
Local Reasoning about Programs that Alter

Data Structures

Peter O’Hearn1, John Reynolds2, and Hongseok Yang3

1 Queen Mary, University of London
2 Carnegie Mellon University

3 University of Birmingham and University of Illinois at Urbana-Champaign

Abstract. We describe an extension of Hoare’s logic for reasoning about
programs that alter data structures. We consider a low-level storage
model based on a heap with associated lookup, update, allocation and
deallocation operations, and unrestricted address arithmetic. The asser-
tion language is based on a possible worlds model of the logic of bunched
implications, and includes spatial conjunction and implication connec-
tives alongside those of classical logic. Heap operations are axiomatized
using what we call the “small axioms”, each of which mentions only those
cells accessed by a particular command. Through these and a number of
examples we show that the formalism supports local reasoning: A speci-
fication and proof can concentrate on only those cells in memory that a
program accesses.
This paper builds on earlier work by Burstall, Reynolds, Ishtiaq and
O’Hearn on reasoning about data structures.

1 Introduction

Pointers have been a persistent trouble area in program proving. The main diffi-
culty is not one of finding an in-principle adequate axiomatization of pointer op-
erations; rather there is a mismatch between simple intuitions about the way that
pointer operations work and the complexity of their axiomatic treatments. For
example, pointer assignment is operationally simple, but when there is aliasing,
arising from several pointers to a given cell, then an alteration to that cell may
affect the values of many syntactically unrelated expressions. (See [20, 2, 4, 6]
for discussion and references to the literature on reasoning about pointers.)
We suggest that the source of this mismatch is the global view of state

taken in most formalisms for reasoning about pointers. In contrast, programmers
reason informally in a local way. Data structure algorithms typically work by
applying local surgeries that rearrange small parts of a data structure, such as
rotating a small part of a tree or inserting a node into a list. Informal reasoning
usually concentrates on the effects of these surgeries, without picturing the entire
memory of a system. We summarize this local reasoning viewpoint as follows.

To understand how a program works, it should be possible for reasoning
and specification to be confined to the cells that the program actually ac-
cesses. The value of any other cell will automatically remain unchanged.

Local reasoning is intimately tied to the complexity of specifications. Often, a
program works with a circumscribed collection of resources, and it stands to
reason that a specification should concentrate on just those resources that a
program accesses. For example, a program that inserts an element into a linked
list need know only about the cells in that list; there is no need (intuitively) to
keep track of all other cells in memory when reasoning about the program.

The central idea of the approach studied in this paper is of a “spatial con-
junction” P ∗ Q, that asserts that P and Q hold for separate parts of a data
structure. The conjunction provides a way to compose assertions that refer to
different areas of memory, while retaining disjointness information for each of
the conjuncts. The locality that this provides can be seen both on the level of
atomic heap assignments and the level of compound operations or procedures.
When an alteration to a single heap cell affects P in P ∗Q, then we know that it
will not affect Q; this gives us a way to short-circuit the need to check for poten-
tial aliases in Q. On a larger scale, a specification {P}C{Q} of a heap surgery
can be extended using a rule that lets us infer {P ∗R}C{Q∗R}, which expresses
that additional heap cells remain unaltered. This enables the initial specification
{P}C{Q} to concentrate on only the cells in the program’s footprint.

The basic idea of the spatial conjunction is implicit in early work of Burstall
[3]. It was explicitly described by Reynolds in lectures in the fall of 1999; then an
intuitionistic logic based on this idea was discovered independently by Reynolds
[20] and by Ishtiaq and O’Hearn [7] (who also introduced a spatial implication
P−∗Q, based on the logic BI of bunched implications [11, 17]). In addition,
Ishtiaq and O’Hearn devised a classical version of the logic that is more expressive
than the intuitionistic version. In particular, it can express storage deallocation.

Subsequently, Reynolds extended the classical version by adding pointer
arithmetic. This extension results in a model that is simpler and more gen-
eral than our previous models, and opens up the possibility of verifying a wider
range of low-level programs, including many whose properties are difficult to
capture using type systems. Meanwhile, O’Hearn fleshed out the theme of local
reasoning sketched in [7], and he and Yang developed a streamlined presentation
of the logic based on what we call the “small axioms”.

In this joint paper we present the pointer arithmetic model and assertion
language, with the streamlined Hoare logic. We illustrate the formalism using
programs that work with a space-saving representation of doubly-linked lists,
and a program that copies a tree.

Two points are worth stressing before continuing. First, by local we do not
merely mean compositional reasoning: It is perfectly possible to be compositional
and global (in the state) at the same time, as was the case in early denotational
models of imperative languages. Second, some aspects of this work bear a strong
similarity to semantic models of local state [19, 15, 16, 13, 12]. In particular,
the conjunction ∗ is related to interpretations of syntactic control of interference
[18, 10, 12], and the Frame Rule described in Section 3 was inspired by the idea of
the expansion of a command from [19, 15]. Nevertheless, local reasoning about
state is not the same thing as reasoning about local state: We are proposing

here that specifications and reasoning themselves be kept confined, and this is
an issue whether or not we consider programming facilities for hiding state.

2 The Model and Assertion Language

The model has two components, the store and the heap. The store is a finite
partial function mapping from variables to integers. The heap is indexed by a
subset Locations of the integers, and is accessed using indirect addressing [E]
where E is an arithmetic expression.

Ints
∆
= {...,−1, 0, 1, ...} Variables

∆
= {x, y, ...}

Atoms, Locations ⊆ Ints Locations ∩ Atoms = {}, nil ∈ Atoms

Stores
∆
= Variables ⇀fin Ints Heaps

∆
= Locations ⇀fin Ints

States
∆
= Stores× Heaps

In order for allocation to always succeed, we place a requirement on the set
Locations: For any positive integer n, there are infinitely many sequences of
length n of consecutive integers in Locations. This requirement is satisfied if we
take Locations to be the non-negative integers. (In several example formulae, we
will implicitly rely on this choice.) Then we could take Atoms to be the negative
integers, and nil to be −1.
Integer and boolean expressions are determined by valuations

[[E]]s ∈ Ints [[B]]s ∈ {true, false}

where the domain of s ∈ Stores includes the free variables of E or B. The
grammars for expressions are as follows.

