
Separation Logic Tutorial
(To appear in Proceedings of ICLP’08)

Peter O’Hearn?

Queen Mary, University of London

Separation logic is an extension of Hoare’s logic for reasoning about programs
that manipulate pointers. It is based on the separating conjunction P ∗Q, which
asserts that P and Q hold for separate portions of computer memory.

This tutorial on separation logic has three parts.

1. Basics. Concentrating on highlights from the early work [1–4].
2. Model Theory. The model theory of separation logic evolved from the general

resource models of bunched logic [5–7], and includes an account of program
dynamics in terms of their interaction with resource [8, 9].

3. Proof Theory. I will describe those aspects of the proof theory, particularly
new entailment questions (frame and anti-frame inference [10, 11]), which
are important for applications in mechanized program verification.

1 Basics

The Separating Conjunction. I introduce the separating conjunction by example.
Consider the following memory structure.

x|->y * y|-> x

x y

x=10

y=42
42

10 42

10

We read the formula at the top of this figure as “x points to y, and separately y
points to x”. Going down the middle of the diagram is a line which represents a
heap partitioning: a separating conjunction asks for a partitioning that divides
memory into parts satisfying its two conjuncts.

At the bottom of the figure we have given an example of a concrete memory
description that corresponds to the diagram. There, x and y have values 10 and
? I gratefully acknowledge the support of an EPSRC Advanced Fellowship and a Royal

Society Wolfson Research Merit Award.

42 (in the “environment”, or “register bank”), and 10 and 42 are themselves
locations with the indicated contents (in the “heap”, or even “RAM”). It should
be clear how the picture corresponds to the concrete structure. It is simplest to
think in terms of the picture semantics of separation logic, but if confusion arises
as to what diagrams mean you can always drop down to the RAM level.

The indicated separating conjunction above is true of the pictured memory
because the parts satisfy the conjuncts. That is, the components

y|-> x

x y

x=10

y=42

42

10

x|->y

x y

x=10

y=42 42

10

And

Separately

are separate sub-states that satisfy the relevant conjuncts.
It can be confusing to see a diagram like the one on the left where “x points

to y and yet to nowhere”. This is disambiguated in the RAM description below
the diagram. In the more concrete description x and y denote values (10 and
42), x’s value is an allocated memory address which contains y’s value, but y’s
value is not allocated. Notice also that, in comparison to the first diagram, the
separating conjunction splits the heap/RAM, but it does not split the association
of variables to values: heap cells, but not variable associations, are deleted from
the original situation to obtain the sub-states.

When reasoning about programs that manipulate data structures, one nor-
mally wants to use inductively-defined predicates that describe such structures.
Here is a definition for a predicate that describes binary trees:

tree(E) ⇐⇒ if E = nil then emp

else ∃x, y. (E 7→l:x, r: y) ∗ tree(x) ∗ tree(y)

In this definition we have used a record notation (E 7→l:x, r: y) for a “points-to
predicate” that describes a single1 record E that contains x in its l field and y in
its r field. nil can be taken to be any non-addressible number2. The separating
conjunction between this assertion and the two recursive instances of tree ensures
that there are no cycles, and the separating conjunction between the two subtrees
ensures that we have a tree and not a dag. The emp predicate in the base case
1 It denotes a singleton heap , a heaplet wth only one cell.
2 You can map these notions to the RAM model, or just imagine a record model.

2

of the inductive definition describes the empty heap (or portion of heap). A
consequence of this is that when tree(E) holds there are no extra cells, not in
the tree, in a state satisfying the predicate. This is a key specification pattern
often employed in separation logic proofs: we use assertions that describe only
as much state as is needed, and nothing else.

At this point you might think that I have described an exotic-looking formal-
ism for writing assertions about heaps and you might wonder: why bother? In
fact, the mere ability to describe heaps is not at all important in and of itself, and
in this separation logic adds nothing significant to traditional predicate logic. It
is only when we consider the interaction between assertions and operations for
mutating memory that the point of the formalism begins to come out.

In-place Reasoning. I am going to try something that might seem eccentric: I
am going to give you a program proof, without telling you the inference rules it
uses. I am hoping that you will find the reasoning steps I show to be intuitively
understandable, prior to becoming embroiled in too many formalities. Whether
I succeed in my aim is, of course, for you to judge.

Consider the following procedure for disposing the elements in a tree.
procedure DispTree(p)
local i, j;
if p 6=nil then

i = p�l ; j:= p�r; DispTree(i); DispTree(j); free(p)

This is the expected procedure that walks a tree, recursively disposing left and
right subtrees and then the root pointer. It uses a representation of tree nodes
with left, right and data fields, and the empty tree is represented by nil.

