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1. Introduction

Separation logic, first developed in papers by John Reynolds, the author, Hongseok Yang
and Samin Ishtiaq, around the turn of the millenium [73,47,61,74], is an extension of
Hoare’s logic for reasoning about programs that access and mutate data held in computer
memory. It is based on the separating conjunction P ∗ Q, which asserts that P and Q
hold for separate portions of memory, and on program-proof rules that exploit separation
to provide modular reasoning about programs.

In this course I am going to introduce the basics of separation logic, its semantics,
and proof theory, in a way that is oriented towards its use in automatic program-proof
tools and abstract interpreters, an area of work which has seen increasing attention in
recent years. After the basics, I will describe how the ideas can be used to build a verifi-
cation or program analysis tool.

The course consists of four lectures:

1. Basics, where the fundamental ideas of the logic are presented in a semi-formal
style;

2. Foundations, where we get into the fomalities, including the semantics of the
assertion language and axioms and inference rules for heap-mutating commands,
and culminating in an account of the local dynamics which underpin some of the
rules in the logic;
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3. Proof Theory and Symbolic Execution, which describes a way of reasoning about
programs by ‘executing’ programs on formulae rather than concrete states, and
which can form the basis for an automatic verifier; and

4. Program Analysis, where abstraction is used to infer loop invariants and other
annotations, increasing the level of automation.

These course notes include two sections based on the first two lectures, followed by a
section collecting ideas from the last two lectures. At this stage the notes are incomplete,
and they will possibly be improved and extended in the future. I hope, though, that they
will still prove useful in giving a flavour of some of the main lines of work, as well as in
pointers into the literature. In particular, at the end I give references to current directions
being pursued in program analysis.

I should say that, with this slant towards automatic proof and program analysis, there
are active ongoing developments related to separation logic in several other directions
that I will not be able to cover, particularly in concurrency, data abstraction and refine-
ment, object-oriented languages and scripting languages; a small sample of work in these
directions includes [62,64,66,10,81,34,28,38].

2. Basics

In this section I introduce separation logic in a semi-formal way. I am hoping that some
of the ideas can strike home and be seen to reflect natural reasoning that programmers
might employ, even before we consider formal definitions. Of course, the informal pre-
sentation inevitably skates over some issues, issues that could very well lead to unsound
conclusions if not treated correctly, and to nail things down we will get to the definitions
in the next section.

2.1. The Separating Conjunction.

Consider the following memory structure.

x|->y  *  y|-> x
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We read the formula at the top of this figure as ‘x points to y, and separately y points to
x’. Going down the middle of the diagram is a line which represents a heap partitioning:
a separating conjunction asks for a partitioning that divides memory into parts satisfying
its two conjuncts.

At the bottom of the figure is an example of a concrete memory description that
corresponds to the diagram. There, x and y have values 10 and 42 (in the ‘environment’,
or ‘register bank’), and 10 and 42 are themselves locations with the indicated contents
(in the ‘heap’, or even ‘RAM’).

The indicated separating conjunction above is true of the pictured memory because
the parts satisfy the corresponding conjuncts. That is, the components
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And

Separately

are separate sub-states that satisfy the relevant conjuncts.
It can be confusing to see a diagram like the one on the left where ‘x points to y and

yet to nothing’. This is disambiguated in the RAM description below the diagram. In the
more concrete description x and y denote values (10 and 42), x’s value is an allocated
memory address which contains y’s value, but y’s value is not allocated. Notice also
that, in comparison to the first diagram, the separating conjunction splits the heap/RAM,
but it does not split the association of variables to values: heap cells, but not variable
associations, are deleted from the original situation to obtain the sub-states. It is usually
simplest to think in terms of the picture semantics of separation logic, but when we get
formal in the next section we will drop down to the RAM level (as we could always do
when pressed).

In general, an assertion P denotes a set of states, and P ∗Q is true of a state just if
its heap/RAM component can be split into two parts, one of which satisfies P and the
other of which satisfies Q.

