
Computability and Complexity Results for a Spatial
Assertion Language for Data Structures

Cristiano Calcagno12, Hongseok Yang3, and Peter W. O’Hearn1

1 Queen Mary, University of London
2 DISI, University of Genova

3 University of Birmingham and University of Illinois at Urbana-Champaign

Abstract. Reynolds, Ishtiaq and O’Hearn have recently developed an approach
to reasoning about mutable data structures using an assertion language with
spatial conjunction and implication connectives. In this paper we study com-
putability and complexity properties of a subset of the language, which allows
statements about the shape of pointer structures (such as “there is a link from
x to y”) to be made, but not statements about the data held in cells (such as “x
is a prime number”). We show that validity, even for this restricted language, is
not r.e., but that the quantifier-free sublanguage is decidable. We then consider
the complexity of model checking and validity for several fragments.

1 Introduction

Reynolds, Ishtiaq and O’Hearn have recently developed an approach to rea-
soning about mutable data structures using an assertion language with spatial
connectives [6, 4]. The conjunction P ∗Q is true just when the current heap can
be split into disjoint components, one of which makes P true and the other of
which makes Q true. The implication P−∗Q says that whenever P is true for
a new or fresh piece of heap, Q is true for the combined new and old heap. In
addition, there is an atomic formula, the points-to relation E 7→ F,G, which
says that E points to a cons cell holding F in its car and G in its cdr.

As a small example of ∗,

(x 7→ a, y) ∗ (y 7→ b, x)

describes a two-element circular linked list, with a and b in the data fields.
The conjunction ∗ here requires x and y to be pointers to distinct and non-
overlapping cells. For an example of −∗ ,

(x 7→ a, b) ∗ ((x 7→ c, b)−∗P)

says that x points to a cell holding (a, b), and that P will hold if we update the
car to c.

The logic of [6, 4] can be used to structure arguments in a way that leads
to pleasantly simple proofs of pointer algorithms. But the assertion language
that the logic uses to describe pre and postconditions is itself new, and its
properties have not been studied in detail. The purpose of this paper is to
study computability and complexity problems for the language.

We consider a pared down sublanguage, which includes the points-to relation
and equality as atomic predicates, but not arithmetic or other expressions or

atomic predicates for describing data. We do this to separate out questions
about the shapes of data structures themselves from properties of the data held
in them. This also insulates us from decidability questions about the data. In
our language we can write a formula that says that x points to a linked list
with two nodes, but not a formula that says that the list is sorted.

Our first result is that, even with these restrictions, the question of validity
is not r.e. The spatial connectives are not needed for this negative result. This
result might seem somewhat surprising, given the sparseness of the language;
decidability would obtain immediately were we to omit the points-to relation.
The proof goes by reduction of the co-halting problem for a two-stack machine.
It hinges on the ability to describe list-like structures, even without the aid of
recursive definitions.

This result has two consequences. The first is that it tells us that we cannot
hope to find an axiomatic description of 7→, adequate to the whole language.
The second is that we should look to sublanguages if we are to find a decidabilty
result.

Our second result is that the quantifier-free sublanguage is decidable. The
main subtlety in the proof is the treatment of −∗ , whose semantics uses a
universal quantification over heaps. This is dealt with by a bounding result,
which restricts the number of heaps that have to be considered to verify or
falsify a formula.

We then consider the complexity of model checking and validity. For the
quantifier-free fragment and several sublanguages both questions are shown
to be PSPACE-complete. One fragment is described where the former is NP-
complete and the latter ΠP

2 -complete. We also remark on cases where (like in
propositional calculus) model checking is linear and validity coNP-complete.

2 The Model and the Assertion Language

In this section we present a spatial assertion language and its semantics. The
other sections study properties of fragments of this language.

Throughout the paper we will use the following notation. A finite map f
from X to Y is written f : X ⇀fin Y , and dom(f) indicates the domain of f .
The notation f#g means that f and g have disjoint domains, and in that case
f ∗ g is defined by (f ∗ g)(x) = y iff f(x) = y or g(x) = y.

For a natural number n ≥ 2, the syntax of expressions E and assertions P
for n-ary heap cells is given by the following grammar:

E ::= x, y . . . | nil
P ::= (E 7→ E1, . . . , En) | E = E | false | P ⇒ P | ∀x. P | emp | P ∗ P | P−∗P

Expressions are either variables or the constant nil. Assertions include equality,
usual connectives from first-order classical logic, and spatial connectives. The
predicate (E 7→ E1, . . . , En) asserts that E is the only allocated cell and it
points to a n-ary heap cell containing Ei in the i-th component. The assertion
emp says that the heap is empty. The assertion P1 ∗P2 means that it is possible
to split the current heap in disjoint sub-heaps making the two assertions true.

2

The assertion P1−∗P2 means that for each new heap disjoint from the current
one and making P1 true, the combined new and old heap makes P2 true.

Expressions and assertions for n-ary heap cells are interpreted in the follow-
ing model:

Val ∆= Loc ∪ {nil}
Stack ∆= Var → Val

Heap ∆= Loc ⇀fin Valn

State ∆= Stack ×Heap

Values are either locations or nil , and a state is composed of a stack and a heap.
The heap is a finite map from locations to n-ary heap cells, whose domain
indicates the locations that are allocated at the moment. The semantics of
expressions and assertions is given in Table 1.

Definition 1 (Semantic Consequence). We say that Q is a semantic con-
sequence of P , written P |= Q, if s, h |= P implies s, h |= Q for all the states
(s, h).

[[x]]s
∆
= s(x)

[[nil]]s
∆
= nil

s, h |= (E 7→ E1, . . . , En) iff dom(h) = {[[E]]s} and h([[E]]s) = ([[E1]]s, . . . , [[En]]s)
s, h |= E1 = E2 iff [[E1]]s = [[E2]]s
s, h |= false iff never
s, h |= P1 ⇒ P2 iff if s, h |= P1 then s, h |= P2

s, h |= emp iff dom(h) = ∅
s, h |= P1 ∗ P2 iff there exist h1 and h2 such that

h1#h2, h1 ∗ h2 = h, s, h1 |= P1, s, h2 |= P2

s, h |= P1−∗P2 iff for all h1 such that h#h1 and (s, h1) |= P1,
(s, h ∗ h1) |= P2

s, h |= ∀x. P iff for any v in Val , s[x 7→ v], h |= P

Table 1. Semantics of Expressions and Assertions

For the sake of simplicity, Section 3 assumes that each heap cell has five
fields, and Section 4 and 5 consider binary heap cells. However, the results in
the paper are equally applicable to other cases as long as each heap cell is
assumed to have no less than 2 fields.

3 Undecidability

The main result in the section is that deciding semantic consequence is not
recursively enumerable even when the spatial connectives, ∗, emp and −∗ , do
not appear in the assertions.

3

Theorem 1. Deciding semantic consequence in the assertion language is not
recursively enumerable even when assertions are restricted by the following con-
text free grammar:

P ::= (E ↪→ E,E,E,E,E) | E = E | false | P ⇒ P | ∀x. P

where (E ↪→ E1, E2, E3, E4, E5) is (E 7→ E1, E2, E3, E4, E5) ∗ true.

Note that the theorem uses an intuitionistic variant ↪→ of the predicate 7→
because only with the 7→ predicate, we can not express that a heap cell l is
allocated and contains (l1, . . . , l5) without requiring that l is the only allocated
heap cell. The meaning of (E ↪→ E1, . . . , E5) is that a heap cell E is allocated
and contains (E1, . . . , E5) but it need not be the only allocated cell.

