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ABSTRACT
We present a proof of safety and linearizability of a highly-
concurrent optimistic set algorithm. The key step in our proof
is the Hindsight Lemma, which allows a thread to infer the ex-
istence of a global state in which its operation can be linearized
based on limited local atomic observations about the shared state.
The Hindsight Lemma allows us to avoid one of the most complex
and non-intuitive steps in reasoning about highly concurrent algo-
rithms: considering the linearization point of an operation to be in
a different thread than the one executing it.

The Hindsight Lemma assumes that the algorithm maintains cer-
tain simple invariants which are resilient to interference, and which
can themselves be verified using purely thread-local proofs. As a
consequence, the lemma allows us to unlock a perhaps-surprising
intuition: a high degree of interference makes non-trivial highly-
concurrent algorithms in some cases much easier to verify than less
concurrent ones.
Categories and Subject Descriptors: D.1.3 [Programming Tech-
niques]: Concurrent Programming; F.3.1[Logics and Meanings of
Programs]: Specifying and Verifying and Reasoning about Pro-
grams
General Terms: Algorithms, Design, Theory, Verification
Keywords: Optimistic concurrency, Linearizability, Wait-
Freedom, Hindsight

1. INTRODUCTION
Highly concurrent algorithms are often considered to be amongst

the most difficult to design and understand. The fantastic number
of possibilities brought about by the high degree of interference
translates into complexity for the programmer.

The purpose of this article is to argue that, seemingly paradoxi-
cally, such algorithms can be relatively easy to prove. We proceed
by example. We give a proof of an optimistic list-based set algo-
rithm based on Heller et. al. [8]. Our proof method in fact covers a
number of algorithms, and can even justify potential improvements
to them, but we concentrate on this particular algorithm in this pa-
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per, for concreteness. The concurrent set is near the leading edge
of concurrent programming, and raises stern challenges for proof.

Our basic suggestion is that, contrary to popular belief, inter-
ference can be a blessing rather than a curse in formal proof. An
optimistic algorithm can be easy to prove because its informal cor-
rectness argument does not rely on showing the effects of all subtle
interactions between operations in different threads. By design, to
be impervious to interference, every thread uses and maintains sim-
ple local invariants on the shared state, that hold continuously. The
reason for such invariants is that, for efficiency reasons, threads do
not access large parts of memory atomically.

Traditionally, reasoning about sequential data abstractions is
done using abstraction functions [11]. For example, for a linked
list representation of sets, the function takes a list to the set of
its data values, forgetting link and order information. One then
proves that the list-based implementation of each operation (e.g.,
add, remove, and contains) simulates the corresponding op-
eration on sets. Our proof follows this standard approach, with a
twist.

In the detailed proof steps about code, we do not carry around the
abstraction function or a copy of the set represented in global mem-
ory. Rather, we verify a collection of thread-local invariants which
are sufficient to prove that local observations in threads imply de-
sired properties of the abstraction function: it is as if we decompose
the abstraction function. The invariants themselves can be checked
using purely thread-local proof methods, that do not use auxiliary
state that mentions program points or other information about the
states of other threads. Thus, our proposal is that the main source of
proof blowup in concurrent programs, the state explosion resulting
from simultaneous tracking of properties (e.g., control) in several
threads, can be avoided for some highly concurrent algorithms.

Our proof strategy consists of several steps. First, we identify a
collection of “integrity” properties concerning the algorithm’s data
structures and transitions and prove that these properties are in-
variants of the algorithm. An example data-structure “integrity”
invariant is that there is a strictly-sorted linked list from the head
to the tail. An example transition “integrity” invariant is that once
a node is marked to be deleted its next pointer is never changed.
Second, we show that a subset of these integrity properties implies
the Hindsight Lemma, a lemma which allows us to conclude that
a pointer link encountered in a list traversal was reachable from
the head node sometime in the past. Hindsight then allows us to
prove the Local Window Lemma, which shows information about
a range of data values in the abstract set being represented in mem-
ory; this range or window “slides” as the data structure is traversed.
Third, we show that each concrete operation simulates its abstract
counterpart, but in one crucial case (the contains operation) this



involves reasoning about the abstraction function applied to a past
state (using the Hindsight Lemma). The second step shows that
contains is wait-free, i.e., that every invocation of contains is
guaranteed to terminate regardless of interference by other threads.
The third step shows linearizability [10] of the set algorithm.

The linearizability of the wait-free contains is the most re-
markable, even surprising, part of the set algorithm. It searches a
data structure without using any synchronization whatsoever, dur-
ing which time many other threads might be interfering with the
data structure. The Hindsight Lemma gives a direct explanation of
the reason why this wait-free search works, in terms of a path built
from links existing at different moments in time.

Previous proof efforts for concurrent data abstractions typically
carry the global abstraction function or the “linearized value”
throughout a proof. (See §9.) This works well up to a point, but
becomes strained in some advanced algorithms. Particular diffi-
culties arise when a linearization point, the point in time where an
operation appears to “take effect”, may happen in a different thread
than the one which executes the operation itself. The contains
operation of the optimistic list is just such an example. One way to
deal with such cases has been to track a set of pending calls to an
operation [4, 10, 21].

While correct in a theoretical sense, we felt that this proof
method led to proofs that were removed from the reasons as to why
the optimistic algorithms work, and much less direct than our use of
the Hindsight Lemma. Is it really necessary to keep track of pend-
ing calls? Because optimistic algorithms behave in such a strongly
local way, making tiny atomic observations on the store, it seems
unfortunate to have to track global information concerning calls in
other threads. Stated more technically, this proof technique leads
to proofs that are not thread local.

The proofs of the integrity properties can be done in standard
sequential Hoare logic (or sequential separation logic [12, 20], to
deal simply with the pointer arguments). While the overall proofs
for concurrency can be seen as special cases of Owicki-Gries [19]
or rely-guarantee [13] logics, there is no need (in this case) to call
in dedicated logics of concurrency. (See §8–§10.)

Our reaction has been to strive for a proof that matches the lo-
cality inherent in the algorithm as closely as possible. In hindsight,
one way to view this work is as technology transfer, from algo-
rithms to proofs. We have studied a specific proof technique, moti-
vated by the special insights in the design of a class of algorithms,
in the hope of finding simpler proofs. Of course, the reader will
have to be the judge as to whether we have succeeded at all in this.
Proof outline. Our proof is a mixture of formal (machine-
checkable) parts done in separation logic, and parts (in Sections
4-6) done in the ordinary informal (but rigorous) language of math-
ematics. We do not show the formal proofs, but describe the prop-
erties they establish, for use in our later mathematical work. (The
conversion of the mathematical parts to machine-checkable or even
generated proofs by tools is a topic for future work.)

The paper is organized according to the above outline. In the next
two sections we describe the challenge example and the invariants
that underpin our proof. The presentation of the invariants will be
done using English rather than mathematical logic. In a separate
technical report we have established that the invariant properties do
indeed hold [18], using formal proofs in separation logic, but we
avoid such details here. Our intention is to convey the intuitions
about the algorithm’s behaviour in relatively precise way, without
descending into too many details. §4 then describes a mathematical
model, which is used to give a statement of the Hindsight Lemma.
At this point our reasoning detaches from the particular set algo-
rithm. In §5 we show that the Hindsight Lemma holds, for any

execution traces satisfying the invariants from §3, even ones that
do not come from the set algorithm. §6 and §7 bring everything
together by proving wait-freedom of contains and the lineariz-
ability of the set operations, respectively.