When reasoning about programs that manipulate data structures, one normally wants
to use inductively-defined predicates that describe such structures. Here is a definition
for a predicate that describes binary trees:

tree(E)⇐⇒ if isatom?(E) then emp
else ∃xy.E 7→[l:x, r: y] ∗ tree(x) ∗ tree(y)

In this definition we assume a boolean expression isatom?(E) which distinguishes
atomic values (e.g., characters...) from addressible locations: in the RAM model, we



could say that the locations are the non-negative integers and the atoms the negative ones.
We have used a record notation E 7→[l:x, r: y] for a ‘points-to predicate’ that describes a
single record E that contains x in its l field and y in its r field. Again in the RAM model,
this binary points-to can be compiled into the unary one: That is, E 7→[l:x, r: y] could be
an abbreviation for (E 7→x) ∗ (E+1 7→y) (Or, you could imagine a model where the heap
consists of explicit records with field selection.) The separating conjunction between the
E 7→[l:x, r: y] assertion and the two recursive instances of tree in the definition ensures
that there are no cycles, and the separating conjunction between the two subtrees ensures
that we have a tree and not a dag.

The emp predicate in the base case of the inductive definition describes the empty
heap, the heap with no allocated cells. A consequence of this is that when tree(E) holds
there are no extra cells, cells in the heap but not in the tree, in a state satisfying the
predicate. This is a key specification pattern often employed in separation logic proofs:
we use assertions that describe only as much state as is needed, and nothing else.

At this point you might think that I have described an exotic-looking formalism for
writing assertions about heaps and you might wonder: why bother? The mere ability
to describe heaps in principle is not important in and of itself, and in this separation
logic adds nothing significant to traditional predicate logic. It is when we consider the
interaction between assertions and operations for mutating memory that the point of the
formalism comes out.

2.2. In-place Reasoning

Proving by Executing. I am going to show you part of a program proof outline in sepa-
ration logic. It might seem slightly eccentric that I do this before giving you a definition
of the logic. My aim is to use a computational reading of the proof steps to motivate the
inference rules, rather than starting from them.

Consider the following procedure for disposing the elements in a tree.

procedure DispTree(p)
local i, j;
if ¬isatom?(p) then

i := p→l; j := p→r;
DispTree(i);
DispTree(j);
free(p)

This is the expected procedure that walks a tree, recursively disposing left and right
subtrees and then the root pointer. It uses a representation of tree nodes as cells containing
left and right pointers, with the base case corresponding to atomic, non-pointer values.
(See Exercise 2 below for a fuller description.)

The specification of DispTree is just{
tree(p)

}
DispTree(p)

{
emp}

which says that if you have a tree at the beginning then you end up with the empty heap
at the end. For this to make sense it is crucial that when tree(p) is true of a heap then
that heap (or rather the heaplet, a portion of a global heap) contains all and only those



cells in the tree. So, the spec talks about as small a portion of the global program state as
possible.

The crucial part of the argument for DispTree’s correctness, in the then branch,
can be pictured with the following annotated program which gives a ‘proof by execution’
style argument.

{p 7→[l:x, r: y] ∗ tree(x) ∗ tree(y)}
i := p→l; j := p→r;
{p7→[l: i, r: j] ∗ tree(i) ∗ tree(j)}
DispTree(i);
{p7→[l: i, r: j] ∗ emp ∗ tree(j)}
{p7→[l: i, r: j] ∗ tree(j)}
DispTree(j);
{p7→[l: i, r: j] ∗ emp}
free p
{emp}

After we enter the then branch of the conditional we know that ¬isatom?(p), so that
(according to the inductive definition of the tree predicate) p points to left and right sub-
trees occupying separate storage. Then the roots of the two subtrees are loaded into i
and j. The first recursive call operates in-place on the left subtree, removing it. The two
consecutive assertions in the middle of the proof are an application of the rule of conse-
quence of Hoare logic. These two assertions are equivalent because emp is the unit of ∗.
Continuing on, the second call removes the right subtree, and the final instruction frees
the root pointer p. The assertions, and their mutations, follow this operational narrative.

I am leading to a more general suggestion: try thinking about reasoning in separation
logic as if you are an interpreter. The formulae are like states, symbolic states. Execute
code forwards, updating formulae in the usual way you do when thinking about in-place
update of memory. In-place reasoning works not only for freeing a cell, but for heap
mutation and allocation as well. And, it even works for larger-scale operations such as
entire procedure calls: we updated the assertions in-place at each of the recursive call
sites during this ‘proof’.