We prove the theorem by reducing the co-halting problem of a two stack ma-
chine to the problem of deciding semantic consequence. Then, the conclusion
follows because the co-halting problem of a two stack machine is not recur-
sively enumerable. In the proof, we use two kinds of variables, variables in the
assertion language and meta variables, which range over states of the two-stack
machine and assertions including even variables in the assertion language. To
avoid confusion, variables are written in the sans serif font, such as x, y, and
meta variables in the italic font, such as x, y, in the section.

Consider a two stack machine, whose alphabet is {0, 1} and set of states is
{Q0, . . . , Qe} with Q0 the initial state and Qe the unique final state. We pick up
e+6 distinct variables t, f, q0, . . ., qe, DH, DS1 and DS2, which are supposed to
hold different values. Variables t and f represent elements in the alphabet, 1 and
0, respectively. And qi represents the state Qi. The remaining three variables
are used to denote a role that each heap cell plays in the encoding: when a cell
is tagged with DH, it is used as a head node for encoding a snapshot of the
machine during execution; and when a cell is tagged with DSn, it is used to
encode the content of the n-th stack. When we use a meta variable to denote a
state or a symbol in the alphabet, the same meta variable is also used to denote
the corresponding variable. For instance, a meta variable a denoting 0 is also
used to denote the variable f.

We first encode a status of the machine during execution. Let (q, a1 . . . an, b1 . . . bm)
be an instantaneous description of a two-stack machine, where q denotes the cur-
rent state, and a1 . . . an and b1 . . . bm are the current contents of the two stacks
with a1 and b1 their top elements. Suppose that d′ denotes the head node of
the encoding of an instantaneous description at the previous step; if there is no
previous step, d′ denotes nil. We encode this fact — (q, a1 . . . an, b1 . . . bm) is the
current status of the machine with d′ as its previous status — by the following
assertion:

Desc(d′, d, (q, a1 . . . an, b1 . . . bm)) ∆=
∃s1, . . . , sn+1, s

′
1, . . . , s

′
m+1.

(d′ 6= d) ∧ (d ↪→ DH, q, d′, s1, s
′
1)

∧ (
∧

1≤j≤n(sj ↪→ DS1, aj , nil, sj+1, nil)) ∧ (sn+1 = nil)
∧ (
∧

1≤j≤m(s′j ↪→ DS2, bj , nil, nil, s′j+1)) ∧ (s′m+1 = nil)

Recall that DH, DS1 and DS2 are assumed to denote different values. So, for a
state satisfying the assertion, any two variables of d, d′, s1, . . . , sn+1, s′1, . . . , s

′
m+1

4

must denote different values. The assertion indicates that the following structure
of cells exists on the heap:

In the above picture, the first field of each heap cell denotes what role the cell
plays in the encoding. The second field of the head node, which is pointed to by
d in the picture, stores the current state q using the variable qi corresponding to
q. The third field of the head node points to either another head node encoding
the instantaneous description just one step before or nil so indicating that the
current head node describes the initial status of the machine. The last two fields
in the head node denote two stacks, which are just two singly linked lists. Each
node for two stacks uses the second field to store the contents of the stacks,
which are sequences of t and f.

A transition t is encoded using aliased pointers. We only show the encod-
ing of the case t = (q, a, b) → (q′, ca, b); the other four cases can be handled
similarly.

Trans(d, d′, (q, a, b) t→ (q′, ca, b)) ∆=
∃ds, s1, s2, s

′
1, s
′
2, u1.

(u1 6= s1) ∧ (d 6= d′) ∧ (d ↪→ DH, q, ds, s1, s
′
1) ∧ (d′ ↪→ DH, q′, d, u1, s

′
1)

∧ (s′1 ↪→ DS2, b, nil, nil, s′2) ∧ (s1 ↪→ DS1, a, nil, s2, nil) ∧ (u1 ↪→ DS1, c, nil, s1, nil)

Note that d, s1, s
′
1, d
′, u1 denote different locations. Therefore, the body part of

the existential quantification indicates that the following structure of cells exists
on the heap:

Notice also that the encoding specifies that d′ is the next step of d by making
the third field of d′ point back to d.

Lemma 1. Let δ be the set of transitions of the two-stack machine, and suppose
that (q, α, β) is an instantaneous description of the machine. For all the states
(s, h), if

s, h |=

(∨
t∈δ

Trans(ds0, ds1, t)

)
∧Desc(ds′, ds0, (q, α, β))

then there exist t and (q′, α′, β′) such that

– (q′, α′, β′) is obtained from (q, α, β) by applying t; and
– s, h |= Desc(ds0, ds1, (q′, α′, β′)).

5

Proof. Let h be a heap satisfying the condition in the lemma. Then, by the
interpretation of ∨, there exists a transition t ∈ δ such that

s, h |= Trans(ds0, ds1, t) ∧Desc(ds′, ds0, (q, α, β)).

Consider the case when t = (q, a, b)→ (q′, ca, b). Since s, h |= Trans(ds0, ds1, t),
the first stack of the instantaneous description encoded by nodes from ds0 should
contain a as a top element and the second stack b as a top element. So, we can
rewrite α and β as aα0 and bβ0 for appropriate α0 and β0. Then, (q′, caα0, bβ0)
can be obtained from (q, α, β) by applying t. Then, the nodes from ds1 en-
code the instantaneous description (q′, caα0, bβ0) because of the definitions of
Desc(ds0, ds1, (q′, caα0, bβ0)) and Trans(ds0, ds1, (q, a, b) → (q′, ca, b)). That is,
we have

s, h |= Desc(ds0, ds1, (q′, caα0, bβ0)).

All the other cases can be handled similarly. ut

The last step of the encoding is to handle a computation sequence. For this
purpose, we’ve already made the third field of each head cell point back to a
previous step. The following picture shows heap cells representing a terminating
computation sequence:

For each instantaneous description which appears in the middle of an accepting
computation, either the description denotes termination or there is another
description for the next step. Next captures this. Next says that for each head
node which denotes a computation step, either it is in the unique final state qe
or there is another head node for the next step.

Next ∆= ∀ds0, ds′, q, s1, s
′
1.

(ds0 ↪→ DH, q, ds′, s1, s
′
1)⇒ (q = qe) ∨ ∃ds1. (

∨
t∈δ Trans(ds0, ds1, t))

Notice the local nature of Next ; they only mention each step as opposed to a
whole sequence of computation, which is usually the case in the encodings with
a list data type or a graph data type in [2, 3]. We need one more formula which
says that all e+6 variables t, f, q0, . . ., qe, DH, DS1, DS2 denote distinct values:

Disjoint ∆=
∧

v,w∈{t,f,q0,...,qe,DH,DS1,DS2},v 6≡w

(v 6= w)

where we use ≡ to mean that two variables are the same as symbols.

Lemma 2. Let (q0, α0, β0) be the initial instantaneous description of the two
stack machine. For all the states (s, h), if

s, h |= ∀t, f, q0, . . . , qe,DH,DS1,DS2.
Disjoint ⇒ ∃ds0.Desc(nil, ds0, (q0, α0, β0)) ∧Next

6

then there exists n such that

s, h |= ∀t, f, q0, . . . , qe,DH,DS1,DS2.
Disjoint ⇒
∃ds0 . . . dsn. (

∧
0≤i<n(

∨
t∈δ Trans(dsi, dsi+1, t)))

∧Desc(nil, ds0, (q0, α0, β0)) ∧ (∃ds′, s1, s
′
1. (dsn ↪→ DH, qe, ds′, s1, s

′
1))

Proof. Suppose a state s, h satisfies the formula in the assumption. Then, the
heap must contain a head node l encoding the initial status of the machine
(q0, α0, β0). Since Next holds, it is possible to find a sequence l0, l1, l2, . . . of
head nodes such that l0 = l, li+1 denotes a next step of li in the machine (that
is,
∨
t∈δ Trans(dsi, dsi+1, t) holds in a state (s[dsi 7→ li, dsi+1 7→ li+1], h)) and lm

is the end of the sequence only when its second field contains the final state qe.
So, it suffices to show that the sequence is finite. Suppose that the sequence is
infinite. Since there are only finite number of allocated cells in h, the sequence
must have a repetition. However, that can not become the case because the
third link of each li+1 points back to li and l0 = nil; note that a connected
graph with n nodes and n− 1 links can not have any cycle. ut

Now the main fact in this encoding is the following:

Proposition 1. The two stack machine accepts (q0, α0, β0) iff there exists a
state (s, h) such that

s, h |= ∀t, f, q0, . . . , qe,DH,DS1,DS2.
Disjoint ⇒ ∃ds0.Desc(nil, ds0, (q0, α0, β0)) ∧Next

Proof. It is easy to see that the only-if direction holds because we can build a
heap which only contains heap cells for encoding an accepting computation of
(q0, α0, β0). And Lemma 1 and 2 give the other direction. ut

The following corollary shows the reduction.