E,F,G ::= x, y, ... | 0 | 1 | E + F | E × F | E − F

B ::= false | B ⇒ B | E = F | E < F | isatom?(E) | isloc?(E)

The expressions isatom?(E) and isloc?(E) test whether E is an atom or loca-
tion.
The assertions include all of the boolean expressions, the points-to relation

E 7→ F , all of classical logic, and the spatial connectives emp, ∗ and −∗ .

P,Q,R ::= B | E 7→ F Atomic Formulae
| false | P ⇒ Q | ∀x.P Classical Logic
| emp | P ∗Q | P−∗Q Spatial Connectives

Various other connectives are defined as usual: ¬P = P ⇒ false; true =
¬(false); P ∨Q = (¬P)⇒ Q; P ∧Q = ¬(¬P ∨ ¬Q); ∃x. P = ¬∀x.¬P .
We use the following notations in the semantics of assertions.

1. dom(h) denotes the domain of definition of a heap h ∈ Heaps, and dom(s) is
the domain of s ∈ Stores;

2. h#h′ indicates that the domains of h and h′ are disjoint;
3. h ∗ h′ denotes the union of disjoint heaps (i.e., the union of functions with
disjoint domains);

4. (f | i 7→ j) is the partial function like f except that i goes to j. This notation
is used both when i is and is not in the domain of f .

We define a satisfaction judgement s, h |= P which says that an assertion
holds for a given store and heap. (This assumes that Free(P) ⊆ dom(s), where
Free(P) is the set of variables occurring freely in P .)

s, h |= B iff [[B]]s = true

s, h |= E 7→ F iff {[[E]]s} = dom(h) and h([[E]]s) = [[F]]s

s, h |= false never

s, h |= P ⇒ Q iff if s, h |= P then s, h |= Q

s, h |= ∀x.P iff ∀v ∈ Ints. [s | x 7→ v], h |= P

s, h |= emp iff h = [] is the empty heap

s, h |= P ∗Q iff ∃h0, h1. h0#h1, h0 ∗ h1 = h, s, h0 |= P and s, h1 |= Q

s, h |= P−∗Q iff ∀h′. if h′#h and s, h′ |= P then s, h ∗ h′ |= Q

Notice that the semantics of E 7→ F is “exact”, where it is required that E is
the only active address in the current heap. Using ∗ we can build up descriptions
of larger heaps. For example, (10 7→ 3) ∗ (11 7→ 10) describes two adjacent cells
whose contents are 3 and 10.
On the other hand, E = F is completely heap independent (like all boolean

and integer expressions). As a consequence, a conjunction (E = F) ∗ P is true
just when E = F holds in the current store and when P holds for the same store
and some heap contained in the current one.
It will be convenient to have syntactic sugar for describing adjacent cells,

and for an exact form of equality. We also have sugar for when E is an active
address.

E 7→ F0, ..., Fn
∆
= (E 7→ F0) ∗ · · · ∗ (E + n 7→ Fn)

E
.
= F

∆
= (E = F) ∧ emp

E 7→ –
∆
= ∃y.E 7→ y (y 6∈ Free(E))

A characteristic property of
.
= is the way it interacts with ∗:

(E
.
= F) ∗ P ⇔ (E = F) ∧ P.

As an example of adjacency, consider an “offset list”, where the next node in
a linked list is obtained by adding an offset to the position of the current node.
Then the formula

(x 7→ a, o) ∗ (x+ o 7→ b,−o)

describes a two-element, circular, offset list that contains a and b in its head
fields and offsets in its link fields. For example, in a store where x = 17 and
o = 25, the formula is true of a heap

a b17

18

42

4325 -25

The semantics in this section is a model of (the Boolean version of) the logic
of bunched implications [11, 17]. This means that the model validates all the
laws of classical logic, commutative monoid laws for emp and ∗, and the “parallel
rule” for ∗ and “adjunction rules” for −∗ .

P ⇒ Q R⇒ S

P ∗R⇒ Q ∗ S

P ∗R⇒ S
P ⇒ R−∗S

P ⇒ R−∗S Q⇒ R

P ∗Q⇒ S

Other facts, true in the specific model, include
(

(E 7→ F) ∗ (E′ 7→ F ′) ∗ true
)

⇒ E 6= E′ emp ⇔ ∀x.¬(x 7→ – ∗ true)

See [21] for a fuller list.

3 The Core System

In this section we present the core system, which consists of axioms for commands
that alter the state as well as a number of inference rules. We will describe the
meanings for the various commands informally, as each axiom is discussed.
There is one axiom for each of four atomic commands. We emphasize that

the right-hand side of := is not an expression occurring in the forms x := [E]
and x := cons(E1, ..., Ek); [·] and cons do not appear within expressions. Only
x := E is a traditional assignment, and it is the only atomic command that can
be described by Hoare’s assignment axiom. In the axioms x,m, n are assumed
to be distinct variables.