2. VERIFICATION CHALLENGE
We describe our approach using the optimistic set algorithm

shown in Fig. 1. The algorithm is based on the optimistic set algo-
rithm of Heller et al. [8], rewritten to use atomic sections instead of
locks. Note that this is a highly-concurrent algorithm: every atomic
section accesses a small bounded number of memory locations. To
simplify presentation, our variant is optimistic [14], but not lazy [8].
Thus, it preserves the main difficulty of the proof which concerns
us, i.e., proving that every invocation of contains is linearizable.
We note that in [18], we also use our approach to prove linearizabil-
ity of a set with a lazy remove procedure.
Set representation. The optimistic set algorithm uses an underlying
sorted linked-list of dynamically-allocated objects of type E, shown
in Fig. 1, which we refer to as nodes. Every node has three fields:
an integer field k storing the key of the node, a field n pointing to
a successor node, and a boolean field m indicating, as we shortly
explain, that the node was deleted from the list. When the m-field
of a node is set, we say that the node is marked, otherwise, we say
that the node is unmarked. Given a memory state σ, we denote the
set of allocated nodes in σ by Nσ , and use u.kσ , u.nσ , and u.mσ

to denote respectively the values of the k-field, n-field, and m-field
of a node u ∈ Nσ . When clear from context, we omit the subscript.

The list has designated sentinel head and tail nodes. The head
node is always pointed to by the shared variable H and contains
the value −∞. The tail node is always pointed to by the shared
variable T, and contains the value ∞. The value −∞ resp. ∞ is
smaller resp. greater than any possible value of a key.

For example, in the state depicted in Fig. 3, the set contains the
keys 3, 7, and 15, stored in the unmarked nodes between the head
node and the tail node. The state also contains removed marked
nodes with the values 1, 5, 7, and 10. (The values 5 and 7 appear
in several nodes.)
Set procedures. The set defines three procedures: add, remove,
and contains. All three procedures use the internal locate
procedure to traverse the list. The traversal is optimistic [14]: it
is done without any form of synchronization. As a result, while
a thread is traversing the list, other threads might concurrently
change the list’s structure. The locate procedure returns a pair
of pointers to nodes. The node pointed to by the local variable c is
the successor of the node pointed to by the local variable p at the
time when the n-field of the node pointed to by p is read.1 We refer
to the nodes returned by locate as the previous node (pointed to
by p) and the current node (pointed to by c).
remove and add operations may potentially modify the heap

inside their atomic sections. (The atomic section of remove in
shown in lines 65–78 and that of add in lines 85–98.) Both of the
atomic sections begin with the evaluation of the validation condi-
tion if (p.n==c && !p.m). The validation condition checks
for interference at the fraction of the shared state containing the
previous and current nodes. More specifically, the validation con-
dition atomically tests the value of two memory locations in the
shared memory: The value of the n-field of the previous node and

1The assignment c = p.n in line 26 usually gives rise to multiple
primitive instructions. In our case, because both p and c are local
variables, the primitive instruction of interest is the one in which
the n-field of the node pointed to by p is read. For simplicity, we
assume that the assignment c = p.n executes atomically.



t y p e E{
i n t k ;
boo l m;
E n ;

}

E H, T ;

0 i n i t ( ) {
1 atomic{
2 T = a l l o c ( E ) ;
3 T .m = f a l s e ;
4 T . k = ∞ ;
5 T . n = n u l l ;
6 H = a l l o c ( E ) ;
7 H.m = f a l s e ;
8 H. k = −∞ ;
9 H. n = T

10 }
11 }

20 E×E l o c a t e ( i n t k ) {
21 E p = H;
22 E c = p . n ;

24 whi le ( c . k < k ) {
25 p = c ;
26 c = p . n
27 }

29 re turn p , c
30 }

40 boo l c o n t a i n s ( i n t k ) {
41 E×E p , c = l o c a t e ( k ) ;
42 boo l b = ( c . k==k ) ;
43 re turn b
44 }

60 boo l remove ( i n t k ) {
61 boo l r e s t a r t = true , r e t v a l ;
62 whi le ( r e s t a r t ) {
63 E×E p , c = l o c a t e ( k ) ;

65 atomic{
66 i f ( p . n==c && ! p .m) {
67 r e s t a r t = f a l s e ;
68 i f ( c . k==k ) {

70 c .m = t rue ;

73 p . n = c . n ;
74 r e t v a l = t rue
75 }
76 e l s e r e t v a l = f a l s e
77 }
78 }
79 }
80 re turn r e t v a l
81 }

80 boo l add ( i n t k ) {
81 boo l r e s t a r t = true , r e t v a l ;
82 whi le ( r e s t a r t ) {
83 E×E p , c = l o c a t e ( k ) ;

85 atomic{
86 i f ( p . n==c && ! p .m) {
87 r e s t a r t = f a l s e ;
88 i f ( c . k != k ) {
89 E t = a l l o c ( E ) ;
90 t .m = f a l s e ;
91 t . k = k ;
92 t . n = c ;
93 p . n = t ;
94 r e t v a l = t rue
95 }
96 e l s e r e t v a l = f a l s e
97 }
98 }
99 }

100 re turn r e t v a l
101 }

Figure 1: A concurrent set implemented using a sorted linked list.

{S = A} contains(k) {ret = (k ∈ A) ∧ S = A}
{S = A} add(k) {ret = (k 6∈ A) ∧ S = A ∪ {k}}
{S = A} remove(k) {ret = (k ∈ A) ∧ S = A \ {k}}

Figure 2: Sequential specification of a set. S ⊂fin Z denotes
the contents of the set. ret denotes the return value. A is a ghost
variable implicitly universally quantified outside of each Hoare
triple, and k is not modified. The initial set is empty.

Figure 3: Example (thread-shared) state.

the value of the m-field of the current node. The condition p.n==c
tests that the current node is the successor of the previous node, as it
was at the last time when the primitive instruction c = p.n was
executed during the list traversal. The condition !p.m tests that
the node pointed to by p is unmarked. If the validation condition
evaluates to false , indicating a possible interference, the operation
restarts. Otherwise the remainder of the atomic section is executed:
• A remove operation checks if the key in the current node is

different than the key that it tries to remove from the set. If it
is, the operation returns false without modifying the shared
state. Otherwise, it marks the current node; links the previous
node to the current node’s successor; and returns true .
• An add operation checks if the key of the current node is the

same key that it tries to add to the set. If it is, the operation
returns false without modifying the shared state. Otherwise,
it allocates a new node; initializes its fields; places the new
node between the previous node and the current node; and
returns true .

In contrast, a contains operation never modifies the shared state,
never restarts, and returns whether the key stored in the current
node is equal to its input key without any form of synchronization.

Verification goal. Our goal is to prove memory safety and lineariz-
ability of the implementation of the concurrent set algorithm shown
in Fig. 1 with respect to the standard specification of a sequential
set given in Fig. 2. The main challenge here is to prove the lin-
earizability of contains. Note that a contains operation never
restarts. Thus, we add proving the wait-freedom of contains to
our verification goal.