Exercise 1 The usual Hoare logic rules for sequencing and consequence are

{P}C1 {Q} {Q}C2 {R}
{P}C1;C2 {R}

P ⇒ P ′ {P ′}C {Q′} Q′ ⇒ Q

{P}C {Q}

where ⇒ refers to implication. Assuming we know how to decide ⇒ formulae, convert
the annotated program block for the then case above into a proof in the usual logical
sense (that is, a tree built from instances of these rules). You can assume that the triples
of pre/post for each of the individual statements in the proof outline are given as axioms.

Local Reasoning and Frame Axioms. In the steps in the proof outline for DispTree(p)
I used the procedure spec as an assumption when reasoning about the recursive calls, as
usual when reasoning about recursive procedures in Hoare logic [43]. However, there is
an extra ingredient at work. For the second recursive call, for instance, the assertion at



the call site does not match the procedure specification’s precondition, even after p in the
spec is instantiated with j, because the assertion has an extra ∗-conjunct, p 7→[l: i, r: j].

Assertion at call site : p 7→[l: i, r: j] ∗ tree(j)
Precondition in spec : tree(j)

This extra ∗-conjunct is not touched by the recursive call. It is called a ‘frame axiom’
in AI. The terminology ‘frame axiom’ comes from an analogy with animation, where
the moving parts of a scene are successively aid over an unchanging frame. Indeed, the
fact p 7→[l: i, r: j] is left unchanged by the second call. You should be able to pick out the
frame in the first call as well.

Thus, there is something slightly awry in this ‘proof’, unless I tell you more: The
mismatch, between the call sites and the procedure precondition, needs to be taken care
of if we are really to have a proof of the procedure. One way to resolve the mismatch
would be to complicate the specification of the procedure, to talk explicitly about frames
in one way or another (see ‘back in the day’ below). A better approach is to have a generic
inference rule, which allows us to avoid mentioning the frames at all in our specifications,
but to bring them in when needed. This generic rule is

{P}C {Q}
{R ∗ P}C {R ∗Q} Frame Rule

and it lets us tack on additional assertions ‘for free’, as it were. For instance, in the second
recursive call the frame axiomR selected is p7→[l: i, r: j] and {P}C{Q} is a substitution
instance of the procedure spec: this captures that the recursive call does not alter the root
pointer.

This better way, which avoids talking about frames in specifications, corresponds
to programming intuition. When reasoning about a program we should only have to
talk about the resources it accesses (its ‘footprint’), as all other resources will remain
unchanged. This is the principle of local reasoning [47,61]. In the specification of
DispTree the precondition tree(p) describes only those cells touched by the procedure.

Aside: back in the day... This issue of local reasoning has nothing to do with the ‘power’
or ‘completeness’ of a formal method: what is possible to do in principle. It has only to do
with the simplicity and directness of the specs and proofs. To see the issue more clearly,
consider how we might have written a spec for DispTree(p) in traditional Hoare logic,
before we had the frame rule. Here is a beginning attempt:{

tree(p) ∧ reach(p, n)
}
DispTree(p)

{
¬allocated(n)

}
assuming that we have defined the predicates that say when p points to a (binary) tree in
memory, when n is reachable (following l and r links) from p, and when n is allocated.
This spec says that any node n which is in the tree pointed to by p is not allocated on
conclusion.

While this specification says part of what we would like to say, it leaves too much
unsaid. It does not say what the procedure does to nodes that are not in the tree. As a
result, this specification is too weak to use at many call sites. For example, consider the
first recursive call, DispTree(i), to dispose the left subtree. If we use the specification
(instantiating p by i) as an hypothesis, then we have a problem: the specification does



not rule out the possibility that the procedure call alters the right subtree j, perhaps
creating a cycle or even disposing some of its nodes. As a consequence, when we come
to the second call DispTree(j), we will not know that the required tree(j) part of the
precondition will hold. So our reasoning will get stuck.

We can fix this ‘problem’ by making a stronger specification which includes frame
axioms.{

tree(p) ∧ reach(p, n) ∧ ¬reach(p,m) ∧ allocated(m) ∧ m.f = m′ ∧
¬allocated(q)

}
DispTree(p){
¬allocated(n) ∧ ¬reach(p,m) ∧ allocated(m) ∧m.f = m′∧
¬allocated(q)

}
The additional parts of the spec say that any allocated cell not reachable from p has
the same contents in memory and that any previously unallocated cell remains unallo-
cated. The additional clauses are the frame axioms. (I am assuming that m, m′, n and q
are auxiliary variables, guaranteed not to be altered. The reason why, say, the predicate
¬allocated(q) could conceivably change, even if q is constant, is that the allocated
predicate refers to a behind-the-scenes heap component. f is used in the spec as an arbi-
trary field name.)