The Small Axioms

{E 7→ –} [E] := F {E 7→ F}

{E 7→ –} dispose(E) {emp}

{x
.
= m}x := cons(E1, ..., Ek){x 7→ E1[m/x], ..., Ek[m/x] }

{x
.
= n}x := E {x

.
= (E[n/x])}

{E 7→ n ∧ x = m}x := [E] {x = n ∧ E[m/x] 7→ n}

The Structural Rules

Frame Rule

{P}C{Q}

{P ∗R}C{Q ∗R}
Modifies(C) ∩ Free(R) = {}

Auxiliary Variable Elimination

{P}C {Q}
x 6∈ Free(C)

{∃x.P}C {∃x.Q}

Variable Substitution

{P}C {Q} {x1, ..., xk} ⊇ Free(P,C,Q), and
xi ∈ Modifies(C) implies
Ei is a variable not free in any other Ej({P}C {Q})[E1/x1, ..., Ek/xk]

Rule of Consequence

P ′ ⇒ P {P}C {Q} Q⇒ Q′

{P ′}C {Q′}

The first small axiom just says that if E points to something beforehand (so
it is active), then it points to F afterwards, and it says this for a small portion of
the state in which E is the only active cell. This corresponds to the operational
idea of [E] := F as a command that stores the value of F at address E in
the heap. The axiom also implicitly says that the command does not alter any
variables; this is covered by our definition of its Modifies set below.
The dispose(E) instruction deallocates the cell at address E. In the post-

condition for the dispose axiom emp is a formula which says that the heap is
empty (no addresses are active). So, the axiom states that if E is the sole active
address and it is disposed, then in the resulting state there will be no active
addresses. Here, the exact points-to relation is necessary, in order to be able to
conclude emp on termination.
The x := cons(E1, ..., Ek) command allocates a contiguous segment of k cells,

initialized to the values of E1, ..., Ek, and places in x the address of the first cell
from the segment. The precondition of the axiom uses the exact equality, which
implies that the heap is empty. The axiom says that if we begin with the empty
heap and a store where x = m, we will obtain k contiguous cells with appropriate
values. The variable m in this axiom is used to record the value of x before the
command is executed.
We only get fixed-length allocation from x := cons(E1, ..., Ek). It is also

possible to formulate an axiom for a command x := alloc(E) that allocates a
segment of length E; see [21].
We have also included small axioms for the other two commands, but they are

less important. These commands are not traditionally as problematic, because
they do not involve heap alteration.

The small axioms are so named because each mentions only the area of heap
accessed by the corresponding command. For [E] := F and x := [E] this is
one cell, in the axioms for dispose or cons precisely those cells allocated or
deallocated are mentioned, and in x := E no heap cells are accessed.
The notion of free variable referred to in the structural rules is the standard

one. Modifies(C) is the set of variables that are assigned to within C. The Mod-
ifies set of each of x := cons(E1, ..., Ek), x := E and x := [E] is {x}, while for
dispose(E) and [E] := F it is empty. Note that the Modifies set only tracks
potential alterations to the store, and says nothing about the heap cells that
might be modified.
In this paper we treat the Rule of Consequence semantically. That is, when

the premisses P ′ ⇒ P and Q⇒ Q′ are true in the model for arbitrary store/heap
pairs, we will use the rule without formally proving the premisses.
The Frame Rule codifies a notion of local behaviour. The idea is that the pre-

condition in {P}C{Q} specifies an area of storage, as well as a logical property,
that is sufficient for C to run and (if it terminates) establish postcondition Q.
If we start execution with a state that has additional heap cells, beyond those
described by P , then the values of the additional cells will remain unaltered. We
use ∗ to separate out these additional cells. The invariant assertion R is what
McCarthy and Hayes called a “frame axiom” [9]. It describes cells that are not
accessed, and hence not changed, by C.
As a warming-up example, using the Frame Rule we can prove that assigning

to the first component of a binary cons cell does not affect the second component.

{x 7→ a} [x] := b {x 7→ b}

{(x 7→ a) ∗ (x+ 1 7→ c)} [x] := b {(x 7→ b) ∗ (x+ 1 7→ c)}
Frame

{x 7→ a, c} [x] := b {x 7→ b, c}
Syntactic Sugar

The overlap of free variables between x + 1 7→ c and [x] := b is allowed here
because Modifies([x] := b) = {}.

4 Derived Laws

The small axioms are simple but not practical. Rather, they represent a kind
of thought experiment, an extreme take on the idea that a specification can
concentrate on just those cells that a program accesses.
In this section we show how the structural rules can be used to obtain a

number of more convenient derived laws (most of which were taken as primitive
in [20, 7]). Although we will not explicitly state a completeness result, along
the way we will observe that weakest preconditions or strongest postconditions
are derivable for each of the individual commands. This shows a sense in which
nothing is missing in the core system, and justifies the claim that each small
axiom gives enough information to understand how its command works.
We begin with [E] := F . If we consider an arbitrary invariant R then we

obtain the following derived axiom using the Frame Rule with the small axiom

as its premise.

{(E 7→ –) ∗ R} [E] := F {(E 7→ F) ∗ R}

This axiom expresses a kind of locality: Assignment to [E] affects the heap cell
at position E only, and so cannot affect the assertion R. In particular, there is
no need to generate alias checks within R. With several more steps of Auxiliary
Variable Elimination we can obtain an axiom that is essentially the one from
[20]:

{∃x1, · · · , xn. (E 7→ –) ∗ R} [E] := F {∃x1, · · · , xn. (E 7→ F) ∗ R}

where x1, ..., xn 6∈ Free(E,F).

For allocation, suppose x 6∈ Free(E1, ..., Ek). Then a simpler version of the
small axiom is

{emp}x := cons(E1, ..., Ek){x 7→ E1, ..., Ek }

This can be derived using rules for auxiliary variables and Consequence. If,
further, R is an assertion where x 6∈ Free(R) then

{emp}x := cons(E1, ..., Ek) {x 7→ E1, ..., Ek }

{emp ∗R}x := cons(E1, ..., Ek) {(x 7→ E1, ..., Ek) ∗R}
Frame

{R}x := cons(E1, ..., Ek) {(x 7→ E1, ..., Ek) ∗R}
Consequence

The conclusion is the strongest postcondition, and a variant involving auxiliary
variables handles the case when x ∈ Free(R,E1, ..., Ek).