3. INTEGRITY INVARIANTS
In this section, we apply the first step of our approach to the

running example: Identifying certain properties as invariants. Here,
we describe these properties in an informal fashion. In [18], we
formally define these properties and prove that they are invariants
of this algorithm using (sequential) separation logic.

The invariants are listed in Fig. 4. The invariants come in two
forms, state (or representation) invariants which describe proper-
ties of data structures, and step (or transition) invariants which de-
scribe properties of single steps in the program’s execution. A state
property ϕ determines a set of states [[ϕ]] ⊆ Σ, where Σ is the set
of program states, and a step property δ determines a set of pairs of
states [[δ]] ⊆ Σ× Σ.

Besides the obvious classification of the invariants into state and
step invariants, we further classify them along two other dimen-
sions: We distinguish between local invariants which pertain only
to properties of small fractions of the shared store (in our case, each
fraction contains at most two nodes), and global invariants which
describe properties of the whole shared state. It is the preservation
of all of the local invariants which allows every thread to behave
in a purely local manner and yet guarantee the preservation of the
global invariants without the need for atomic access to large parts
of the shared state. For example, the preservation of property ϕ<,
the local sortedness invariant, allows us to establish ϕac , the global
invariant guaranteeing that the heap contains no node cycles. On
the other hand ϕac together with the local invariants ϕTn− and ϕn,
pertaining to the local link structure of every node, allows us to es-
tablish property ϕrT , i.e., that the tail node is reachable from every
node, as an invariant. The latter property is the key reason for the
memory safety of the algorithm.

The third dimension of our classification is the aspect of the im-
plementation they pertain to. We show that different subsets of
these properties allow to establish different lemmas in our proofs.



Type Scope Aspect Name Description

State

Local
Shape

ϕH H has a non-null value (i.e., the head node exists)
ϕT T has a non-null value (i.e., the tail node exists)
ϕTn− The tail node has no successor
ϕn Every node other than the tail node has a successor

Data
ϕ∞ The key of the tail node is∞
ϕ−∞ The key of the head node is −∞
ϕ< The key of every node is smaller than the key of its successor

Global

Shape ϕrT The tail node is reachable from every node
ϕac There are no cyclic heap paths in the heap

Data ϕs Every list of nodes is sorted.
Mark ϕUB A node is unmarked if and only if it is a backbone node

Step

Local
Shape

δH The value of the global variable H never changes
δT The value of the global variable T never changes

Data δk The key of a node does not change
Mark δm A marked node does not become unmarked

Global Shape

δe An exterior node does not become a backbone node
δen The successor of an exterior node does not change
δbn If the successor of a backbone node changes, the node must

remain a backbone node in the following state

Figure 4: Invariants of the concurrent set of Fig. 1 classified according to type, scope and aspect.

This allows us to reuse parts of our proof for different implemen-
tations, as long as the subset of properties relevant to the lemma is
proven to be an invariant of the new implementation.

The invariants are expected to hold outside atomic sections.
Thus, an invariant might be violated in states which occur inside
an atomic section. However, memory states which occur inside
atomic section are “invisible” to all other threads. (See §4.)
Terminology. We say that a node is a backbone node in state σ if
it is reachable from the head node in σ. A link u.n 7→ v in σ is a
backbone link in σ if u is a backbone node in σ. We refer to a node
in σ which is not a backbone node in σ as an exterior node in σ and
to a link in σ whose source is an exterior node in σ as an exterior
link in σ. (Note that a link in a state σ is either a backbone link in
σ or an exterior link in σ.)
State invariants. The contents of the heap during any execution
of the optimistic set algorithm of Fig. 1 can be viewed as a list
of reversed trees.2 The list, going from the head node to the tail
node, consists of unmarked nodes. Every node in the list, with the
exception of the head node, is the root of a reversed tree (poten-
tially containing only the root node) of an unbounded degree in
which all non-root nodes are marked. Furthermore, every path in
the heap is sorted. This heap structure, guaranteed by the global
state invariants ϕrT , ϕac , ϕUB , and ϕs, is maintained regardless of
interference between threads.

Invariants ϕH and ϕT guarantee, respectively, that the global
variables H and T always point to allocated nodes. Algorithmi-
cally, thanks to invariant ϕH the algorithm does not need to check
whether variable H has a null value before dereferencing it. Vari-
able T is not used in the algorithm. It is only used to refer to the tail
node in the invariants. Invariant ϕT ensures that these invariants
are well defined.

The algorithm maintains several local data invariants relating key
values to the shape of the heap: invariant ϕ−∞ ensures that the key
of the head node is −∞, invariant ϕ∞ ensures that the key of the
tail node is∞, and invariant ϕ< guarantees that if the n-field of a
node u points to node v, then the key of u is smaller than that of v.

2A reversed tree is a tree where pointers are reversed such that they
point towards the root.

Algorithmically, invariant ϕ−∞ ensures that there is no need to
look at the value of the key at the head node, invariant ϕ∞ ensures
that the n-field of the tail node is never dereferenced, and invariant
ϕ< ensures that the head node has no predecessor. The three local
data invariants, together with the local shape invariant ϕTn−, ensure
that in every state which occurs during the execution, the heap path
between the head node and the tail node exists and induces a par-
titioning of the range (−∞,∞). The global invariant ϕUB makes
it possible to check locally whether a node is in the backbone by
testing if it is marked or not. (Recall that the validation condition of
add and remove checks that the previous node is not marked.)3

Step invariants. The invariants δH , δT , and δk ensure immutabil-
ity: once initialized, certain parts of the shared state are never mod-
ified. Invariant δH ensures that the head node does not change dur-
ing the execution. Similarly, invariant δT , guarantees that traversals
reaching the tail of the list always end at the same tail object. In-
variant δk ensures that the key field is immutable. This invariant
ensures that when locate returns, the value of the input key of
the operation which invoked it is greater than the key of the previ-
ous node and smaller or equal to the key of the current node.

Invariants δm, δe, and δen ensure conditional immutability: once
a fraction of the shared state has a certain property, this fraction
becomes immutable. Conditional immutability implies that the
changes to the shared state are, in a sense, monotonic: The local
step invariant δm says that an unmark node may become marked,
but not vice-versa. Together with the global state invariant ϕUB

it gives the global step invariants δe which ensures that an interior
node may become an exterior node, but not vice-versa. The global
step invariant δen ensures that the successor of an exterior node
does not change. The global step invariant δbn ensures that only
fields of backbone nodes can be mutated.

3We note that the algorithm manages to maintain invariant ϕUB ,
and thus avoids the need to check whether the current node is
marked, because the remove operation is not lazy: The marking
of a node and its removal from the list are done in the same atomic
section. In the lazy list algorithm a weaker invariant is maintained:
every unmarked node is a backbone node, but not necessarily the
other way around, an thus a different validation condition is used.
See [18].