Corollary 1. The two stack machine does not accept (q0, α0, β0) iff(
∀t, f, q0, . . . , qe,DH,DS1,DS2.

Disjoint ⇒ ∃ds0.Desc(nil, ds0, (q0, α0, β0)) ∧Next

)
|= false

4 Decidable Fragment

The undecidability result in the previous section indicates that in order to
obtain a decidable fragment of the assertion language, either quantifiers must
be taken out in the fragment or they should be used in a restricted manner. In
this section, we consider the quantifier-free fragment of the assertion language,
including spatial connectives, emp, ∗ and −∗ . The main result in the section is:

Theorem 2. Deciding semantic consequence in the assertion language is al-
gorithmically decidable as long as the assertions are instances of the following
grammar:

P ::= (E 7→ E,E) | E = E | false | P ⇒ P | emp | P ∗ P | P−∗P

7

The theorem is equivalent to the existence of an algorithm which takes
an assertion following the grammar in the theorem and answers whether the
assertion holds for all states. We show that such an algorithm exists. The main
observation is that each assertion determines a finite set of states so that if
the assertion holds for all states in the set, it indeed holds for all the states.
The proof proceeds in two steps: first we consider the case that an assertion P
and a state s, h are given so that an algorithm is supposed to answer whether
s, h |= P ; then, we construct an algorithm which, given an assertion P , answers
whether s, h |= P holds for all the states (s, h). In the remainder of the section,
we assume that all the assertions follow the grammar given in Theorem 2.

The problem of algorithmically deciding whether s, h |= P holds given P, s, h
as inputs is not as straightforward as it seems because of −∗ : when P is of the
form Q−∗R, the interpretation of s, h |= P involves quantification over all heaps,
which might require to check infinite possibilities. So, the decidability proof is
mainly for showing that there is a finite boundary algorithmically determined
by Q and R. We first define the size of an assertion, which is used to give an
algorithm to determine the boundary.

Definition 2 (size of P). For an assertion P , we define size of P , |P |, as
follows:

|(E 7→ E1, E2)| = 1 |E1 = E2| = 0
|false| = 0 |P ⇒ Q| = max(|P |, |Q|)
|P ∗Q| = |P |+ |Q| |P−∗Q| = |Q|
|emp| = 1

The size of P intuitively determines how many heap cells, which are not directly
pointed to by variables in P , are relevant to the truth of P . For instance, the
size of (¬emp) ∗ (¬emp) is 2 and indicates that if at least two heap cells are
already allocated on the heap, allocating more heap cells does not affect the
truth of the assertion. Note that (¬emp) ∗ (¬emp) holds for a state when at
least two cells are allocated on the heap.

The following proposition claims that there is a bound number of heaps to
check in the interpretation of s, h |= Q−∗R; the decidability result is just an
immediate corollary. Let ord be an effective enumeration of Loc.

Proposition 2. Given a state (s, h) and assertions Q,R, let X be FV (Q) ∪
FV (R) and B a finite set consisting of the first max(|Q|, |R|) locations in Loc−
(dom(h) ∪ s(X)) where the ordering is given by ord. Pick a value v ∈ Val −
s(X)− {nil}. Then, (s, h) |= Q−∗R holds iff for all h1 such that

– h#h1 and (s, h1) |= Q;
– dom(h1) ⊆ B ∪ s(X); and
– for all l ∈ dom(h1), h1(l) ∈ (s(X) ∪ {nil , v})× (s(X) ∪ {nil , v}),

we have that (s, h ∗ h1) |= R.

To see why the proposition implies the decidability result, notice that there
are only finitely many h1’s satisfying the conditions because both B∪s(X) and

8

s(X)∪{nil , v} are finite. Since all the other cases of P only involve finitely many
ways to satisfy s, h |= P , the exhaustive search gives the decision algorithm.

The interesting direction of the proposition is “if” because the only-if di-
rection follows from the interpretation of −∗ . Intuitively, the if direction of
the proposition holds because the following three changes of heap cells do
not affect the truth of either Q or R: relocating “garbage” heap cells (those
not in s(X)); de-allocating redundant garbage heap cells when there are more
than max(|Q|, |R|) of them; overwriting “uninteresting values” (those not in
s(X)∪ {nil}) by another uninteresting value (v). Then, for every heap h′1 with
h#h′1, there is a sequence of such changes which transforms h′1 and h ∗ h′1
to h1 and h ∗ h1, respectively, such that h1 satisfies the last two conditions
in the proposition. The proposition follows because each step in the sequence
preserves the truth of both Q and R; so, (s, h′1) |= Q implies (s, h1) |= Q,
and (s, h1 ∗ h) |= R implies (s, h′1 ∗ h) |= R. The formal proof appears in the
appendix.

Corollary 2. Given a stack s and an assertion P , checking (s, h) |= P for all
h is decidable.

Proof. The corollary holds because s, h |= P for all h iff s, [] |= (¬P)−∗ false. ut

For the decidability of checking (s, h) |= P for all states (s, h), we observe
that the actual values of variables are not relevant to the truth of an assertion as
long as the “relationship” of the values remains the same. We define a relation
≈X to capture this “relationship” formally. Intuitively, two states are related
by ≈X iff the relationship of the values, which are stored in variables in X or
in heap cells, are the same in the two states.

Definition 3 (≈X). For states (s, h) and (s′, h′) and a subset X of Var,
(s, h) ≈X (s′, h′) iff there exists a bijection r from Val to Val such that r(nil) =
nil ; r(s(x)) = s′(x) for all x ∈ X; and (r× r)(h(l)) = h′(r(l)) for all l ∈ Loc. 1

Proposition 3. For all the states (s, h) and (s′, h′) and all assertions P such
that (s, h) ≈FV (P) (s′, h′), if (s, h) |= P , then (s′, h′) |= P .

Lemma 3. Given a state (s, h) and an assertion P , let B be the set consisting
of the first |FV (P)| locations in Loc, where the ordering is given by ord. Then,
there exists a state (s′, h′) such that s′(Var − FV (P)) ⊆ {nil}; s′(FV (P)) ⊆
B ∪ {nil}; and (s, h) ≈FV (P) (s′, h′).

The decidability result follows from the above lemma. To see the reason, we
note that because of the lemma, for all assertions P , there is a finite set of
stacks such that if for all stacks s in the set and all heaps h, (s, h) |= P , then P
holds for all states whose stack is not necessarily in the set. Therefore, a decision
algorithm is obtained by exhaustively checking for each stack s in the finite set
whether (s, h) |= P holds for all heaps h using the algorithm in Corollary 2.