As an example of the use of these laws, recall the assertion (x 7→ a, o)∗(x+o 7→
b,−o) that describes a circular offset-list. Here is a proof outline for a sequence
of commands that creates such a structure.

{emp}
x := cons(a, a)
{x 7→ a, a}
t := cons(b, b)
{(x 7→ a, a) ∗ (t 7→ b, b)}
[x+ 1] := t− x
{(x 7→ a, t− x) ∗ (t 7→ b, b)}
[t+ 1] := x− t
{(x 7→ a, t− x) ∗ (t 7→ b, x− t)}
{∃o. (x 7→ a, o) ∗ (x+ o 7→ b,−o)}

The last step, which is an instance of the Rule of Consequence, uses t − x as
the witness for o. Notice how the alterations in the last two commands are done
locally. For example, because of the placement of ∗ we know that x+1 must be
different from t and t + 1, so the assignment [x + 1] := t − x cannot affect the
t 7→ b, b conjunct.

If we wish to reason backwards, then −∗ can be used to express weakest
preconditions. Given an arbitrary postcondition Q, choosing (E 7→ F)−∗Q as
the invariant gives a valid precondition for [E] := F

{E 7→ –} [E] := F {E 7→ F}

{(E 7→ –) ∗ ((E 7→ F)−∗Q)} [E] := F {(E 7→ F) ∗ ((E 7→ F)−∗Q)}
Frame

{(E 7→ –) ∗ ((E 7→ F)−∗Q)} [E] := F {Q}
Consequence

The Consequence step uses an adjunction rule for ∗ and −∗ . The precondition
obtained is in fact the weakest: it expresses the “update as deletion followed by
extension” idea explained in [7]. The weakest precondition for allocation can also
be expressed with −∗ .
The weakest precondition for dispose can be computed directly, because the

Modifies set of dispose(E) is empty.

{E 7→ –} dispose(E) {emp}

{(E 7→ –) ∗R} dispose(E) {emp ∗R}
Frame

{(E 7→ –) ∗R} dispose(E) {R}
Consequence

The conclusion is (a unary version of) the axiom for dispose from [7].
The weakest precondition axiom for x := E is the usual one of Hoare. For

x := [E] is it similar, using ∃ to form a “let binder” (where n 6∈ Free(E,P, x).

{P [E/x]}x := E{P}

{∃n. (true ∗ E 7→ n) ∧ P [n/x]}x := [E]{P}

The formal derivations of these laws from the small axioms make heavy use of
Variable Substitution and Auxiliary Variable Elimination; the details are con-
tained in Yang’s thesis [24].
Another useful derived law for x := [E] is for the case when x 6∈ Free(E,R),

y 6∈ Free(E), and when the precondition is of the form (E 7→ y) ∗R. Then,

{(E 7→ y) ∗R}x := [E] {(E 7→ x) ∗R[x/y]}.

5 Beyond the Core

In the next few sections we give some examples of the formalism at work. In
these examples we use sequencing, if-then-else, and a construct newvar for
declaring a local variable. We can extend the core system with their usual Hoare
logic rules.

{P ∧B}C {Q} {P ∧ ¬B}C ′ {Q}

{P} ifB thenC elseC ′{Q}

{P}C1 {Q} {Q}C2 {R}

{P}C1;C2 {R}

{P}C {Q}

{P} newvarx.C {Q}
x 6∈ Free(P,Q)

We will also use simple first-order procedures. The procedure definitions we
need will have the form

procedure p(x1, ..., xn; y)
B

where x1, ..., xn are variables not changed in the body B and y is a variable
that is assigned to. Procedure headers will always contain all of the variables
occurring freely in a procedure body. Accordingly, we define

Modifies(p(x1, ..., xn; y)) = {y}
Free(p(x1, ..., xn; y)) = {x1, ..., xn, y}.

We will need these clauses when applying the structural rules. In the examples
the calling mechanism can be taken to be either by-name for all the parameters,
or by-value on the xi’s and by-reference on y.
Procedures are used in Section 7 mainly to help structure the presentation,

but in Section 6 we also use recursive calls. There we appeal to the standard
partial correctness rule which allows us to use the specification we are trying to
prove as an assumption when reasoning about the body [5].
Our treatment in what follows will not be completely formal. We will continue

to use the Rule of Consequence in a semantic way, and we will make inductive
definitions without formally defining their semantics. Also, as is common, we will
present program specifications annotated with intermediate assertions, rather
than give step-by-step proofs.

6 Tree Copy

In this section we consider a procedure for copying a tree. The purpose of the
example is to show the Frame Rule in action.
For our purposes a tree will either be an atom a or a pair (τ1, τ2) of trees.

Here is an inductive definition of a predicate tree τ i which says when a number
i represents a tree τ .

tree a i
∆
⇐⇒ i = a ∧ isatom?(a) ∧ emp

tree (τ1, τ2) i
∆
⇐⇒ ∃x, y. (i 7→ x, y) ∗ (tree τ1 x ∗ tree τ2 y)

These two cases are exclusive. For the first to be true i must be an atom, where
in the second it must be a location.
The tree τ i predicate is “exact”, in the sense that when it is true the current

heap must have all and only those heap cells used to represent the tree. If τ has
n pairs in it and s, h |= tree τ i then the domain of h has size 2n.
The specification of the CopyTree procedure is
{

tree τ p
}

CopyTree(p; q)
{

(tree τ p) ∗ (tree τ q)
}

.

and here is the code.