We state that the properties shown in Fig. 4 are invariants of our
challenge problem after presenting the mathematical model. We
note that the step invariants together ensure that turning a node
from a backbone node to an exterior node also fixes the value of
its n-field. In a way, these invariants ensure that every exterior link
provides a view of a 1-link fragment of the backbone list as it was
at the time just before the source of the link turned from a backbone
node to an exterior node. This “frozen view” of the past structure
of the list is formally captured by the Hindsight Lemma (see §5)
and plays a key role in our proof of linearizability (see §7) .

4. MATHEMATICAL MODEL
In this section we set some notations and formal details regard-

ing our mathematical model. This concerns the structure of mem-
ory states σ ∈ Σ and executions π ∈ Π. We concentrate on key
features of the model, and formalize it (rather standardly) in [18].
Concurrent Objects. A concurrent object defines a set of proce-
dures which may be invoked by client threads, potentially concur-
rently. Procedures may have local variables. Every invocation of a
procedure p has its own private copy of p’s local variables, i.e., the
local variables of one invocation cannot be accessed by any other
invocation. The invocations share access to the concurrent object’s
shared variables and to dynamically (heap) allocated objects.

We refer to an invocation of a procedure of a concurrent object
as an operation. We assume T is an unbounded set of thread iden-
tifiers. Our semantics is insensitive to the actual values of thread
identifiers. Thus, without loss of generality, we assume that a
thread may invoke a procedure on the object at most once. We
identify every operation by the identifier t ∈ T of the thread which
invoked it and use the terms thread and operation interchangeably.
Memory States. A memory state σ ∈ Σ is comprised of a thread-
shared state and a map from operations, identified using thread
identifiers, to thread-local states. The thread-shared state records
the values of the concurrent object’s shared variables and contains
a heap which maps fields from locations of allocated objects to
their values. A value may be a boolean, an integer, a memory loca-
tion, or the designated value null which is not the location of any
object. The thread-local state of thread t records the values of t’s
local variables and program counter.

Given a pair of nodes e = 〈u, v〉, we say that u = src(e) is
the source of e and v = trg(e) is the target of e. A sequence of
pairs of nodes ξ = e0, . . . , ek is a node-pair path from u to v if
u = src(e0), v = trg(ek), and trg(ei) = src(ei+1) for every
0 ≤ i < |ξ| − 1.

A link in a state σ, denoted by u.n σ7→ v, is a pair of nodes such
that in state σ the n-field of node u points to v, i.e., u.nσ = v. (We
sometimes omit the subscript when clear from context). If u.n σ7→v
is a link in a state σ, we say that node v is the (necessarily unique)
successor of node u in σ and that node u is a predecessor of node v
in σ. A sequence ζ of links in state σ is a heap path from u to v
in σ if ζ is also a node-pair path from u to v. A node v is reachable
from node u in σ, if there is a heap path from u to v in σ.
Transitions, Executions and Traces. We assume that the seman-
tics of a concurrent object is given by a transition relation tr

 
that interleaves the execution of different threads. A transition
σ
〈t,κ〉−→ σ′ ∈ tr

 represents the fact that the source memory state
σ can be transformed into the target memory state σ′ by thread
t executing computation step κ. A computation step is either an
invocation of an operation of the concurrent object (possibly with
input parameters), a response by an invoked operation (possibly
with a return value), or an atomic action. An atomic action is ei-

ther a primitive instruction or an atomic section containing several
primitive instructions. The instructions inside an atomic section
are guaranteed to execute without interference from other threads.
We refer to the memory states which occur between computation
steps as visible memory states and to the ones that occur “inside”
atomic sections as invisible memory states. We use the term state
as a shorthand for visible memory state.

An execution π ∈ Π is a sequence of transitions with the target
state of every transition being the same as the source state of the
next transition. A trace τ is a sequence of memory states. The
trace of an execution π, denoted by trace(π), is the sequence of
states that occur during π, i.e., trace(π) = σ0, σ1, . . . , σ|π|, σ

′
|π|

where σi is the source memory state of transition π(i) and σ′|π| is
the target memory state of the last transition of π. An execution

step
〈t,κ〉−→ consists of a thread identifier and a computation step. A

schedule Φ is a sequence of execution steps. The schedule of an
execution π, denoted by Φ = Φ(π), is the sequence of execution
steps that occur during π.

An execution π is an execution of the concurrent object if (a) ev-
ery transition belongs to the concurrent object’s transition relation;
(b) the source state of the first transition is a distinguished initial-
ized state of the concurrent object. (The initialized state can be
thought of as being produced by applying the initialization proce-
dure of the concurrent object to a memory state in which no thread
is running and the heap contains no objects); and (c) every opera-
tion starts by executing the invocation computation step and once it
responds, it does not execute any more computation steps.
Properties and Invariants. We say that a state property ϕ holds in
trace τ , denoted by τ |= ϕ, if τ(i)∈ [[ϕ]]⊆Σ for every 0 ≤ i < |τ |.
We say that a step property δ holds in trace τ , denoted by τ |= δ,
if 〈τ(i), τ(i+ 1)〉 ∈ [[δ]] ⊆ Σ×Σ for every 0 ≤ i < |τ | − 1.
We use conjunction of properties in the evident way, and we also
sometimes say that a property holds in an execution to mean that it
holds in the trace of its component states. A property is an invariant
of a concurrent object if it holds in all of its executions.

For simplicity, we assume that memory is not reclaimed. (See
§8.) Thus, an execution is memory safe if it never dereferences a
null -valued pointer. Memory safety can be captured by the state in-
variant Σ \ {σerror} which says that the error state σerror resulting
from a null -valued pointer dereference never occurs. The proper-
ties listed in Fig. 4 are state and step properties according to the
above definitions. We can now state the following theorem.

THEOREM 4.1. Every execution of the set algorithm shown in
Fig. 1 is memory safe and satisfies all the state properties and all
the step properties shown in Fig. 4.

5. THE HINDSIGHT LEMMA
In this section, we present the second step of our proof strategy:

We show that the Hindsight Lemma and the Local Window Lemma
are implied from certain (not all) of the properties shown in Fig. 4.

5.1 Hindsight about Past Links
Informally, the Hindsight Lemma says that in every execution

which satisfies the integrity shape properties shown in Fig. 4, if a
link u.n σ7→ v is reachable from the head node (i.e., is a backbone

link) at a state σ, and link v.n σ′
7→w with v in common is a link in

a later state σ′, then there is some state occurring between σ and
σ′ in which the later link v.n 7→ w is reachable from head. The
key point is that v.n σ′

7→w need not be reachable (be “in” the data
structure) at time σ′: rather, we infer the existence of a prior time
at which the link is in the structure.



The Hindsight Lemma is a property of executions more general
than our challenge problem: it refers only to the shape properties
shown in Fig. 4. In particular, it does not mention data related
properties or mark bit related properties. Its insensitivity to these
implementation-specific aspects of our running example makes it
more widely applicable: If we have any execution satisfying the
shape properties of Fig. 4, not just an execution coming from the
program, then the Hindsight Lemma can be used to infer that cer-
tain links were reachable from the head node in the past.

DEFINITION 5.1 (SHAPE-LEGAL EXECUTION). Let the set’s
shape-state property be ϕs = ϕH ∧ϕT ∧ϕn ∧ϕrT ∧ϕac and the
set’s shape-step property be δs = δH ∧ δT ∧ δe ∧ δen ∧ δbn. An
execution π is a shape-legal execution if trace(π) |= ϕs ∧ δs.