Corollary 3. Given an assertion P , checking (s, h) |= P for all the states (s, h)
is decidable.
1 the equality in (r× r)(h(l)) = h′(r(l)) means that if one side of the equation is defined, the

other side is also defined and they are equal.

9

5 Complexity

In this section we study the complexity of model checking for some fragments
of the decidable logic of Section 4.

We consider the following fragments, where (E 6↪→ −) means that E is not
allocated (s, h |= (E 6↪→ −) iff [[E]]s 6∈ dom(h)):

Language MC VAL
L P ::= (E 7→ E,E) | (E 6↪→ −) | E = E | false

| P ∧ P | P ∨ P | emp
P coNP

L∗ P ::= L | P ∗ P NP ΠP
2

L¬∗ P ::= L | ¬P | P ∗ P PSPACE PSPACE
L−∗ P ::= L | P−∗P PSPACE PSPACE
L¬∗−∗ P ::= L | ¬P | P ∗ P | P−∗P PSPACE PSPACE

Given a fragment Lc, the corresponding model-checking problem MC(Lc) is
deciding whether s, h |= P holds given a state (s, h) and an assertion P ∈ Lc.
The validity problem asks whether a formula is true in all states. In the above
table the second-last column reports the complexity of model checking and the
last the complexity of validity.

The easy fragment is L. Clearly MC(L) can be solved in linear time by the
obvious algorithm arising from the semantic definitions, and it is not difficult to
show that the validity is coNP-complete. As soon as we add ∗, model checking
bumps up to NP-complete. The validity problem for L∗ is ΠP

2 -complete; we
show the former but consideration of the latter is omitted for space reasons.
It is possible to retain linear model checking when ∗ is restricted so that one
conjunct is of the form (E 7→ E1, E2). The fragment L¬∗−∗ is the object of
the decidability result of Section 4; a consequence of our results there is that
model checking and validity can be decided in polynomial space. Below we show
PSPACE-hardness for model checking for the two fragments L¬∗ and L−∗ . It is
a short step to show PSPACE-hardness for validity.

5.1 MC(L∗) is NP-complete

In this section we show directly that MC(L∗) belongs to NP, and give a reduc-
tion from an NP-complete problem to it.

Proposition 4. MC(L∗) is in NP.

Proof. The only interesting part is deciding whether s, h |= P ∗ Q holds. The
algorithm proceeds by choosing non-deterministically a set D ⊆ dom(h), deter-
mining a splitting of h in two heaps h1 and h2 obtained by restricting h to D
and to dom(h)−D respectively. ut

Definition 4. The problem SAT is, given a formula F from the grammar

F ::= x | ¬x | F ∧ F | F ∨ F

deciding whether it is satisfiable, i.e. whether there exists an assignment of
boolean values to the free variables of F making F true.

10

Definition 5. The translation from formulas F to assertions P of L∗ is defined
by a function tr(−):

tr(x) ∆= (x 7→ nil, nil) ∗ true tr(¬x) ∆= (x 6↪→ −)

tr(F1 ∧ F2) ∆= tr(F1) ∧ tr(F2) tr(F1 ∨ F2) ∆= tr(F1) ∨ tr(F2)

Proposition 5. A formula F with variables {x1, . . . , xn} is satisfiable if and
only if s0, h0 |= tr(F)∗true holds, where s0 maps distinct variables xi to distinct
locations li, dom(h0) = {l1, . . . , ln} and h0(li) = (nil ,nil) for i = 1, . . . , n.

Proof. The truth of a boolean variable x is represented by its being allocated; in
the initial state (s0, h0) all the variables are allocated. The formula tr(F) ∗ true
is true if and only if there exists a subheap h′ making tr(F) true, and subheaps
correspond to assignments of boolean values to the variables in F . ut
Since the translation and construction of (s0, h0) can be performed in polyno-
mial time, an immediate consequence is NP-hardness of MC(L∗), hence NP-
completeness.

5.2 MC(L¬∗) is PSPACE-complete

In this section PSPACE-hardness ofMC(L¬∗) is proved by reducing a PSPACE-
complete problem to it. Completeness follows from the fact that MC(L¬∗−∗) is
in PSPACE and that L¬∗ is a sub-fragment of L¬∗−∗ .
Definition 6. The problem QSAT is, given a closed formula G from the gram-
mar

F ::= x | ¬x | F ∧ F | F ∨ F, G ::= ∀x1.∃y1.∀xn.∃yn.F
deciding whether it is true.

Definition 7. The translation from formulas G to assertions P of L¬∗ is de-
fined by a function tr(−):

tr(x) ∆= (x 7→ nil, nil) ∗ true tr(¬x) ∆= (x 6↪→ −)

tr(F1 ∧ F2) ∆= tr(F1) ∧ tr(F2) tr(F1 ∨ F2) ∆= tr(F1) ∨ tr(F2)

tr(∃yi.G) ∆= ((yi 7→ nil, nil) ∨ emp) ∗ tr(G)

tr(∀xi.G) ∆= ¬ (((xi 7→ nil, nil) ∨ emp) ∗ ¬ tr(G))

Proposition 6. A closed formula G is true if and only if s0, h0 |= tr(G)
holds, where s0 maps distinct variables xi to distinct locations li, dom(h0) =
{l1, . . . , ln} and h0(li) = (nil ,nil) for i = 1, . . . , n.

Proof. The truth of a boolean variable x is represented by its being allocated;
in the initial state (s0, h0) all the variables are allocated. The only interesting
cases are the quantifiers. The invariant is that tr(∃yi.G) is checked in a state
where yi is allocated, thus ((yi 7→ nil, nil) ∨ emp) ∗ tr(G) holds iff tr(G) holds
either for the current state or for the state obtained by de-allocating yi. In
other words, G either holds for yi true or for yi false. The translation of ∀xi.−
is essentially ¬(∃xi.¬−). ut
Observing that the translation and construction of (s0, h0) can be performed in
polynomial time, we have shown PSPACE-hardness of MC(L¬∗).

11

5.3 MC(L−∗) is PSPACE-complete

In analogy with the previous section, a translation from QSAT to MC(L−∗) is
presented.

This case is more complicated, since −∗ provides a natural way of represent-
ing universal quantifiers, but there is no immediate way to represent existentials.
Our solution is to use two variables xt and xf to represent a boolean variable
x. There are three admissible states:

– initial, when neither xt nor xf is allocated;
– true, when xt is allocated and xf is not;
– false, when xf is allocated and xt is not.

We use some auxiliary predicates:

(x ↪→ −) ∆= ((x 7→ nil, nil)−∗ false) ∧ (x 6= nil)

Ix
∆= (xt 6↪→ −) ∧ (xf 6↪→ −)

OKx
∆= ((xt ↪→ −) ∧ (xf 6↪→ −)) ∨ ((xf ↪→ −) ∧ (xt 6↪→ −))

The meaning of (x ↪→ −) is that it is not possible to extend the current heap
with x pointing to (nil, nil), i.e. x is allocated; Ix means that x is in an initial
state, and OKx means that x is either in state true or in state false.

Definition 8. Given a closed formula ∀x1.∃y1.∀xn.∃yn.F , define the or-
dered set V ∆= {x1 < y1 < . . . < xn < yn}. Write Sop for V − S when S ⊆ V .
Define {≤ x} ∆= {x′ ∈ V |x′ ≤ x}. The predicates are extended as follows:

IS
∆=
∧
x∈S

Ix OKS
∆=
∧
x∈S

OKx

The translation is defined by a function tr(−):

tr(x) ∆= (xt ↪→ −) tr(¬x) ∆= (xf ↪→ −)

tr(F1 ∧ F2) ∆= tr(F1) ∧ tr(F2) tr(F1 ∨ F2) ∆= tr(F1) ∨ tr(F2)

tr(∀xi.∃yi.G) ∆= (OK{xi} ∧ I{xi}op)−∗
∼((OK{≤xi} ∧ I{≥yi})∧ ∼(OK{≤yi} ∧ I{≥xi+1} ∧ tr(G)))

where ∼P is short for P−∗ false.