procedure CopyTree(p; q)
newvar i, j, i′, j′.
{tree τ p}
if isatom?(p) then
{τ = p ∧ isatom?(p) ∧ emp}
{(tree τ p) ∗ (tree τ p)}
q := p
{(tree τ p) ∗ (tree τ q)}

else

{∃τ1, τ2, x, y. τ
.
= (τ1, τ2) ∗ (p 7→ x, y) ∗ (tree τ1 x) ∗ (tree τ2 y)}

i := [p]; j := [p+ 1];
{∃τ1, τ2. τ

.
= (τ1, τ2) ∗ (p 7→ i, j) ∗ (tree τ1 i) ∗ (tree τ2 j)}

CopyTree(i; i′);
{∃τ1, τ2. τ

.
= (τ1, τ2) ∗ (p 7→ i, j) ∗ (tree τ1 i) ∗ (tree τ2 j) ∗ (tree τ1 i′)}

CopyTree(j; j′);
{∃τ1, τ2. τ

.
= (τ1, τ2) ∗ (p 7→ i, j) ∗ (tree τ1 i) ∗ (tree τ2 j) ∗ (tree τ1 i′)

∗(tree τ2 j′)}
q := cons(i′, j′)
{∃τ1, τ2. τ

.
= (τ1, τ2) ∗ (p 7→ i, j) ∗ (tree τ1 i) ∗ (tree τ2 j) ∗ (tree τ1 i′)

∗(tree τ2 j′) ∗ (q 7→ i′, j′)}
{(tree τ p) ∗ (tree τ q)}

Most of the steps are straightforward, but the two recursive calls deserve
special comment. In proving the body of the procedure we get to use the speci-
fication of CopyTree as an assumption. But at first sight the specification does
not appear to be strong enough, since we need to be sure that CopyTree(i; i′)
does not affect the assertions p 7→ i, j and tree τ2 j. Similarly, we need that
CopyTree(j; j′) does not affect tree τ1 i′.
These “does not affect” properties are obtained from two instances of the

Frame Rule:

{tree τ1 i} CopyTree(i; i′) {(tree τ1 i) ∗ (tree τ1 i′)}

{τ
.
= (τ1, τ2) ∗ (p 7→ i, j) ∗ (tree τ1 i) ∗ (tree τ2 j)}

CopyTree(i; i′)
{τ

.
= (τ1, τ2) ∗ (p 7→ i, j) ∗ (tree τ1 i) ∗ (tree τ2 j) ∗ (tree τ1 i′)}

and

{tree τ2 j} CopyTree(j; j′) {(tree τ2 j) ∗ (tree τ2 j′)}

{τ
.
= (τ1, τ2) ∗ (p 7→ i, j) ∗ (tree τ1 i) ∗ (tree τ2 j) ∗ (tree τ1 i′)}

CopyTree(j; j′)
{τ

.
= (τ1, τ2) ∗ (p 7→ i, j) ∗ (tree τ1 i) ∗ (tree τ2 j) ∗ (tree τ1 i′) ∗ (tree τ2 j′)}.

Then, the required triples for the calls are obtained using Auxiliary Variable
Elimination to introduce ∃τ1, τ2. (It would also have been possible to strip the
existential at the beginning of the proof of the else part, and then reintroduce
it after finishing instead of carrying it through the proof.)

This section illustrates two main points. First, if one does not have some
way of representing or inferring frame axioms, then the proofs of even simple
programs with procedure calls will not go through. In particular, for recursive
programs attention to framing is essential if one is to obtain strong enough
induction hypotheses. The CopyTree procedure could not be verified without the
Frame Rule, unless we were to complicate the initial specification by including
some explicit representation of frame axioms.

Second, the specification of CopyTree illustrates the idea of a specification
that concentrates only on those cells that a program accesses. And of course
these two points are linked; we need some way to infer frame axioms, or else
such a specification would be too weak.

7 Difference-linked Lists

The purpose of this section is to illustrate the treatment of address arithmetic,
and also disposal. We do this by considering a space-saving representation of
doubly-linked lists.

Conventionally, a node in a doubly-linked list contains a data field, together
with a field storing a pointer n to the next node and another storing a pointer p
to the previous node. In the difference representation we store n− p in a single
field rather than have separate fields for n and p. In a conventional doubly-linked
list it is possible to move either forwards or backwards from a given node. In
a difference-linked list given the current node c we can lookup the difference
d = n−p between next and previous pointers. This difference does not, by itself,
give us enough information to determine either n or p. However, if we also know
p we can calculate n as d + p, and similarly given n we can obtain p as n − d.
So, using the difference representation, it is possible to traverse the list in either
direction as long as we keep track of the previous or next node as we go along.

A similar, more time-efficient, representation is sometimes given using the
xor of pointers rather than their difference.

We now give a definition of a predicate dl. If we were working with conven-
tional doubly-linked lists then dl a1 · · · an (i, i

′, j, j′) would correspond to

ana1

. . .

. . .

i j′

i′

j

Typically, a doubly-linked list with front i and back j ′ would satisfy the predicate
dlα (i, nil, nil, j′). The reason for the internal nodes i′ and j is to allow us to
consider partial lists, not terminated by nil.
A definition of dl for conventional doubly-linked lists was given in [20]. The

main alteration we must make is to use

a

n

p

a

n-p
instead of

to represent a node.
Here is the definition.

dl ε (i, i′, j, j′)
∆
⇐⇒ emp ∧ i = j ∧ i′ = j′

dl aα (i, i′, k, k′)
∆
⇐⇒ ∃j.(i 7→ a, j − i′) ∗ dlα (j, i, k, k′)