LEMMA 5.2 (HINDSIGHT). Let τ = trace(π) be the trace of
a shape-legal execution π. For any states σi = τ(i) and σk = τ(k)
such that 0 ≤ i ≤ k < |τ | and for any nodes u, v, w such that
u.n

σi7→v is a backbone link in σi and v.n
σk7→w is a link in σk, there

exists a state σj = τ(j) such that i ≤ j ≤ k and v.n
σj7→ w is a

backbone link in σj .

Proof: The pair of nodes 〈v, w〉 is a link in state σk. If 〈v, w〉 is a
backbone link in σk then the lemma holds for j = k. Otherwise,
〈v, w〉 must be an exterior link in σk.

Assume that the pair 〈v, w〉 is an exterior link in σk. By defini-
tion node v is an exterior node in σk.

By the conditions of the lemma, link u.n 7→ v is a backbone
link in state σi. Thus, v is a backbone node in σi. Recall that we
assume that nodes are not reclaimed. Because node v exists in σi,
it exists in any following memory state. In particular, v exists in
any memory state τ(h) for i ≤ h ≤ k.

Let j be the maximal index in i ≤ j < k such that v is a back-
bone node. Such an index must exist because node v is a backbone
node in σi and an exterior node in state σk. We have already shown
that node v exists in any memory state τ(j), . . . , τ(k). Thus, by
selection of j it holds that node v is an exterior node in τ(j + 1).
Furthermore, by property δe it holds that node v is an exterior node
in any state τ(h) for every j + 1 ≤ h ≤ k.

Thus, by δen , the successor of node v is the same in every state
τ(h) for every j + 1 ≤ h ≤ k. By assumption, the successor of
node v in state σk = τ(k) is node w. Thus, the successor of node
v in state τ(j + 1) is node w.

Node v is a backbone node in state τ(j) and an exterior node in
state τ(j + 1). Node w has to be the successor of node v in state
τ(j), for otherwise node v has different successors in τ(j) and in
τ(j + 1) which by δbn would mean that v should be a backbone
node in state τ(j + 1).

We have established thatw is the successor of v in state σj . Node
v is a backbone node in σj and thus, by definition, link v.n 7→w is
a backbone link in σj . 2

Now we need to set up some information which will be used to
apply the Hindsight Lemma in the proof of the optimistic traver-
sal. We make these definitions here because the notions apply to
all shape-legal executions, and (again) are independent of the algo-
rithm to some extent.

We will show that a sequence of edges traversed by the locate
procedure comprises a backbone, if we successively look back in
time.

DEFINITION 5.3 (TEMPORAL BACKBONES). A node-pair
path ζ is a temporal backbone in trace τ going through a subse-
quence τt of τ if |τt| = |ζ|, the pair of nodes ζ(i) is a link in τt(i)
for every 0 < i < |τt|, and ζ(0) is a backbone link in τt(0).

Using the idea of a temporal backbone gives us a way to state an
“inductive cousin” of the Hindsight Lemma.

LEMMA 5.4 (BACKBONE LEMMA). Let τ = trace(π) be
the trace of a shape-legal execution π. Let ζ be a temporal back-
bone going through the subsequence τ(i0), . . . , τ(ik) of τ . There
exists a sequence i0 = j0 < j1 < . . . < jk = ik such that for
every 0 ≤ m ≤ k it holds that ζ(m) is a backbone link in τ(jm)
and i0 ≤ jm ≤ im.

Proof: By induction on the length of ζ. The base case is immediate
and the induction step follows directly from Lemma 5.2. 2

5.2 Local Window to Past Data Ranges
When one satisfies the data as well as the shape invariants, it

becomes possible to infer properties of the data values that we find
to exist by hindsight.

Conceptually, in the context of the set algorithm, the Local Win-
dow Lemma allows us to infer that every edge traversed, even
though there is interference, identifies a certain time in the past
when data values in a particular range were or were not in the set
represented by the data structure. In a way, a traversal over a tempo-
ral backbone opens a local window on the global abstraction func-
tion. This is the key to being able to reason about the linearizability
of the set operations in a thread-local way.

Technically, the Local Window Lemma is an immediate conse-
quence of sortedness and the backbone lemma.

DEFINITION 5.5 (DATA-SHAPE-LEGAL EXECUTION). Let
the set’s data-state property be ϕd = ϕs and the set’s data-step
property be δd = δk. A data-shape-legal execution π is a
shape-legal execution such that trace(π) |= ϕd ∧ δd.

DEFINITION 5.6 (BACKBONE KEYS). Let σ be a memory
state such that σ |= ϕs and σ |= ϕd. The set of backbone keys
in state σ, denoted by Kσ , is comprised of the keys stored in the
backbone nodes of σ.

LEMMA 5.7 (LOCAL WINDOW LEMMA). Let τ = trace(π)
be the trace of a data-shape-legal execution π. Let ζ be a temporal
backbone from the ith state of trace τ to the jth state of τ . Let
〈u, v〉 be a pair of nodes in ζ. There exists a state σ = τ(h) for
some i ≤ h ≤ j such that Kσ ∩ {u.kσ, v.kσ} = {u.kσ, v.kσ}.

Proof: π is a data-shape-legal execution. In particular, in every
σ which occurs during π the integrity invariants ϕs, ϕH , ϕn, and
ϕrT imply that there exists a strictly ascending sorted list between
the head node and the tail node which satisfies property ϕ<. This
list contains, by definition, all backbone edges. From this and
Lemma 5.4, the result follows. 2

6. TEMPORAL TRAVERSAL
The hallmark of the optimistic set algorithm is the wait-free list

traversal which is performed without any synchronization. In this
section we provide a technical explanation for the reason locate
works despite the fact that it does not use any form of synchroniza-
tion during its traversal: we show that the optimistic list’s spatial
traversal goes over a temporal heap path which is “consecutive” in
different times. Specifically, it traverses a temporal backbone. This
leads to the wait-freedom of contains.

From this point on, our proofs become algorithm-dependent
again. However, the results of this section only depends on the
code of locate and the results established in §5 based on the set’s
shape and data properties. Thus, they can be reused to prove other
implementations which satisfy the set’s shape and data properties
and use a similar contains procedure.



DEFINITION 6.1 (LINK CROSSING). A transition σ
〈t,κ〉−→ σ′

of a shape-data-legal execution π is a link crossing transition if the
executed computation step κ corresponds to instruction c=p.n.
We refer to the source state σ of a link crossing transition as its
crossing state and to the link comprised of the node pointed to by p
and its successor in σ as the crossed link in σ.

Note that crossing a link u.n 7→v in one iteration of the traversal
loop and then crossing the link v.n 7→w in the following iteration,
does not necessarily mean that there exists a state in which both
〈u, v〉 and 〈u, v〉 are backbone links or even mere links.

We first show that the last call to locate made by either an
add, a remove, or a contains operation traverses over a tem-
poral backbone.