Proposition 7. A closed formula G is true if and only if s0, [] |= tr(G) holds,
where s0 maps distinct variables xi to distinct locations li, and [] is the empty
heap.

To obtain the PSPACE-hardness result, observe that the translation can be
performed in polynomial time, since the size of each IS and OKS is linear in
the number of variables.

12

6 Future Work

Possible directions for future work include incorporating heap variables that
allow us to take snapshots of the heap, with suitable restrictions [5] to maintain
decidability, and also recursive definitions or special atomic predicates [1] for
describing paths through the heap.

References

1. M. Benedikt, T. Reps, and M. Sagiv. A decidable logic for describing linked data struc-
tures. In ESOP ’99: European Symposium on Programming, pages 2–19. Lecture Notes in
Computer Science, Vol. 1576, S.D. Swierstra (ed.), Springer-Verlag, New York, NY, 1999.

2. S. A. Cook and D.C. Oppen. An assertion language for data structures. In Principles of
Programming Languages, pages 160–166. ACM, 1975.

3. S. Ishtiaq. BI is strongly expressive. available at http://www.dcs.qmw.ac.uk/˜ si/, Novem-
ber 2000.

4. S. Ishtiaq and P. O’Hearn. BI as an assertion language for mutable data structures. In
Principles of Programming Languages, January 2001.

5. J. Jenson, M. Jorgensen, N. Klarkund, and M. Schwartzback. Automatic verification of
pointer programs using monadic second-order logic. In Proceedings of the ACM SIG-
PLAN’97 Conference on Programming Language Design and Implementation, pages 225–
236, 1997. SIGPLAN Notices 32(5).

6. J. C. Reynolds. Intuitionistic reasoning about shared mutable data structure. In Millennial
Perspectives in Computer Science. Palgrave, 2000.

A Appendix: Proofs of Proposition 2 and 3

In the appendix, we prove Proposition 2 and 3, which are important in showing
that the fragment in Section 4 is decidable. All assertions in the section are
assumed to be instances of the grammar of Theorem 2.

Proposition. Given a state (s, h) and assertions Q,R, let X be FV (Q) ∪
FV (R) and B a finite set consisting of the first max(|Q|, |R|) locations in Loc−
(dom(h) ∪ s(X)) where the ordering is given by ord. Pick a value v ∈ Val −
s(X)− {nil}. Then, (s, h) |= Q−∗R holds iff for all h1 such that

– h#h1 and (s, h1) |= Q;
– dom(h1) ⊆ B ∪ s(X); and
– for all l ∈ dom(h1), h1(l) ∈ (s(X) ∪ {nil , v})× (s(X) ∪ {nil , v}),

we have that (s, h ∗ h1) |= R.

Note that the only-if direction follows from the definition of −∗ . So, we con-
centrate on the other direction. In order to show the if direction, we partition
heaps so that no assertion with certain conditions, which both Q and R also
satisfy, can tell apart two heaps in the same partition; then, we show that for
every heap h′1 with h#h′1 and s, h |= Q, it is possible to find a heap h1 such
that h1 satisfies all the conditions in the proposition and h∗h1 and h∗h′1 are in
the same partition; the conclusion follows from such arguments. For a stack s, a
natural number n and a finite set X of variables, we define an equivalence rela-
tion ∼s,n,X between heaps, whose equivalence classes formalize the partitioning

13

of heaps just described. Intuitively, two heaps are related if they are essentially
the same as far as the variables in X are concerned, and they have the same
amount of “garbage heap cells” upto n.

Definition 9 (=S). Given a set of values S ⊆ Val, =S is a relation between
pairs of values such that for any (v0, v1), (v′0, v

′
1) ∈ Val×Val, (v0, v1) =S (v′0, v

′
1)

iff for i = 0, 1,

if vi ∈ S ∪ {nil}, then vi = v′i; and if vi 6∈ S ∪ {nil}, then v′i 6∈ S ∪ {nil}.

Definition 10 (∼s,n,X). Given a stack s, a natural number n and a set X of
variables, ∼s,n,X is a relation between heaps such that h ∼s,n,X h′ iff

– s(X) ∩ dom(h) = s(X) ∩ dom(h′);
– for all l ∈ s(X) ∩ dom(h), h(l) =s(X) h

′(l);
– if |dom(h)− s(X)| < n, then |dom(h)− s(X)| = |dom(h′)− s(X)|; and
– if |dom(h)− s(X)| ≥ n, then |dom(h′)− s(X)| ≥ n.

Intuitively, h ∼s,n,X h′ holds if h and h′ are the “same” as far as variables in X
are concerned; moreover, the number of heap cells which are not pointed to by
any variable in X is the same upto n for h and h′.

The equivalence relation is preserved by splitting a heap and adding a new
heap.

Lemma 4. If m = n1 + n2 and h ∼s,m,X h′ and h = h1 ∗ h2, then there exist
h′1, h

′
2 such that

1. h′1#h′2;
2. h′ = h′1 ∗ h′2;
3. h1 ∼s,n1,X h′1; and
4. h2 ∼s,n2,X h′2.

Proof. Let {A,B} be a partition of dom(h′)− s(X) such that

– when |dom(h)− s(X)| < m, |A| = |dom(h1)− s(X)| and |B| = |dom(h2)−
s(X)|;

– when |dom(h)−s(X)| ≥ m and |dom(h2)−s(X)| ≥ n2, |A| = min(|dom(h1)−
s(X)|, n1); and

– when |dom(h)− s(X)| ≥ m and |dom(h2)− s(X)| < n2, |B| = |dom(h2)−
s(X)|.

Notice that the first case is possible because when |dom(h) − s(X)| < m,
|dom(h′)−s(X)| = |dom(h)−s(X)| and |dom(h)−s(X)| = |dom(h1)−s(X)|+
|dom(h2)−s(X)|. Also, notice that the second and the third cases are also pos-
sible because when |dom(h)−s(X)| ≥ m, |dom(h′)−s(X)| ≥ m ≥ max(n1, n2).

Let h′A and h′B be restrictions of h′ to A ∪ (dom(h1) ∩ s(X)) and B ∪
(dom(h2) ∩ s(X)), respectively. We show that h′A and h′B satisfy the required
properties.

14

1. h′A#h′B:

dom(h′A) ∩ dom(h′B)
=

(A ∪ (dom(h1) ∩ s(X))) ∩ (B ∪ (dom(h2) ∩ s(X)))
=

(A ∩B) ∪ (dom(h1) ∩ dom(h2) ∩ s(X))
∪ (dom(h1) ∩ s(X) ∩B) ∪ (dom(h2) ∩ s(X) ∩A)

= ∵ A ∩B = ∅ ∧ dom(h1) ∩ dom(h2) = ∅
(dom(h1) ∩ s(X) ∩B) ∪ (dom(h2) ∩ s(X) ∩A)

= ∵ B ∩ s(X) ⊆ (dom(h′)− s(X)) ∩ s(X) = ∅
dom(h2) ∩ s(X) ∩A

= ∵ A ∩ s(X) ⊆ (dom(h′)− s(X)) ∩ s(X) = ∅
∅

2. h′ = h′A ∗ h′B:
Since h′A#h′B and h′A and h′B are restrictions of h′, it suffices to show that
dom(h′A) ∪ dom(h′B) = dom(h′).

dom(h′A) ∪ dom(h′B)
=

(A ∪ (dom(h1) ∩ s(X))) ∪ (B ∪ (dom(h2) ∩ s(X)))
=

(A ∪B) ∪ ((dom(h1) ∪ dom(h2)) ∩ s(X))
= ∵ h = h1 ∗ h2

(A ∪B) ∪ (dom(h) ∩ s(X))
= ∵ h ∼s,m,X h′

(A ∪B) ∪ (dom(h′) ∩ s(X))
= ∵ A ∪B = dom(h′)− s(X)

(dom(h′)− s(X)) ∪ (dom(h′) ∩ s(X))
=

dom(h′)

3. h1 ∼s,n1,X h′A:
To handle this condition and the last condition, we rely on the simplification
of ∼ for heaps obtained by restricting two already related heaps:

Fact: Suppose that h ∼s,n,X h′ and that h0 and h′0 are restrictions
of h and h′, respectively. If s(X)∩ dom(h0) = s(X)∩ dom(h′0), then
h0(l) =s(X) h

′
0(l) for all l ∈ s(X) ∩ dom(h0).