We are using juxtaposition to represent the consing of an element a onto the
front of a sequence α, and ε to represent the empty sequence. As a small example,
dl ab (5, 1, 3, 8) is true of

a b85

6 98-1 3-5

It is instructive to look at how this definition works for a sequence consisting
of a single element, a. For dl a (i, i′, j, j′) to hold we must have ∃x.(i 7→ a, x −
i′) ∗ dl ε (x, i, j, j′); we can pick x to be j, as suggested by the i = j part of the
case for ε. We are still left, however, with the requirement that i = j ′, and this
in fact leads us to the characterization i 7→ a, j − i′ ∧ i = j′ of dl a (i, i′, j, j′).
Thus, a single-lement list exemplifies how the ε case is arranged to be compat-

ible with the operation of consing an element onto the front of a sequence. The
roles of the i = j and i′ = j′ requirements are essentially reversed for the dual
operation, of adding a single element onto the end of a sequence. This operation
is characterized as follows.

dlαa (i, i′, k, k′)⇔ ∃j′. dlα (i, i′, k′, j′) ∗ k′ 7→ a, k − j′

In the examples to come we will also use the following properties.

j′ 6= nil ∧ dlα (i, nil, j, j ′)⇒ ∃β, a, k. α
.
= βa ∗

dlβ (i, i′, j′, k) ∗ j′ 7→ a, j − k

dlα (i, i′, j, nil)⇒ emp ∧ α = ε ∧ i′ = nil ∧ i = j

dlα (nil, i′, j, j′)⇒ emp ∧ α = ε ∧ j = nil ∧ i′ = j′

Doubly-linked lists are often used to implement queues, because they make
it easy to work at either end. We axiomatize an enqueue operation.
Rather than give the code all at once, it will be helpful to use a procedure

to encapsulate the operation of setting a right pointer . Suppose we are in the
position of having a pointer j ′, whose difference field represents pointing on the
right to, say, j. We want to swing the right pointer so that it points to k instead.
The specification of the procedure is

{dlα (i, nil, j, j′)} setrptr(j, j′, k; i){dlα (i, nil, k, j′)}.

Notice that this specification handles the α = ε case, when j ′ does not point to
an active cell.
Postponing the definition and proof of setrptr for a moment, we can use it

to verify a code fragment for putting an value a on the end of a queue.

{dlα (front, nil, nil, back)}
t := back;
{dlα (front, nil, nil, t)}
back := cons(a, nil− t);
{dlα (front, nil, nil, t) ∗ back 7→ a, nil− t}
setrptr(nil, t, back; front)
{dlα (front, nil, back, t) ∗ back 7→ a, nil− t}
{dlαa (front, nil, nil, back)}

The code creates a new node containing the value a and the difference nil− t.
Then, the procedure call setrptr(nil, t, back; front) swings the right pointer
associated with t so that the next node becomes back. In the assertions, the effect
of back := cons(a, nil−t) is axiomatized by tacking ∗(back 7→ a, nil−t) onto its
precondition. This sets us up for the call to setrptr; because of the placement
of ∗ we know that the call will not affect (back 7→ a, nil − t). More precisely,
the triple for the call is obtained using Variable Substitution to instantiate the
specification, and the Frame Rule with (back 7→ a, nil− t) as the invariant.
Finally, here is an implementation of setrptr(j, j ′, k; i).

{dlα (i, nil, j, j′)}
if j′ = nil then

{α = ε ∧ emp ∧ j′ = nil}
i := k

{α = ε ∧ emp ∧ j′ = nil ∧ i = k}
else

{∃α′, b, p. (α
.
= α′b) ∗ dlα′ (i, nil, j′, p) ∗ (j′ 7→ b, j − p)}

newvar d. d := [j′ + 1]; [j′ + 1] := k + d− j
{∃α′, b, p. (α

.
= α′b) ∗ dlα′ (i, nil, j′, p) ∗ (j′ 7→ b, k − p)}

{dlα (i, nil, k, j′)}

The tricky part in the verification is the else branch of the conditional, where
the code has to update the difference field of j ′ appropriately so that k becomes
the next node of j′. It updates the field by adding k and subtracting j; since

the field initially stores j − p, where p is the address of the previous node, such
calculation results in the value k − p.

The use of the temporary variable d in the else branch is a minor irritation.
We could more simply write [j′+1] := k+[j′+1]− j if we were to allow nesting
of [·]. An unresolved question is whether, in our formalism, such nesting could
be dealt with in a way simpler than compiling it out using temporary variables.

Now we sketch a similar development for code that implements a dequeue
operation. In this case, we use a procedure setlptr(i, i′, k; j′), which is similar
to setrptr except that it swings a pointer to the left instead of to the right.

{dlα (i, i′, nil, j′)} setlptr(i, i′, k; j′) {dlα (i, k, nil, j′)}

The dequeue operation removes the first element of a queue and places its
data in x.

{dl aα (front, nil, nil, back)}
{∃n′. front 7→ a, n′ − nil ∗ dlα (n′, front, nil, back)}
x := [front]; d := [front+ 1]; n := d+ nil;
{x

.
= a ∗ front 7→ a, n− nil ∗ dlα (n, front, nil, back)}

dispose(front); dispose(front+ 1);
{x

.
= a ∗ dlα (n, front, nil, back)}

setlptr(n, front, nil; back)
{x

.
= a ∗ dlα (n, nil, nil, back)}

This code stores the data of the first node in the variable x and obtains the
next pointer n using arithmetic with the difference field. The placement of ∗
sets us up for disposing front and front + 1: The precondition to these two
commands is equivalent to an assertion of the form (front 7→ a) ∗ (front+ 1 7→
n′ − nil) ∗ R, which is compatible with what is given by two applications of
the weakest precondition rule for dispose. After the disposals have been done,
the procedure call setlptr(n, front, nil; back) resets the difference field of the
node n so that its previous node becomes nil.

The code for setlptr(i, i′, k; j′) is as follows.