DEFINITION 6.2 (TRAVERSAL TRAIL TAILS). Let π be an
execution of the set algorithm shown in Fig. 1. The traversal trail
tail of thread t in π, denote by

 
τ π(t), is the suffix of the sequence of

crossing states coming from transitions made by t in π which starts
at the last crossing state in which t crossed a link emanating from
the head node.

LEMMA 6.3 (TEMPORAL TRAVERSAL). Let π be an execu-
tion of the running example. The sequence of links crossed in the
traversal trail tail of every operation t invoked in π is a temporal
backbone in trace(π) which goes through

 
τ π(t).

Proof: A traversal trail tail starts with the crossing state of a tran-
sition in which a link emendating from the node pointed to by p is
crossed. Local variable p was set to point to the head node at the
previous instruction performed by t. Because the head node never
changes (δH ) and because no thread can modify the values of the
local variables of another thread, the local variable p of thread t
also points to the head node at the crossing state in which the in-
struction c = p.n in line 22 is executed by t. Thus, the first link
traversed is a backbone link and in the resulting state the local vari-
able c points to the target of the crossed link. By induction, every
time line 26 is executed and a link is crossed, its source must be
the target of the previous link in the traversal trail tail because only
local variables of the operation executed by thread t are used. 2

The following theorem says that every invocation of contains
finishes in a finite number of steps. This establishes that
contains is wait-free (see, e.g., [9]).

THEOREM 6.4 (WAIT-FREEDOM OF CONTAINS). The
contains procedure shown in Fig. 1 is wait free.

Proof: From Theorem 4.1 we get that every execution of the con-
current set algorithm shown in Fig. 1 is a memory-safe shape-data-
legal execution. The only loop in the contains procedure is in
the locate procedure. Thus, from invariant ϕac , a contains
operation never traverses over a link emanating from the head node
more than once. From Lemma 6.3, we get that the sequence of
traversed links in the traversal trail tail of contains induces a
temporal backbone. In particular, every time locate crosses a
link u.n 7→v, the key of v is strictly greater than that of u. Thus at
every iteration the key of the node pointed to by c is greater than
the key of the node which was pointed by c at the previous itera-
tion. The traversal ends when a node with a key greater or equal to
the value of the input key parameter k is reached. This input pa-
rameter k does no change its value throughout the execution of the
contains procedure. The standard order on integers is a locally
finite total order. Thus the number of iterations that locate can
perform before c points to a node with a key equal or greater to the
value of k is finite. Wait freedom follows. 2

7. LINEARIZABILITY BY HINDSIGHT
In this section, we describe the notion of linearizability and prove

that the concurrent set algorithm shown in Fig. 1 is linearizable with
respect to the sequential specification in Fig. 2.

7.1 Linearizability
Linearizability is a property of the externally-observable behav-

ior of concurrent objects [9, 10]. Intuitively, an execution of a
concurrent object is linearizable with respect to a given sequential
specification if each invoked operation seems to take effect instan-
taneously at some unique point in time between its invocation and
response, and the resulting sequence of (seemingly instantaneous)
operations respects the given specification. More technically, lin-
earizability is defined using the notion of histories, which we de-
scribe below using the terminology of §4.

DEFINITION 7.1 (HISTORIES). A history H is a sequence of
invocation and response execution steps. H is sequential if the exe-
cution step immediately preceding each response execution step is
its matching invocation. H is well formed if for all threads t, the
sequence of operations in H performed by t in H is sequential. H
is complete if it is well-formed and every invocation has a matching
response. H is a completion of a well-formed history H ′ if H is
complete and can be obtained from H ′ by (possibly) extending H ′

with some response execution steps and (possibly) removing some
invocation execution steps. The history of an execution π, denoted
by H(π), is the maximal subsequence of invocation and response
execution steps in π. A sequential specification H is a prefix-closed
set of well-formed sequential histories.

Intuitively, in a sequential history all operations seem to run
atomically. The well-formedness captures two properties of his-
tories. Firstly, it ensures that all the responses should have cor-
responding invocations. Secondly, it formalizes the intuition that
each thread, if it is considered in isolation, is a sequential program.
A completion ofH capture the idea that some operation inH which
have not responded have “taken their effect” while others have not.

DEFINITION 7.2 (LINEARIZABILITY). A history H is lin-
earizable with respect to a well-formed sequential history HS if
there exists a completion H of H(π), a history HS ∈ H, and a
bijection b : {0, . . . , |H| − 1} → {0, . . . , |HS | − 1} such that (1)
for every 0 ≤ i < |H| it holds that H(i) = HS(b(i)) and (2) for
every 0 ≤ i < j < |π| if H(i) is an operation response and H(j)
is an operation invocation then b(i) < b(j). A concurrent object
is linearizable with respect to a given sequential specification H if
for every execution π of the concurrent object there exists a history
HS ∈ H such that H(π) is linearizable with respect to HS .

Intuitively, a concurrent object is linearizable with respect to a
sequential specification H according to Def. 7.2 if for every execu-
tion π of the concurrent object, the interaction between the threads
and the concurrent object in π can be “explained” by a sequential
history HS in H: In HS , every thread performs the same sequence
of invocations and responses as in (a completion of) H(π) and the
real time precedence order between non overlapping operations in
π is preserved in HS .

7.2 Proving Linearizability with Hindsight
Theorem 7.5 proves the linearizability of the set algorithm shown

in Fig. 1 with respect to the set’s sequential specification shown in
Fig. 2. The proof uses the abstraction function [11] Abs which
maps every state σ to its abstract value: the set of integer keys
stored in σ’s backbone nodes, i.e.,

Abs(σ) = Kσ\{−∞,∞} .



DEFINITION 7.3 (MARK-DATA-SHAPE-LEGAL EXECUTIONS).
A mark-data-shape-legal execution π is a data-shape-legal execu-
tion such that trace(π) |= ϕUB ∧ δm.

LEMMA 7.4. Every execution π of the set algorithm shown in
Fig. 1 is a mark-data-shape-legal execution. In every state σ which
occurs during π the abstraction function Abs is well defined and
Abs(σ) = {u.kσ | u ∈ Nσ ∧ ¬u.mσ}\{−∞,∞}.

Proof: Follows from property ϕUB , Theorem 4.1 and Def. 7.3. 2

THEOREM 7.5. Every execution π of the set algorithm shown
in Fig. 1 is linearizable with respect to the set’s sequential specifi-
cation shown in Fig. 2.

Proof: The proof is done in two stages. Firstly, we construct a
sequential history HS and show that H(π) is linearizable with re-
spect to HS . Secondly, we show that HS respects the sequential
specification of the set.

We begin by constructing a completion of H(π). Let H ′ be a
history obtained from H(π) by first adding a matching response
execution step to every add or remove operation t which exe-
cuted its atomic section in π but has not responded. The return
value of the response added to the invocation of an operation t is
the value of t’s local variable retval at the state which arises
right after the execution of t’s atomic section. Let H be the history
obtained by removing from H ′ all remaining invocation execution
steps which do not have a matching response. By construction, H
is a completion of H(π).

We now construct a complete sequential history HS which con-
tains the same execution steps as H using the auxiliary function
ι, defined below. We first define ι and then describe its use in the
construction of HS .