Therefore, it suffices to show that

– dom(h1) ∩ s(X) = dom(h′A) ∩ s(X);
– if |dom(h1) − s(X)| < n1, then |dom(h1) − s(X)| = |dom(h′A) − s(X)|;

and
– if |dom(h1)− s(X)| ≥ n1, then |dom(h′A)− s(X)| ≥ n1.

15

For the first bullet,

dom(h′A) ∩ s(X)
=

(A ∪ (dom(h1) ∩ s(X))) ∩ s(X)
=

(A ∩ s(X)) ∪ (dom(h1) ∩ s(X))
= ∵ A ⊆ dom(h′)− s(X)

dom(h1) ∩ s(X)

For the other two bullets, we note that dom(h′A)− s(X) = A because:

dom(h′A)− s(X)
=

(A ∪ (dom(h1) ∩ s(X)))− s(X)
=

A− s(X)
= ∵ A ⊆ dom(h′)− s(X)

A

We divide the proof into two cases, when |dom(h) − s(X)| < m and when
|dom(h) − s(X)| ≥ m. In the first case, |A| = |dom(h1) − s(X)| holds by
the choice of A; therefore, the requirement is satisfied. For the second, we
consider two subcases depending on whether |dom(h2)− s(X)| ≥ n2 or not.
If |dom(h2) − s(X)| ≥ n2, |A| = min(|dom(h1) − s(X)|, n1) by the choice
of A. Therefore, it meets the requirement. The only remaining case is when
|dom(h)−s(X)| ≥ m and |dom(h2)−s(X)| < n2. In this case, |B| is smaller
than n2 by the choice of B. Therefore,

|A| = |dom(h)− s(X)| − |B|
≥ n1 + n2 − |B|
≥ n1

Since |dom(h1) − s(X)| is greater than or equal to n1 in this case, the
requirement is met, too.

4. h2 ∼s,n2,X h′B:
Since h2 and h′B are restrictions of already related heaps, it suffices to show
that
– dom(h2) ∩ s(X) = dom(h′B) ∩ s(X);
– if |dom(h2) − s(X)| < n2, then |dom(h2) − s(X)| = |dom(h′B) − s(X)|;

and
– if |dom(h2)− s(X)| ≥ n2, then |dom(h′B)− s(X)| ≥ n2.

For the first bullet,

dom(h′B) ∩ s(X)
=

(B ∪ (dom(h2) ∩ s(X))) ∩ s(X)
=

(B ∩ s(X)) ∪ (dom(h2) ∩ s(X))
= ∵ B ⊆ dom(h′)− s(X)

dom(h2) ∩ s(X)

16

For the other two, we notice that dom(h′B)− s(X) = B.

dom(h′B)− s(X)
=

(B ∪ (dom(h2) ∩ s(X)))− s(X)
=

B − s(X)
= ∵ B ⊆ dom(h′)− s(X)

B

When |dom(h) − s(X)| < m or |dom(h2) − s(X)| < n2, |B| = |dom(h2) −
s(X)|. Therefore, the two requirements are satisfied. The only remaining
case is when |dom(h) − s(X)| ≥ m and |dom(h2) − s(X)| ≥ n2. We show
that |B| ≥ n2. Note that |A| = min(|dom(h1)− s(X)|, n1) by the choice of
A in this case. Therefore,

|B| = |dom(h)− s(X)| − |A|
≥ m− |A|
≥ m− n1

≥ n2

ut

Lemma 5. If h ∼s,n,X h′, h#h1 and h′#h1, then h ∗ h1 ∼s,n,X h′ ∗ h1.

Proof. We check each condition in the definition of h ∗ h1 ∼s,n,X h′ ∗ h1.

1. s(X) ∩ dom(h ∗ h1) = s(X) ∩ dom(h′ ∗ h1):

s(X) ∩ dom(h ∗ h1)
=

(s(X) ∩ dom(h)) ∪ (s(X) ∩ dom(h1))
= ∵ h ∼s,n,X h′

(s(X) ∩ dom(h′)) ∪ (s(X) ∩ dom(h1))
=

s(X) ∩ dom(h′ ∗ h1)

2. for all l ∈ s(X) ∩ dom(h ∗ h1), (h ∗ h1)(l) =s(X) (h′ ∗ h1)(l):
For such l, l ∈ s(X) ∩ dom(h) or l ∈ s(X) ∩ dom(h1). In the first case,
(h ∗h1)(l) = h(l) and (h′ ∗h1)(l) = h′(l), and h(l) =s(X) h

′(l) since h ∼s,n,X
h′. Therefore, (h ∗ h1)(l) =s(X) (h′ ∗ h1)(l). In the second case, (h ∗ h1)(l) =
h1(l) = (h′ ∗h1)(l). Since =s(X) is reflexive, (h∗h1)(l) =s(X) (h′ ∗h1)(l) also
holds.

3. if |dom(h∗h1)−s(X)| < n, then |dom(h∗h1)−s(X)| = |dom(h′∗h1)−s(X)|:
When |dom(h ∗ h1) − s(X)| < n, |dom(h) − s(X)| < n. Since h ∼s,n,X h′,
|dom(h)−s(X)| = |dom(h′)−s(X)|. The conclusion easily follows from this

17

as shown below:

|dom(h ∗ h1)− s(X)|
=
|dom(h)− s(X)|+ |dom(h1)− s(X)|

=
|dom(h′)− s(X)|+ |dom(h1)− s(X)|

=
|dom(h′ ∗ h1)− s(X)|

4. if |dom(h ∗ h1)− s(X)| ≥ n, then |dom(h′ ∗ h1)− s(X)| ≥ n:
There are two cases: |dom(h) − s(X)| < n or |dom(h) − s(X)| ≥ n. In the
first case, since h ∼s,n,X h′, |dom(h′∗h1)−s(X)| = |dom(h∗h1)−s(X)| ≥ n.
In the second case, |dom(h′ ∗ h1) − s(X)| ≥ |dom(h′) − s(X)| ≥ n because
h ∼s,n,X h′.

ut

The equivalence relation is also preserved by relocating “garbage heap cells”,
removing some of them and overwriting an “uninteresting value” of each heap
cell by another “uninteresting value”. Given a subset V of Val and v in Val −
V − {nil}, we use prunV,v to denote a function from Val × Val to Val × Val
which overwrites “uninteresting values”, i.e., values not in V ∪{nil}, by another
“uninteresting value” v:

prunV,v(v0, v1) = (v′0, v
′
1)

where for i = 0, 1, if vi ∈ (V ∪ {nil}), then v′i = vi, and otherwise, v′i = v.