{dlα (i, i′, nil, j′)}
if i = nil then

{α = ε ∧ emp ∧ i = nil}
j′ := k

{α = ε ∧ emp ∧ i = nil ∧ k = j ′}
else

{∃α′, a, n. (α
.
= aα′) ∗ dlα′ (n, i, nil, j′) ∗ (i 7→ a, n− i′)}

[i+ 1] := [i+ 1] + i′ − k
{∃α′, a, n. (α

.
= aα′) ∗ dlα′ (n, i, nil, j′) ∗ (i 7→ a, n− k)}

{dlα (i, k, nil, j′)}

8 Memory Faults and Tight Specifications

In this paper we will not include a semantics of commands or precise interpreta-
tion of triples, but in this section we give an informal discussion of the semantic
properties of triples that the axiom system relies on.
Usually, the specification form {P}C{Q} is interpreted “loosely”, in the sense

that C might cause state changes not described by the pre and postcondition.
This leads to the need for explicit frame axioms. An old idea is to instead con-
sider a “tight” interpretation of {P}C{Q}, which should guarantee that C only
alters those resources mentioned in P and Q; unfortunately, a precise defini-
tion of the meaning of tight specifications has proven elusive [1]. However, the
description of local reasoning from the Introduction, where a specification and
proof concentrate on a circumscribed area of memory, requires something like
tightness. The need for a tight interpretation is also clear from the small axioms,
or the specifications of setlptr, setrptr and CopyTree.
To begin, the model here calls for a notion of memory fault. This can be

pictured by imagining that there is an “access bit” associated with each location,
which is on iff the location is in the domain of the heap. Any attempt to read
or write a location whose access bit is off causes a memory fault, so if E is not
an active address then [E] := E ′ or x := [E] results in a fault. A simple way
to interpret dispose(E) is so that it faults if E is not an active address, and
otherwise turns the access bit off.
Then, a specification {P}C{Q} holds iff, whenever C is run in a state satisfy-

ing P : (i) it does not generate a fault; and (ii) if it terminates then the final state
satisfiesQ. (This is a partial correctness interpretation; the total correctness vari-
ant alters (ii) by requiring that there are no infinite reductions.) For example,
according to the fault-avoiding interpretation, {17 7→ –} [17] := 4 {17 7→ 4} holds
but {true} [17] := 4 {17 7→ 4} does not. The latter triple fails because the empty
heap satisfies true but [17] := 4 generates a memory fault when executed in the
empty heap.
In the logic, faults are precluded by the assumptions E 7→ – and E 7→ n in

the preconditions of the small axioms for [E] := E ′, x := [E] and dispose(E).
The main point of this section is that this fault-avoiding interpretation of

{P}C{Q} gives us a precise formulation of the intuitive notion of tightness. (We
emphasize that this requires faults, or a notion of enabled action, and we do not
claim that it constitutes a general analysis of the notion of tight specification.)

The avoidance of memory faults in specifications ensures that a well-
specified program can only dereference (or dispose) those heap cells guar-
anteed to exist by the precondition, or those which are allocated during
execution.

Concretely, if one executes a program proved to satisfy {P}C{Q}, starting in a
state satisfying P , then memory access bits are unnecessary. A consequence is
that it is not necessary to explicitly describe all the heap cells that don’t change,
because those not mentioned automatically stay the same.

Fault avoidance in {P}C{Q} ensures that if C is run in a state strictly
larger than one satisfying P , then any additional cells must stay unchanged;
an attempt to write any of the additional cells would falsify the specification,
because it would generate a fault when applied to a smaller heap satisfying P .
For example, if {17 7→ –}C {17 7→ 4} holds then {(17 7→ –)∗(19 7→ 3)}C {(17 7→
4) ∗ (19 7→ 3)} should as well, as mandated by the Frame Rule, because any
attempt to dereference address 19 would falsify {17 7→ –}C {17 7→ 4} if we give
C a state where the access bit for 19 is turned off. (This last step is delicate,
in that one could entertain operations, such as to test whether an access bit is
on, which contradict it; what is generally needed for it is a notion which can be
detected in the logic but not the programming language.)

9 Conclusion

We began the paper by suggesting that the main challenge facing verification
formalisms for pointer programs is to capture the informal local reasoning used
by programmers, or in textbook-style arguments about data structures. Part of
the difficulty is that pointers exacerbate the frame problem [9, 1]. (It is only
part of the difficulty because the frame problem does not, by itself, say anything
about aliasing.) For imperative programs the problem is to find a way, preferably
succinct and intuitive, to describe or imply the frame axioms, which say what
memory cells are not altered by a program or procedure. Standard methods, such
as listing the variables that might be modified, do not work easily for pointer
programs, because there are often many cells not directly named by variables in
a program or program fragment. These cells might be accessed by a program by
following pointer chains in memory, or they might not be accessed even when
they are reachable.
The approach taken here is based on two ideas. The first, described in Section

8, to use a fault-avoiding interpretation of triples to ensure that additional cells,
active but not described by a precondition, are not altered during execution.
The second is to use the ∗ connective to infer invariant properties implied by
these tight specifications.
The frame problem for programs is perhaps more approachable than the gen-

eral frame problem. Programs come with a clear operational semantics, and one
can appeal to concrete notions such as a program’s footprint. But the methods
here also appear to be more generally applicable. It would be interesting to give
a precise comparison with ideas from the AI literature [22], as well as with vari-
ations on Modifies clauses [1, 8]. We hope to report further on these matters –
in particular on the ideas outlined in Section 8 – in the future. (Several relevant
developments can be found in Yang’s thesis [24].)
There are several immediate directions for further work. First, the interaction

between local and global reasoning is in general difficult, and we do not mean to
imply that things always go as smoothly as in the example programs we chose.
They fit our formalism nicely because their data structures break naturally into
disjoint parts, and data structures that use more sharing are more difficult to

handle. This includes tree representations that allow sharing of subtrees, and
graph structures. Yang has treated a nontrivial example, the Shorr-Waite graph
marking algorithm, using the spatial implication −∗ is used to deal with the
sharing found there [23]. More experience is needed in this direction. Again, the
challenging problem is not to find a system that is adequate in principle, but
rather is to find rules or reasoning idioms that cover common cases simply and
naturally.
Second, the reasoning done in examples in this paper is only semi-formal, be-

cause we have worked semantically when applying the Rule of Consequence. We
know of enough axioms to support a number of examples, but a comprehensive
study of the proof theory of the assertion language is needed. Pym has worked
out a proof theory of the underlying logic BI [17] that we can draw on. But here
we use a specific model of BI and thus require an analysis of properties special
to that model. Also needed is a thorough treatment of recursive definitions of
predicates.
Finally, the examples involving address arithmetic with difference-linked lists

are simplistic. It would be interesting to try to verify more substantial programs
that rely essentially on address arithmetic, such as memory allocators or garbage
collectors.