The specification of DispTree is just{
tree(p)

}
DispTree(p)

{
emp}

which says that if you have a tree at the beginning then you end up with the
empty heap at the end. The crucial part of the proof, in the if branch, is:

{p 7→[l:x, r: y] ∗ tree(x) ∗ tree(y)}
i := p�l; j := p�r;

{p 7→[l: i, r: j] ∗ tree(i) ∗ tree(j)}
DispTree(i);

{p 7→[l: i, r: j] ∗ tree(j)}
DispTree(j);

{p 7→[l: i, r: j]}
free p

{emp}

After we enter the conditional statement we know that p 6=nil, so that (according
to the inductive definition) p points to left and right subtrees occupying separate
storage. Then the roots of the two subtrees are loaded into i and j. The first
recursive call operates in-place on the left subtree, removing it, the second call
removes the right subtree, and the final instruction frees the root pointer p. This
verification uses the procedure specification as a recursive assumption.

3

I am leading to a more general suggestion: try thinking about reasoning in
separation logic as if you are an interpreter. The formulae are like states, symbolic
states. Execute the procedure forwards, updating formulae in the usual way you
do when thinking about in-place update of memory. In-place reasoning works
not only for disposal, but for heap mutation and allocation as well [1, 2].

One thing at work in the “proof” above is a rule

{P} C {Q}
{R ∗ P} C {R ∗Q}

Frame Rule

that lets us tack on additional assertions “for free”, as it were. For instance, in the
second recursive call the frame axiom R selected is p 7→[l: i, r: j] and {P}C{Q}
is a substitution instance of the procedure spec: this captures that the recursive
call does not alter the root pointer. Generally, the frame rule that lets us use
“small specifications” that only talk about the cells that a program touches [3].

Perspective. The essential points that I have tried to illustrate are the following.

(i) The separating conjunction fits together with inductive definitions in a way
that supports natural descriptions of mutable data structures [1].

(ii) Axiomatizations of pointer operations support in-place reasoning , where a
portion of a formula is updated in place when passing from precondition to
postcondition, mirroring the operational locality of heap update [1, 2].

(iii) Frame axioms, which state what does not change, can be avoided when
writing specifications [2, 3].

These points together enable specifications and proofs for pointer programs that
are dramatically simpler than was possible previously, in many (not all) cases
approaching the simplicity associated with proofs of pure functional programs.

2 Model Theory and Proof Theory

Above I have concentrated on the basics of separation logic, emphasizing that
to “think like an interpreter” is a good approximation to program proving. The
model-theoretic underpinnings of this point of view rest on a number of theo-
rems about the semantics of imperative programs, and their interaction with the
semantics of Hoare triples [8, 9].

The most significant developments in proof theory have stemmed from an
inference procedure of Berdine and Calcagno in their work on the Smallfoot
tool [12]. Special versions of their inference rules have been used to enable loop-
invariant discovery in abstract interpreters [13, 14], which have been extended
to ever-more-expressive abstract domains (e.g., [15–19]).

A pivotal development has been identification of the notion of frame in-
ference, which gives a way to find the “leftover” portions of heap needed to
automatically apply the frame rule in program proofs. Technically, this is done
by solving an extension to the usual entailment question

A ` B ∗ ?frame

4

where the task is, given A and B, to find a formula ?frame which makes the
entailment valid. This extended entailment capability is used at procedure call
sites, where A is an assertion at the call site and B a precondition from a proce-
dure’s specification. Frame inference was first solved by Berdine and Calcagno by
using information from failed proofs of the standard entailment question A ` B
(related ideas were developed in [20]). It is used in several automatic verification
and analysis tools based on separation logic [21, 16, 22–24].

More recently, there has been work on an, in a sense, inverse problem

A ∗ ?anti-frame ` B

where the task is to find a description of the missing or needed portion of heap
?anti-frame that makes the entailment valid. This is a separation-logic cousin
of the classic abductive inference question. It has been used in [11] to synthe-
size preconditions of procedures, by attempting to infer descriptions of just the
portions of heap that they need to run without producing a memory fault. The
joint abduction/frame inference question, termed “bi-abduction” in [11], forms
the basis of a compositional program analysis, where Hoare triples for a proce-
dure are generated without knowing the procedure’s calling context.

I have concentrated on the basics of separation logic, on its semantics, and on
proof theory as it is relevant to automatic proof tools and abstract interpreters.
There have been significant developments in several other directions.

– Iteractive proof, where the semantics of the logic is embedded in a higher-
order logic (e.g., [25–27]).

– Web data structures, using non-symmetric separation (context with hole)[28].
– Object-oriented programing, where the logic is used to address longstanding

aliasing problems (e.g., [29, 24]).
– Concurrency, where the logic is used to control sharing of memory between

concurrent threads (starting with [30, 31]).

Space prevents more comprehensive references here: The reader may consult the
page www.dcs.qmul.ac.uk/∼ohearn/localreasoning.html for further pointers.

References

1. J. C. Reynolds. Intuitionistic reasoning about shared mutable data structure. In
Millennial Perspectives in Computer Science, pages 303–321. Palgrave, 2000. Pro-
ceedings of the 1999 Oxford–Microsoft Symposium in Honour of Sir Tony Hoare.