Let τ = trace(π) be the trace of π. The auxiliary function
ι associates every operation invocation t launched in π with (the
index of) a state of τ . (Recall that in §4, we defined operation t to
be the single procedure invocation made by thread t. Thus, ι has
type T ↪→ {0, . . . , |τ | − 1} in the notation of §4). ι is defined as
follows: An add resp. remove operation t is associated with the
source state of the transition in which t executes its atomic section.
A contains operation t is associated with the last state occurring
at or before the last crossing state in the traversal trail tail of t in
which the (last) crossed link is a backbone link. Such a state must
exist by Lemma 5.4 and Lemma 6.3.
HS is obtained by reordering the operations according to the par-

tial order induced by ιwhile ensuring that if multiple operations are
mapped to ι(t) and τ(ι(t)) is the source state of a transition exe-
cuted by t, then t is placed after all the other operations t′ such that
ι(t) = ι(t′); note that there is exactly one operation which exe-
cutes the ι(t)-th transition, so if t′ is a different operation then t it
doesn’t execute the ι(t)-th transition.

Every operation starts with an invocation and does not execute
any step after it responds. Thus, by construction of ι, if the response
of t1 precedes the invocation of t2 in H then ι(t1) < ι(t2), and
thus t1 also precedes t2 in HS . By construction of HS , it contains
the same execution steps as H ′ which is a completion of H(π). It
follows that H(π) is linearizable with respect to HS .

Having given the construction of HS , all that remains to be
shown is that HS respects the specification of the set. Intuitively,
we show that, based on the idea behind the Hindsight Lemma, we
have defined HS in a way that puts a contains before any other
kinds of operations invoked on the same abstract state.

The proof continues by induction on the number of operations in
HS . The induction actually proves more than what is formally re-
quired: It shows that for every operation t inHS it holds that (a) the

set Abs(τ(ι(t))) is the set produced according to the specification
in Fig. 2 by applying the sequence of operations in HS preceding t
starting from the empty set, and (b) the return value of operation t
and its effect on Abs(τ(ι(t))), the abstract value of the τ(ι(t))-
state of τ , are in concert with the set’s sequential specification.

Technically, (a) and (b) are proven by a simultaneous induction,
as we spell out in the long version. Here, because (a) is compara-
tively easy, we only sketch why it holds.

For the base case, we assume that HS has no operations. By
definition, the abstract value of the initial state is the empty set.

For the induction case, we assume that (a) and (b) hold for the
first k operations in HS and show that they also hold for the first
k + 1 operations. We denote by t′ and t the identifiers of the k-th
and k + 1-th operation in HS , respectively.

To establish (a) we observe that by construction of HS either
ι(t′) < ι(t) or ι(t′) = ι(t).

If ι(t′) < ι(t) then we observe that (1) the abstraction func-
tion is defined in every state of τ (Lemma 7.4) and (2) the abstract
value of the source state and of the target of a transition may differ
only if the computation step of the transition is the atomic section
of add or of remove. (No other action changes the shared state,
and the value of Abs depends only on the contents of the shared
state.) However, by construction of ι, there can be no such tran-
sition in π between the ι(t′)-th state and the ι(t)-th state. Thus,
Abs(τ(ι(t′) + 1)) = . . . = Abs(τ(ι(t))), and hence (a) follows
from the induction assumption.

If ι(t′) = ι(t) then Abs(τ(ι(t′))) = Abs(τ(ι(t))). Further-
more, by definition of ι, operation t′ is necessarily a contains
operation. According to the sequential specification, a contains
operation does not change the abstract state of the set. Thus, (a)
follows from the induction assumption.

At this point, we have established that (a) holds for the first k+1
operations of HS . We use this fact to establish that (b) holds for
the k + 1-operation. This, together with the induction assumption,
establishes that (b) also holds for the first k + 1 operations of HS .

First, we note that Theorem 4.1 and property δk ensure that in
any operation t and regardless of any possible interference the fol-
lowing holds after locate returns: The local variable p of oper-
ation t points to a node u with a key smaller then k and the local
variable c of operation t points to a node v with a key greater or
equal to k, where k is the value of the input parameter of t.

The proof continues by case analysis on the kind of operation t.
If t is a contains operation then using Lemma 7.4 and fol-

lowing the same reasoning as in Lemma 5.7 (the Local Window
Lemma), we get that in state σ = τ(ι(t)) the set of keys stored
in the backbone nodes contained u’s key and v’s key, but nothing
in between, i.e., Kσ ∩ {u.kσ, . . . , v.kσ} = {u.kσ, v.kσ}. Re-
call that τ(ι(t)) was selected to be a state in which the pair of
nodes 〈u, v〉 is a backbone link. Thus, by the definition of Abs, we
get that Abs(σ) ∩ {u.kσ, . . . , v.kσ} = {u.kσ, v.kσ}\{−∞,∞}.
We have established that u.kσ < k ≤ v.kσ and by assump-
tion, −∞ < k < ∞. Thus, k ∈ {u.kσ, v.kσ} if and only if
k ∈ {u.kσ, v.kσ}\{−∞,∞} if and only if k = v.kσ . Therefore,
contains returns the required value. Also, contains does not
change the shared state, and thus, as required, the abstract value
does not change either. (Here, we use the fact that the ι-based con-
struction of HS has, in a sense, pushed t back before any add or
remove operation which is associated with the same state.)

If t is an add or a remove operation, then the validation con-
dition if (p.n==c && !p.m) ensures that the pair of nodes
〈u, v〉 is a link in state σ = τ(ι(t)) and that u is unmarked. (See
Fig. 1, lines 66 and 86, respectively.) From property ϕUB we get
that u is a backbone node and thus, by definition, that 〈u, v〉 is a



backbone link in σ.3 Following the same reasoning as in the case of
contains, we get that k ∈ Abs(σ) if and only if k = v.kσ . From
this, the set’s state properties, and the definition of the representa-
tion function, it is easy to check that the return value is according
to the specification and that if there is a local mutation to the link
structure then the resulting state has the required abstract value. 2

8. LIMITATIONS
The first step of our proof strategy is the identification of in-

tegrity properties. These properties are used to formally describe
the set of traces to which the Hindsight Lemma applies. We cur-
rently have no algorithmic approach to identify these properties,
and rely on the human to provide them.

On the bright side, the Hindsight lemma is not specific to our
running example algorithm and is more widely applicable: it is
applicable to several linked-list-based set implementations. While
this is a restricted family of algorithms, it is still an interesting one.
Furthermore, the Hindsight Lemma and the Local Window Lemma
can be used in the proofs of other algorithms as long as these algo-
rithms satisfy the shape and the shape and data properties, shown in
Fig. 4, respectively. The question of the formulation and existence
of Hindsight-like lemmas for other concurrent algorithms, or even
all linked-list-based implementations of concurrent data structures,
is an intriguing question, which we leave open. This could be an
important question because (we believe) the Hindsight Lemma pro-
vides the main insight for the correctness of the lazy set algorithm.

A technical limitation is that our atomic sections cover accesses
to more than one memory location. This allows us to use invariants
that are simpler than would otherwise be so, because we can ignore
intermediate states which would break some invariants. One conse-
quence in this paper is that the algorithm is optimistic but not lazy.
But at the expense of a more complex proof we can verify a lazy al-
gorithm, as done in the technical report [18]. A more fundamental
consequence is that our current formal treatment of memory alloca-
tion requires that the allocation is done inside atomic sections. The
reason is that, to maintain one shared invariant (or a conjunction of
assertions) describing all relevant heap storage, we need to be able
to allocate a node and connect it to the data structure all in one go.