Lemma 6. For all (s, h) ∈ State, m ∈ Nat, v ∈ Val − s(X) − {nil} and all
finite subsets B of Loc such that B ∩ s(X) = ∅ and |B| = m, there exists h′

with the following properties:

– h ∼s,m,X h′;
– dom(h′)− s(X) ⊆ B;
– for all l ∈ dom(h′)− s(X), h′(l) = (v, v); and
– for all l ∈ dom(h′) ∩ s(X), pruns(X),v(h(l)) = h′(l)

Proof. Pick up a subset B0 of B such that |B0| = min(|dom(h) − s(X)|,m).
Then, define h′ such that

h′(l) =

(v, v) when l ∈ B0

pruns(X),v(h(l)) when l ∈ dom(h) ∩ s(X)
undefined otherwise

Notice that h′ is well-defined because B0 and (dom(h)∩ s(X)) are disjoint. We
show that all conditions for h ∼s,m,X h′ are satisfied.

– dom(h) ∩ s(X) = dom(h′) ∩ s(X):
It holds since B0 ∩ s(X) = ∅.

– for all l ∈ dom(h) ∩ s(X), h(l) =s(X) h
′(l):

By the definition of h′, pruns(X),v(h(l)) = h′(l) for all such l. h(l) =s(X) h
′(l)

follows from this since pruns(X),v(h(l)) =s(X) h(l).

18

– if |dom(h) − s(X)| < m, then |dom(h) − s(X)| = |dom(h′) − s(X)|; and if
|dom(h)− s(X)| ≥ m, then |dom(h′)− s(X)| ≥ m:
Since B0 is defined to be min(|dom(h)− s(X)|,m), it suffices to show that
dom(h′)− s(X) = B0, which is, in fact, the case by the construction of h′.

ut

The most important property of the equivalence relation is that no assertion
can tell apart two equivalent heaps:

Lemma 7. Given heaps h, h′, a stack s, a predicate P and a set X of variables
with FV (P) ⊆ X, if h ∼s,|P |,X h′ and (s, h) |= P , then (s, h′) |= P .

Proof. We use induction on the structure of P .

– P ≡ (E 7→ E1, E2):

(s, h) |= (E 7→ E1, E2)
=⇒

dom(h) = {[[E]](s)} ∧ h([[E]](s)) = ([[E1]](s), [[E2]](s))
=⇒ ∵ [[E]](s) ∈ s(X) ∧ [[Ei]](s) ∈ s(X) ∪ {nil} ∧ h ∼s,1,X h′

dom(h′) = {[[E]](s)} ∧ h′([[E]](s)) = ([[E1]](s), [[E2]](s))
=⇒

(s, h′) |= (E 7→ E1, E2)

– P ≡ (E1 = E2):

(s, h) |= (E1 = E2)
=⇒

[[E1]](s) = [[E2]](s)
=⇒

(s, h′) |= (E1 = E2)

– P ≡ false:
In this case, (s, h) |= false never holds.

– P ≡ Q⇒ R:

(s, h) |= Q⇒ R
=⇒

(s, h) |= Q implies (s, h) |= R
=⇒ ∵ the induction hypothesis and ∼s,|P |,X is symmetric

(s, h′) |= Q implies (s, h′) |= R
=⇒

(s, h′) |= Q⇒ R

19

– P ≡ Q ∗R:

(s, h) |= Q ∗R
=⇒
∃h0, h1. h0#h1 h = h0 ∗ h1, (s, h0) |= Q and (s, h1) |= R

=⇒ ∵ |P | = |Q|+ |R| ∧ Lemma 4
∃h′0, h′1, h0, h1.
h′0#h′1 ∧ h′ = h′0 ∗ h′1
∧ h0 ∼s,|Q|,X h′0 ∧ h1 ∼s,|R|,X h′1
∧ (s, h0) |= Q ∧ (s, h1) |= R

=⇒ ∵ the induction hypothesis
∃h′0, h′1. h′0#h′1, h

′ = h′0 ∗ h′1, (s, h′0) |= Q and (s, h′1) |= R
=⇒

(s, h′) |= Q ∗R

– P ≡ Q−∗R:
For all heaps h′1 such that (s, h′1) |= Q and h′1#h′, we have to show that
(s, h′ ∗ h′1) |= Q. Given such h′1, let’s choose a subset B of Loc − dom(h) ∪
dom(h′)∪s(X) such that |B| = max(|Q|, |R|), which is possible because Loc
is a countably infinite set and dom(h)∪dom(h′)∪s(X) is finite. By Lemma 6,
there exists h1 such that h1 ∼s,max(|Q|,|R|),X h′1 and dom(h1) − s(X) ⊆ B.
Note that (dom(h1)− s(X)) ∩ (dom(h) ∪ dom(h′)) = ∅ by the choice of B,
which we use in the following:

dom(h1) ∩ (dom(h) ∪ dom(h′))
=

((dom(h1) ∩ s(X)) ∪ (dom(h1)− s(X))) ∩ (dom(h) ∪ dom(h′))
= ∵ (dom(h1)− s(X)) ∩ (dom(h) ∪ dom(h′)) = ∅

(dom(h1) ∩ s(X)) ∩ (dom(h) ∪ dom(h′))
= ∵ h1 ∼s,max(|Q|,|R|),X h′1

(dom(h′1) ∩ s(X)) ∩ (dom(h) ∪ dom(h′))
=

(dom(h′1) ∩ s(X) ∩ dom(h)) ∪ (dom(h′1) ∩ s(X) ∩ dom(h′))
= ∵ h ∼s,|P |,X h′

(dom(h′1) ∩ s(X) ∩ dom(h′)) ∪ (dom(h′1) ∩ s(X) ∩ dom(h′))
= ∵ h′#h′1
∅

That is, h#h1 and h′#h1. Therefore, we have h ∗ h1 ∼s,|R|,X h′ ∗ h1 by
Lemma 5. We also have h′ ∗ h1 ∼s,|R|,X h′ ∗ h′1 by the same lemma because
h1 ∼s,|R|,X h′1, h′#h1 and h′#h′1. So, h∗h1 ∼s,|R|,X h′∗h′1. Now, for obtaining
the goal, which is to show (s, h′ ∗h′1) |= R, we only need to prove that (s, h∗
h1) |= R; then, the conclusion follows by induction. Since h1 ∼s,|Q|,X h′1, by
the induction hypothesis, (s, h1) |= Q. Now, it follows from (s, h) |= Q−∗R
that (s, h ∗ h1) |= R.

20

– P ≡ emp:

(s, h) |= emp
=⇒

dom(h) = ∅
=⇒ ∵ h ∼s,1,X h′

dom(h′) ∩ s(X) = ∅ ∧ |dom(h′)− s(X)| = 0
=⇒

dom(h′) = ∅
=⇒

(s, h′) |= emp
ut

We have developed enough properties of the equivalence relation ∼s,n,X to
show Proposition 2, which says that in the interpretation of (s, h) |= Q−∗R, it
suffices to consider heaps only in a certain finite set. We show that for all h0

with h#h0 and (s, h0) |= Q, there is a heap h1 in the finite set, i.e. satisfying the
conditions in the proposition, such that h1 ∗ h is related to h0 ∗ h by ∼s,|R|,X .
Then, Lemma 7 gives the conclusion: (s, h ∗ h1) |= R by the assumption, so
(s, h∗h0) |= R because h0 ∗h ∼s,|R|,X h1 ∗h holds (Lemma 7). We use Lemma 6
to get h1 which is related to h0 by ∼s,max(|Q|,|R|),X and satisfies the last two
conditions in the proposition, which are dom(h1) − s(X) ⊆ B and h1(l) ∈
(s(X)∪ {nil , v})× (s(X)∪ {nil , v}) for all l ∈ dom(h1). Note that h1 is related
to h0 by both ∼s,|Q|,X and ∼s,|R|,X since both |Q| and |R| are less than or equal
to max(|Q|, |R|). So, (s, h1) |= Q by Lemma 7. So, in order to show that h1 is
in the finite set, it remains to prove that h1#h. Note again that the additional
requirement, h0∗h ∼s,|R|,X h1∗h, also follows from h1#h because h0 ∼s,|R|,X h1

and h0#h (Lemma 5). The following shows that h1#h holds:

dom(h1) ∩ dom(h)
= (

(dom(h1)− s(X)) ∪ (dom(h1) ∩ s(X))
)
∩ dom(h)