Whether or not this more complicated specification is correct, I think you will agree:
it is complicated! I expect that you will agree as well that it is preferable for the frame
axioms to be left out of specs, and inferred when needed.

Beyond Shapes. The above shows one inductive definition, for binary trees. The def-
inition is limited in that it does not talk about the contents of a tree. It is the kind of
definition often used in automatic shape analysis, as we will describe in Section 4, where
avoiding taking about the contents can make it easier to prove entailments or synthesize
invariants.

To illustrate the limitation of the definition, suppose that we were to write a proce-
dure to copy a tree rather than delete it. We could give it a specification such as{

tree(p)
}
q := CopyTree(p)

{
tree(p) ∗ tree(q)}

but then this specification would also be satisfied by a procedure that rotates a tree as it
copies. A more precise specification would be of the form{

tree(p, τ)
}
q := CopyTree(p)

{
tree(p, τ) ∗ tree(q, τ)}

where tree(p, τ) is a predicate which says that p points to a data structure in memory
representing the mathematical tree τ . (I use the term ‘mathematical’ tree to distinguish
if from a representation in the computer memory: the mathematical tree does not contain
pointer or other such representation information.)

Exercise 2 The notion of ‘mathematical tree’ appropriate to the above inductive defini-
tion of the tree predicate is that of an s-expression (the terminology comes from Lisp):
that is, an atom, or a pair of s-expressions. An s-expression is an element of the least set
satisfying the equation

Sexp = Atom + (Sexp× Sexp)



for some set Atom of atoms, where × and + are the cartesian product and disjoint union
of sets. Here, then, is the inductive definition of a tree(p, τ) predicate, where τ ∈ Sexp:

tree(E, τ)⇐⇒ if (isatom?(E) ∧ E = τ) then emp
else ∃xyτ1τ2. τ = 〈τ1, τ2〉 ∧ (E 7→[l:x, r: y] ∗ tree(x) ∗ tree(y))

Define the CopyTree procedure and give a proof-by-execution style argument for
its correctness, where you put assertions (symbolic states) at the appropriate program
points. Yes, I am asking you to do a ‘proof’ in a formalism that has not yet been defined
(!), but give it a try.

2.3. Perspective.

In this section I have attempted to illustrate the following points.

(i) The separating conjunction fits together with inductive definitions in a way that
supports natural descriptions of mutable data structures.

(ii) The separating conjunction supports in-place reasoning, where a portion of a
formula is updated in place when passing from precondition to postcondition,
mirroring the operational locality of heap update.

(iii) Frame axioms, which state what does not change, can be avoided when writing
specifications.

These points together enable specifications and proofs for pointer programs that are dra-
matically simpler than was possible previously, in many (not all) cases approaching the
simplicity associated with proofs of pure functional programs. (That is, previous ap-
proaches excepting the remarkable precursor work of Burstall [15], which provided in-
spiration for Reynolds’s earliest work on separation logic [73]. You can see [12] for
references and a good account of work on proving pointer programs before separation
logic.)

However, I should stress at once that program proofs do not always go as easily
as for DispTree. When one considers graph algorithms with significant sharing, or
concurrent programs with nontrivial interaction, proofs can become complicated. Neither
separation logic nor any other formalism takes programs that are difficult to understand
and magically gives them easy proofs.

A more realistic goal is to have simple proofs for simple programs. Whether, or to
what extent, this might be achieved by any given formalism can only be decided person-
ally by you looking at, or better by doing, proofs of a number of examples.

3. Foundations

Building on the ideas described informally in the previous section, I now give a rigorous
treatment of the program logic.

3.1. Semantics of Assertions (the Heaplet Model)

The model has two components, the store and the heap. The store is a finite partial func-
tion mapping from variables to integers, and the heap is a finite function from natural
numbers to integers.