The proofs of the integrity properties we have done in [18] can be
seen as taking place in Owicki-Gries logic [19], where the need for
interference checking is essentially eliminated due to the thread-
local nature of assertions. We used separation logic merely to ease
the sequential proof steps for reasoning about the heap in Owicki-
Gries logic. This approach works well when essentially all the
heap-allocated state of the algorithm is shared, but leads to the
limitation regarding the need to “allocate and connect in one go”.
We believe that this limitation could be removed by replacing the
Owicki-Gries logic with one of the versions of separation logic that
distinguish shared and local state [6,17,24], though we need rather
less than the full power that these logics provide (we need trans-
fer from local to shared state, but not conversely). We make these
remarks because we are interested in knowing the minimum tech-
nical machinery that is needed to do simple proofs (with, among
other things, an eye towards automation).

Our assumption that memory is not reclaimed simplifies the for-
malization of the shape invariants. However, in the price of some
complication, we can allow automatic memory reclamation.

Finally, our proof that the integrity properties are invariants of
the running example is formal: the work in the technical report can
be mechanically checked. However, our proofs of the Hindsight
Lemma and the Local Window Lemma are rigorous mathematical
proofs, but we have not mechanically checked them.

9. DISCUSSION AND RELATED WORK
The proof strategy we use in this paper builds on prior work

on data refinement. We have already mentioned the early work
of Hoare [11]. Lamport added to this the idea of a continuously-
defined abstraction function, for use in concurrent contexts [15].
Our abstraction function is continuously defined, and this seems
to fit well with the intuitions surrounding optimistic algorithms,
but (curiously) we did not need this fact in our proof: essentially,
we only need that the abstraction function is defined at the “lin-
earization points” of effectful operations and that its value does not
change between these points. When proving refinement (lineariz-
ability), we do not always check the value of the abstraction func-
tion at a particular post-state of an operation, but sometimes look
for (certain properties of) its value in the near past.

Our work also builds on the fundamental paper of Herlihy and
Wing [10] which, besides defining the notion of linearizability, in-
troduces a proof method based on abstraction functions. There it
is suggested to use an abstraction function which computes the set
of all possible abstract (linearized) values, and to track pending
method calls using auxiliary (global) state. In contrast, we main-
tain only a single abstract value, which is consistent with the ex-
ternally observable behavior of all effectful operations, and rely on
the Hindsight Lemma to provide a (non-constructive) evidence for
the linearizability of the effectless operations.

The PhD thesis of Vafeiadis [21] gives a quite detailed proof
sketch for a variant of the algorithm considered here. He takes
from Herlihy and Wing the idea of tracking pending method calls
of the contains operation in all threads, but rejects their use of a
set of abstract values rather than a single value. Apart from this
treatment of contains, Vafeiadis’s proof is completely thread
modular. His invariants are similar to ours, though he carries out
the proofs in a special rely-guarantee logic. We speculate that the
Hindsight Lemma could be used in concert with Vafeiadis’s proof
techniques to remove his dependence on pending calls, and to ob-
tain a thread-modular and simpler proof.

Colvin et al. [4] provide a machine-checked proof of linearizabil-
ity for the lazy set algorithm. Their proof is based on a backward
simulation instead of linearization points. It also uses the pend-
ing method calls idea in a proof, and our relation to them is in this
respect similar to our relation to Vafeiadis.

Most of the existing methods for automatic verification of lin-
earizability are based on the linearization points proof method
where the linearization points are either user-specified [1, 2, 22] or
automatically inferred [23]. Linearization points induce an order
between overlapping operations of a concurrent execution which
can be exploited in the verification tool to effectively verify a sim-
ulation relation between the implementation and its specification.
When the linearization point of an operation is not in the same
thread which executes the operation, existing automatic tools fail
to establish this simulation. Model-checking based tools for check-
ing linearizability [3, 5, 7, 16, 25, 26] do not require linearization
points. However, they can only show that an implementation is not
linearizable and cannot, in general, prove that it is. As far as we
know, only [4] has been able to semiautomatically verify the lin-
earizability of the latter.

10. CONCLUSIONS
Proving correctness of shared memory concurrent programs is

a problem whose importance increases with recent advances in
processors architecture. One of the most challenging aspects of
this problem is the need to reason about interference between con-
currently executing threads. In this paper, we make a rather sur-



prising observation that for a certain class of algorithms —highly-
concurrent optimistic algorithms—the high degree of concurrency
leads to the use of certain idiomatic design principles of fine-
grained synchronization which, once formally captured, can lead
to rather simple and elegant proofs that are thread-modular.

The classic work of Owicki and Gries [19] identified the impor-
tance of auxiliary state in reasoning about programs, and gave sim-
ple programs that cannot be proven in a thread-modular fashion.
One such example is the parallel composition of an atomic incre-
ment instruction with itself: without auxiliary variables, one cannot
prove that this program increments by two, but with auxiliary vari-
ables that track program points in the two threads the proof can be
done. This limitation of purely thread-modular proofs (which don’t
use this form of auxiliary state) carries over to subsequent works
including rely-guarantee and concurrent separation logic [13, 17].

Given this fundamental limitation of thread-modular reasoning
for even trivial programs, we were surprised to be able to find
thread-modular proofs for some comparatively complicated con-
current programs. An important point, though, is that proving the
correctness of the internals of a data abstraction is different from
proving a particular client: it is not difficult to construct a particular
concurrent client of the set and a particular property which requires
auxiliary state to prove, just as in the Owicki-Gries examples.

The Hindsight Lemma allows us to avoid one of the most com-
plex and puzzling steps in reasoning about highly concurrent algo-
rithms: finding linearization points in other threads than the one
containing an operation to be linearized. The lemma expresses
the reason why wait-free search procedures, which use no syn-
chronization while traversing a list, can work: a kind of backbone
through the data structure can be created by selecting links at differ-
ent points in time. Using this property, together with the sortedness
invariant, the Local Window Lemma then explains why there is no
mathematical need to take a snapshot of the entire memory when
reasoning about the correctness of a search operation, and this fits
well with the intuitions underlying the algorithm.

We illustrated our techniques on an optimistic list-based set al-
gorithm based on Heller et. al. [8], but we have been able to prove
linearizability and wait freedom of procedures for additional algo-
rithms using the Hindsight Lemma. In [18], we prove the concur-
rent set algorithm from [25], whose effectless invocations of the
add and remove procedures use less synchronization. (The opti-
mization is based on the intuition that when these procedures return
false they essentially act like contains.) In addition, in [18] we
prove also a lazy set algorithm, based on [8], in which the marking
(logical delete) and the pointer surgery removing the node from the
data structure are done in different atomic steps.

As to future work, we are particularly interested in exploring
more general forms of the Hindsight Lemma. We also hope that
the results in this paper can be exploited in the development of
automated tools for verifying linearizability which will only need
to establish invariants of the kind described in this paper.
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