= ∵ h0 ∼s,|Q|,X h1(
(dom(h1)− s(X)) ∪ (dom(h0) ∩ s(X))

)
∩ dom(h)

⊆ ∵ dom(h1)− s(X) ⊆ B ∧ h0#h
B ∩ dom(h)

= ∵ B ⊆ Loc − (dom(h) ∪ s(X))
∅

Before showing Proposition 3, we observe different ways to express that a
heap h′ is obtained from h by renaming locations according to the bijection
r: Val → Val with r(nil) = nil . For two functions f :A→ B and g:C → D, let
f × g be a function from A× C to B ×D given by (f × g)(a, b) = (f(a), g(b)).
Then, all the following three indicate that a heap h′ is obtained from h simply
by renaming locations:

– (r × r) ◦ h = h′ ◦ (r|Loc);
– h = (r−1 × r−1) ◦ h′ ◦ (r|Loc); and

21

– h ◦ (r|Loc)−1 = (r−1 × r−1) ◦ h′

Note that the first is precisely the last requirement in the definition of ≈X .

Lemma 8. Given states (s, h), (s′, h′) and an expression E, if (s, h) ≈Y (s′, h′)
by a bijection r: Val → Val and Y ⊇ FV (E), then r([[E]](s)) = [[E]](s′).

Proposition. For all states (s, h) and (s′, h′) and all assertions P such that
(s, h) ≈FV (P) (s′, h′), if (s, h) |= P , then (s′, h′) |= P .

Proof. Let r be the bijection in the definition of (s, h) ≈FV (P) (s′, h′). We use
induction on the structure of P .

– P ≡ (E 7→ E1, E2):

(s, h) |= (E 7→ E1, E2)
=⇒

dom(h) = {[[E]](s)} ∧ h([[E]](s)) = ([[E1]](s), [[E2]](s))
=⇒ ∵ (s, h) ≈FV (P) (s′, h′)

dom(h′) = {r([[E]](s))} ∧ h′(r([[E]](s))) = (r([[E1]](s)), r([[E2]](s)))
=⇒ ∵ Lemma 8

dom(h′) = {[[E]](s′)} ∧ h′([[E]](s′)) = ([[E1]](s′), [[E2]](s′))

– P ≡ (E1 = E2):
(s, h) |= E1 = E2

=⇒
[[E1]](s) = [[E2]](s)

=⇒
r([[E1]](s)) = r([[E2]](s))

=⇒ ∵ Lemma 8
[[E1]](s′) = [[E2]](s′)

– P ≡ false:
(s, h) |= false never holds.

– P ≡ Q⇒ R:

(s, h) |= Q⇒ R
=⇒

(s, h) |= Q implies (s, h) |= R
=⇒ ∵ the induction hypothesis and the symmetry of ≈FV (Q)

(s′, h′) |= Q implies (s′, h′) |= R
=⇒

(s′, h′) |= Q⇒ R

– P ≡ emp:
In this case, we should show that dom(h′) = ∅. Since (s, h) ≈FV (P) (s′, h′) by
r, it suffices show that dom((r×r)◦h◦ (r|Loc)−1) = ∅. Notice that r×r and
(r|Loc)−1 are bijective. Therefore, the above is equivalent to dom(h) = ∅,
which is the case since (s, h) |= emp.

22

– P ≡ Q ∗R:
Since (s, h) |= Q ∗ R, there exist h1, h2 such that h1#h2, h = h1 ∗ h2,
(s, h1) |= Q and (s, h2) |= R. Let h′i be (r × r) ◦ hi ◦ (r|Loc)−1 for i = 1, 2.
Then, it suffices to show that h′1#h′2, h = h′1 ∗ h′2, (s, h1) ≈FV (Q) (s′, h′1) by
r and (s, h2) ≈FV (R) (s′, h′2) by r. The conclusion follows by the induction
hypothesis.

• h′1#h′2:

dom(h′1) ∩ dom(h′2)
=

dom((r × r) ◦ h1 ◦ (r|Loc)−1) ∩ dom((r × r) ◦ h2 ◦ (r|Loc)−1)
= ∵ r × r is total

dom(h1 ◦ (r|Loc)−1) ∩ dom(h2 ◦ (r|Loc)−1)
= ∵ r is bijective

r(dom(h1)) ∩ r(dom(h2))
= ∵ r is bijective

r(dom(h1) ∩ dom(h2))
=
∅

• h = h′1 ∗ h′2:

Note that dom(h′1)∪dom(h′2) = r(dom(h1)∪dom(h2)) by the similar cal-
culation as above, and so, dom(h′1) ∪ dom(h′2) = r(dom(h)) = dom(h′).
Therefore, it suffices to show that for all l ∈ dom(h′1), h′1(l) = h′(l) and
for all l ∈ dom(h′2), h′2(l) = h′(l). We only show the first; the other is
similar.

h′1(l) = (r × r)(h1((r|Loc)−1(l)))
= (r × r)(h((r|Loc)−1(l)))
= h′(l)

• (s, h1) ≈FV (Q) (s′, h′1) by r:

Since (s, h) ≈FV (Q∗R) (s′, h′), the conditions on stacks hold. And by
definition of h′1, h′1 = (r × r) ◦ h1 ◦ (r|Loc)−1.

• (s, h2) ≈FV (Q) (s′, h′2) by r:

The case is similar to the previous one.

– P ≡ Q−∗R:

Let h′1 be a heap such that h′#h′1 and (s′, h′1) |= Q. We should show that
(s′, h′ ∗h′1) |= Q. Define h1 as (r−1×r−1)◦h′1 ◦(r|Loc). Then, (s′, h′1) ≈FV (Q)

(s, h1) by r and so (s, h1) |= Q by the induction hypothesis. Note that h#h1

23

holds because

dom(h) ∩ dom(h1)
=

dom((r−1 × r−1) ◦ h′ ◦ (r|Loc)) ∩ dom((r−1 × r−1) ◦ h′1 ◦ (r|Loc))
= ∵ r−1 × r−1 is total

dom(h′ ◦ (r|Loc)) ∩ dom(h′1 ◦ (r|Loc))
= ∵ r−1 is bijective

r−1(dom(h′)) ∩ r−1(dom(h′1))
= ∵ r−1 is bijective

r−1(dom(h′) ∩ dom(h′1))
=
∅

So, we also know that (s, h ∗ h1) |= R. Now, it suffices to show (s, h ∗
h1) ≈FV (R) (s′, h′∗h′1) by r; then, the conclusion follows by the induction hy-
pothesis. We note that all requirements on stacks hold since (s, h) ≈FV (Q−∗R)

(s′, h′) by r by assumption. So, the only step which we need to show is that

h′ ∗ h′1 = (r × r) ◦ (h ∗ h1) ◦ (r|Loc)−1

The following shows it:

h′ ∗ h′1
= (

(r × r) ◦ h ◦ (r|Loc)−1
)
∗
(

(r × r) ◦ h1 ◦ (r|Loc)−1
)

= ∵ (r × r) is total
(r × r) ◦

(
(h ◦ (r|Loc)−1) ∗ (h1 ◦ (r|Loc)−1)

)
= ∵ (r|Loc)−1 is bijective

(r × r) ◦ (h ∗ h1) ◦ (r|Loc)−1

ut

24