2. S. Isthiaq and P. W. O’Hearn. BI as an assertion language for mutable data
structures. In 28th POPL, pages 36–49, 2001.

3. P. O’Hearn, J. Reynolds, and H. Yang. Local reasoning about programs that alter
data structures. In 15th CSL, pp1-19, 2001.

4. J. C. Reynolds. Separation logic: A logic for shared mutable data structures. In
17th LICS, pp55-74, 2002.

5. P. W. O’Hearn and D. J. Pym. The logic of bunched implications. Bulletin of
Symbolic Logic, 5(2):215–244, June 99.

6. D.J. Pym. The Semantics and Proof Theory of the Logic of Bunched Implications.
Applied Logic Series. Kluwer Academic Publishers, 2002.

5

7. D. Pym, P. O’Hearn, and H. Yang. Possible worlds and resources: the semantics
of BI. Theoretical Computer Science, 315(1):257–305, 2004.

8. H. Yang and P. O’Hearn. A semantic basis for local reasoning. In 5th FOSSACS,
2002. pp402-416.

9. C. Calcagno, P. O’Hearn, and H. Yang. Local action and abstract separation logic.
In 22nd LICS, pp366-378, 2007.

10. J. Berdine, C. Calcagno, and P.W. O’Hearn. Symbolic execution with separation
logic. In K. Yi, editor, APLAS 2005, volume 3780 of LNCS, 2005.

11. C. Calcagno, D. Distefano, P. O’Hearn, and H. Yang. Compositional shape analysis.
Imperial College DOC Tech Report 2008/12.

12. J. Berdine, C. Calcagno, and P.W. O’Hearn. Smallfoot: Automatic modular asser-
tion checking with separation logic. In 4th FMCO, pp115-137, 2006.

13. D. Distefano, P. O’Hearn, and H. Yang. A local shape analysis based on separation
logic. In 12th TACAS. pp287-302, 2006.

14. S. Magill, A. Nanevski, E. Clarke, and P. Lee. Inferring invariants in Separation
Logic for imperative list-processing programs. 3rd SPACE Workshop, 2006.

15. J. Berdine, B. Cook, D. Distefano, and P. O’Hearn. Automatic termination proofs
for programs with shape-shifting heaps. In 18th CAV. pp386-400, 2006.

16. A. Gotsman, J. Berdine, B. Cook, and M. Sagiv. Thread-modular shape analysis.
PLDI 2007.

17. B. Guo, N. Vachharajani, and D. August. Shape analysis with inductive recursion
synthesis. In PLDI, 2007.

18. J. Berdine, C. Calcagno, B. Cook, D. Distefano, P. O’Hearn, T. Wies, and H. Yang.
Shape analysis of composite data structures. 19th CAV, 2007.

19. S. Magill, M.-S. Tsai, P. Lee, and Y.-K. Tsay. THOR: A tool for reasoning about
shape and arithmetic. 20th CAV, 2008.

20. N. Rinetzky, J. Bauer, T. Reps, M. Sagiv, and R. Wilhelm. A semantics for
procedure local heaps and its abstractions. In 32nd POPL, pp296–309, 2005.

21. A. Gotsman, J. Berdine, and B. Cook. Interprocedural shape analysis with sepa-
rated heap abstractions. In 13th SAS. pp240-260, 2006.

22. H.H. Nguyen and W.-N. Chin. Enhancing program verification with lemmas. 20th
CAV, 2008.

23. H. Yang, O. Lee, J. Berdine, C. Calcagno, B. Cook, D. Distefano, and P. O’Hearn.
Scalable shape analysis for systems code. 20th CAV, 2008.

24. D. Distefano and M. Parkinson. jStar: Towards Practical Verification for Java.
OOPSLA, 2008.

25. N. Marti, R. Affeldt, and A. Yonezawa. Verification of the heap manager of an
operating system using separation logic. 3rd SPACE Workshop, 2006.

26. H. Tuch, G. Klein, and M. Norrish. Types, bytes, and separation logic. In 34th
POPL, pages 97–108, 2007.

27. M.O. Myreen and M.J.C. Gordon. Hoare logic for realistically modelled machine
code. 13th TACAS, 2007.

28. P. Gardner, G. Smith, M. Wheelhouse, and U. Zarfaty. Local Hoare reasoning
about DOM. In 27th PODS, pages 261–270, 2008.

29. M. Parkinson and G. Bierman. Separation logic and abstraction. In 32nd POPL,
pp59–70, 2005.

30. P. W. O’Hearn. Resources, concurrency and local reasoning. Theoretical Computer
Science (Reynolds Festschrift), 375(1-3):271–307, 2007.

31. S. D. Brookes. A semantics of concurrent separation logic. Theoretical Computer
Science (Reynolds Festschrift), 375(1-3):227–270, 2007.

6