Acknowledgements.
O’Hearn would like to thank Richard Bornat, Cristiano Calcagno and David

Pym for discussions about local reasoning and bunched logic. He was supported
by the EPSRC, under the “Verified Bytecode” and “Local Reasoning about
State” grants. Reynolds was supported by NSF grant CCR-9804014. Yang was
supported by the NSF under grant INT-9813854.

References

[1] A. Borgida, J. Mylopoulos, and R. Reiter. On the frame problem in procedure
specifications. IEEE Transactions of Software Engineering, 21:809–838, 1995.

[2] R. Bornat. Proving pointer programs in Hoare logic. Mathematics of Program
Construction, 2000.

[3] R.M. Burstall. Some techniques for proving correctness of programs which alter
data structures. Machine Intelligence, 7:23–50, 1972.

[4] C. Calcagno, S. Isthiaq, and P. W. O’Hearn. Semantic analysis of pointer aliasing,
allocation and disposal in Hoare logic. Proceedings of the Second International
ACM SIGPLAN Conference on Principles and Practice of Declarative Program-
ming, 2000.

[5] P. Cousot. Methods and logics for proving programs. In J. van Leeuwen, editor,
Handbook of Theoretical Computer Science, volume B, pages 843–993. Elsevier,
Amsterdam, and The MIT Press, Cambridge, Mass., 1990.

[6] C. A. R. Hoare and J. He. A trace model for pointers and objects. In Rachid Guer-
raoui, editor, ECCOP’99 - Object-Oriented Programming, 13th European Confer-
ence, pages 1–17, 1999. Lecture Notes in Computer Science, Vol. 1628, Springer.

[7] S. Isthiaq and P.W. O’Hearn. BI as an assertion language for mutable data struc-
tures. In Conference Record of the Twenty-Eighth Annual ACM Symposium on
Principles of Programming Languages, pages 39–46, London, January 2001.

[8] K. R. M. Leino and G. Nelson. Data abstraction and information hiding. Technical
Report Reearch Report 160, Compaq Systems Research Center, Palo Alto, CA,
November 2000.

[9] J. McCarthy and P. Hayes. Some philosophical problems from the standpoint of
artificial intelligence. Machine Intelligence, 4:463–502, 1969.

[10] P. W. O’Hearn. Resource interpretations, bunched implications and the αλ-
calculus. In Typed λ-calculus and Applications, J-Y Girard editor, L’Aquila, Italy,
April 1999. Lecture Notes in Computer Science 1581.

[11] P. W. O’Hearn and D. J. Pym. The logic of bunched implications. Bulletin of
Symbolic Logic, 5(2):215–244, June 99.

[12] P. W. O’Hearn and J. C. Reynolds. From Algol to polymorphic linear lambda-
calculus. J. ACM, 47(1):267–223, January 2000.

[13] P. W. O’Hearn and R. D. Tennent. Parametricity and local variables. J. ACM,
42(3):658–709, May 1995. Also in [14], vol 2, pages 109–164.

[14] P. W. O’Hearn and R. D. Tennent, editors. Algol-like Languages. Two volumes,
Birkhauser, Boston, 1997.

[15] F. J. Oles. A Category-Theoretic Approach to the Semantics of Programming
Languages. Ph.D. thesis, Syracuse University, Syracuse, N.Y., 1982.

[16] F. J. Oles. Functor categories and store shapes. In O’Hearn and Tennent [14],
pages 3–12. Vol. 2.

[17] D. J. Pym. The Semantics and Proof Theory of the Logic of Bunched Implications.
Monograph to appear, 2001.

[18] J. C. Reynolds. Syntactic control of interference. In Conference Record of the
Fifth Annual ACM Symposium on Principles of Programming Languages, pages
39–46, Tucson, Arizona, January 1978. ACM, New York. Also in [14], vol 1.

[19] J. C. Reynolds. The essence of Algol. In J. W. de Bakker and J. C. van Vliet,
editors, Algorithmic Languages, pages 345–372, Amsterdam, October 1981. North-
Holland, Amsterdam. Also in [14], vol 1, pages 67-88.

[20] J. C. Reynolds. Intuitionistic reasoning about shared mutable data structure. In
Jim Davies, Bill Roscoe, and Jim Woodcock, editors, Millennial Perspectives in
Computer Science, pages 303–321, Houndsmill, Hampshire, 2000. Palgrave.

[21] J. C. Reynolds. Lectures on reasoning about shared mutable data structure. IFIP
Working Group 2.3 School/Seminar on State-of-the-Art Program Design Using
Logic. Tandil, Argentina, September 2000.

[22] M. Shanahan. Solving the Frame Problem: A Mathematical Investigation of the
Common Sense Law of Inertia. MIT Press, 1997.

[23] H. Yang. An example of local reasoning in BI pointer logic: the Schorr-Waite
graph marking algorithm. Manuscript, October 2000.

[24] H. Yang. Local Reasoning for Stateful Programs. Ph.D. thesis, University of
Illinois, Urbana-Champaign, Illinois, USA, 2001 (expected).

