the number and direction of pointers across region boundaries
[Clarke et al. 2001; Grothoff et al. 2001].

In this paper an emphasis was placed on ownership transfer, which allows the
dynamic reconfiguration of resource partitions between program components.
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This phenomenon is not uncommon in systems and object-oriented programs;
good examples are given by malloc() and free(), and by thread pool managers
used in (e.g.) web servers. The type systems for confinement have difficulty
dealing with such idioms.

At the time of publication of the preliminary version of this article in the
POPL’04 proceedings, there was relatively little related work on program logic
and information hiding (and abstraction) in the presence of the heap. In addition
to Leino and Nelson [2002] we mention also [Müller and Poetzsch-Heffter 2000].
But since then there have been many further developments. We briefly mention
some of them to conclude the paper.

Birkedal et al. [2005] have described an extension of the work here to call-by-
name higher-order procedures, for a language that mixes procedures and state
in the manner of idealized Algol. They have described higher-order frame rules,
where the hypothetical rule here is second-order. The higher-order frame rules
are formulated for call-by-name procedures, which combine state and functions
in the way that Idealized Algol and Haskell do, rather than the way that ML
does.

Incidentally, the work in Birkedal et al. [2005] uses a form of semantics
that validates the hypothetical frame rule without a restriction on precision,
while denying the conjunction rule. This represents a different reaction to the
conundrum of Section 6 than the one taken in this article, and the consistency of
which further underlines the subtleties surrounding the rules. The semantics
is a kind of possible-worlds model, where the worlds are resource invariants.

It is difficult to justify the invalidity of the conjunction law of conceptual
grounds. The law is simply true in standard relational models with a stan-
dard interpretation of pre/post specifications; it can only be broken by adopt-
ing unusual interpretations of commands or triples (and then those must be
defended, intuitively). We acknowledge, though, that the conjunction-denying
models have proven to be very useful in situations where the existence of a
model is difficult to come by; see Birkedal and Yang [2007], Nanevski et al.
[2006], Benton [2006], and Peterson et al. [2008] for further applications of
that semantics.

An approach to reasoning about objects using separation logic has been de-
veloped in [Parkinson and Bierman 2005; Parkinson 2005]. Instead of hiding
resource invariants, as here, there the approach is to let the client use ab-
stract predicates (i.e., predicate variables) when reasoning about the use of an
object, without knowing the definition of the predicate. In a sense, this trans-
ports the fundamental ideas on polymorphism and data abstraction [Reynolds
1983; Mitchell and Plotkin 1988] from types for functional languages to logic
for imperative programs.

Parkinson suggests that the hypothetical frame rule and abstract predicates
are complementary: the former addresses information hiding, and the latter
addresses abstraction. For some programs (e.g., with malloc/free) the specifica-
tions using the hypothetical frame rule are more succinct than with abstract
predicates alone. On the other hand, the abstract predicates are very powerful.
They support multi-instance classes easily, examples where the class invariant
is not the natural concept to use in a specification, and cases where we want
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to distinguish different internal states of objects without telling the entire in-
variant. Many examples [Parkinson and Bierman 2005; Parkinson 2005, 2007]
confirm the power and naturality of abstract predicates. See also the examples
and theory developed in Biering et al. [2007] and Krishnaswami et al. [2007].

A significant recent line of work on reasoning about objects, the Boogie
methodology, takes some inspiration from type systems for objects, particularly
ownership typing schemes, but uses assertions rather than types to describe an
ownership hierarchy [Barnett et al. 2004]. As a consequence it is considerably
more flexible than the typing systems; for example, it deals with ownership
transfer by, like here, allowing for dynamically changing partitions [Banerjee
and Naumann 2005]. While more flexible than the type systems, it is not al-
ways the case that a data abstraction fits naturally into a hierarchy. An example
is a queue, where neither the left nor the right end of the queue conceptually
dominates the other in a hierarchy. As a result, a number of extensions or alter-
ations of Boogie have been developed which aim to deal with the inflexibility of
the hierarchy structures (e.g., [Naumann and Barnett 2004a, 2004b; Leino and
Müller 2004]). We refer to the survey article [Naumann 2007] for further infor-
mation and references concerning work on Boogie and other work on specifying
object-oriented programs.

A distinguishing feature of the work on Boogie is that they deal with the
possibility of reentrant (recursive) modules where an invariant is temporarily
broken. Here, if we combine the hypothetical frame rule with the standard rule
for recursive procedures, we obtain a proof rule for modules where the resource
invariant must be true before each call of a module procedure. It has been
claimed that there are natural programming patterns where one wants the
invariants to be broken, and ingenious solutions have been devised in the work
on Boogie, where auxiliary variables are used to tell a client when an invariant
need and need not hold, without telling the client what the invariant is. This
issue is too subtle for a full discussion here, and we refer to the survey paper of
Naumann referenced above for a detailed account. We also refer to Parkinson
[2007] for an interesting turnabout, where it is (convincingly) argued that the
problem lies with the class invariant concept itself, that technical complexities
to do with invariants and reentrance are a symptom of a mistaken assumption
(that we should start with class invariants), rather than a fundamental problem
to be solved.

We emphasize that the hypothetical frame rule does not take any stance
on this “object invariants” problem. It could conceivably be used in concert
with Parkinson’s solution, and there is nothing in the rule which says that an
invariant has to refer to a single object.

Finally, we have stayed in a sequential setup in this paper, but the ideas
are relevant to concurrent programming. Indeed, the paper arose originally
as a result of a problem in concurrency. In unpublished notes from August
2001, O’Hearn described proof rules for concurrency using ∗ to express heap
separation, and showed program proofs where storage moved from one process
to another. The proof rules were not published, because O’Hearn was unable
to establish their soundness. Then, in August 2002, Reynolds showed that the
rules were unsound if used without restriction, and this lead to our focus on
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precise assertions. Both the promise and subtlety of the proof rules had as much
to do with information hiding as concurrency, and it seemed unwise to attempt
to tackle both at the same time. At the time of Reynolds’s discovery we had
already begun work on the hypothetical frame rule, and the counterexample
appears here as the conundrum in Section 6.

The work reported in this article provided the first resolution of Reynolds’s
conundrum, with the semantic analysis revolving around the concept of precise
predicate. Precision was then subsequently used as part of the resolution of the
original issues in the concurrent setting [Brookes 2007], which finally allowed
the publication of the proof rules that had been circulated in 2001 [O’Hearn
2007].
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