Stores
∆
= Variables⇀fin Ints Heaps

∆
= Nats⇀fin Ints

(∆
= abbreviates ‘is defined to be equal to’.) In logic, what we are calling the store is often

called the valuation, and the heap is a possible world. In programming languages, what
we are calling the store is also sometimes called the environment (the association of
values to variables).

We have standard integer expressions E and boolean expressions B built up from
variables and constants. These are heap-independent, so determine denotations

[[E]]s ∈ Ints [[B]]s ∈ {true, false}

where the domain of s ∈ Stores includes the free variables of E or B. We leave this
semantics unspecified.

We use the following notations in the semantics of assertions.

1. dom(h) denotes the domain of definition of a heap h ∈ Heaps, and dom(s) is the
domain of s ∈ Stores;

2. h#h′ says that dom(h) ∩ dom(h′) = ∅;
3. h • h′ denotes the union of functions with disjoint domains, which is undefined

if the domains overlap;
4. (f | i 7→ j) is the partial function like f except that i goes to j.

The satisfaction judgement s, h |= P which says that an assertion holds for a given
store and heap, assuming that the free variables of P are contained in the domain of s.

s, h |= B iff [[B]]s = true

s, h |= E 7→ F iff {[[E]]s} = dom(h) and h([[E]]s) = [[F ]]s

s, h |= false never

s, h |= P ⇒ Q iff if s, h |= P then s, h |= Q

s, h |= ∀x.P iff ∀v ∈ Ints. [s | x 7→ v], h |= P

s, h |= emp iff h = [ ] is the empty heap

s, h |= P ∗Q iff ∃h0, h1. h0#h1, h0 ∗ h1 = h, s, h0 |= P and s, h1 |= Q

s, h |= P−∗Q iff ∀h′. if h′#h and s, h′ |= P then s, h • h′ |= Q

The semantics of the connectives (⇒ false, ∀) gives rise to meanings of other connec-
tives of classical logic (∃,∨,¬, true) in the usual way. For example, taking P ∧Q to be
¬(P ⇒ ¬Q), we obtain that s, h |= P ∧ Q has the usual meaning of ‘s, h |= P and
s, h |= Q’.

The general logical context of this form of semantics is that it can be seen as a
possible world model which combines:

(i) the standard semantics of classical logic (⇒, false, ∀) in the complete boolean
algebra of the power set of heaps; and



(ii) a semantics of ‘substructural logic’ (emp, ∗,−∗ ) in the same power set (which
gives us what is known as a residuated commutative monoid, an ordered commu-
tative monoid where A ∗ (−) has a right adjoint A−∗ (−)).

The semantics is an instance of the ‘resource semantics’ of bunched logic devised by
David Pym [63,70,69], where one starts from a partial commutative monoid in place of
heaps (with • and the empty heap giving partial monoid structure). The resulting math-
ematical structure on the powerset, of a boolean algebra with an additional commuta-
tive residuated monoid structure, is sometimes called a ‘boolean BI algebra’. The model
of • as heap partitioning, which lies at the basis of separation logic, was discovered by
John Reynolds when he first described the separating conjunction [73]. The separating
conjunction was connected with Pym’s general resource semantics in [47].

Notice that the semantics of E 7→F requires that E is the only active address in
the current heap. Using ∗ we can build up descriptions of larger heaps. For example,
(107→3) ∗ (117→10) describes two adjacent cells whose contents are 3 and 10. We can
express an inexact variant of points-to as follows

E↪→F = (true ∗ E 7→F ).

Generally, true ∗ P says that P is true of a subheap of the current one. The difference
between ↪→ and 7→ shows up in the presence or absence of projection or Weakening for
∗.

1. P ∗ (x 7→1)⇒ (x 7→1) is not always true.
2. P ∗ (x↪→1)⇒ (x↪→1) is always true.

The different way that the two conjunctions ∗ and ∧ behave is illustrated by the
following examples.

1. (x 7→2) ∗ (x 7→2) is unsatisfiable (you can’t be in two places at once).
2. (x 7→2) ∧ (x 7→2) is equivalent to x 7→2.
3. (x 7→1) ∗ ¬(x 7→1) is satisfiable (thus, we have a kind of ‘paraconsistent’ logic).
4. (x 7→1) ∧ ¬(x 7→1) is unsatisfiable.

The third example drives home how separation logic assertions do not talk about the
global heap: P ∗¬P can be consistent because P can hold of one portion of heap and ¬P
of another. To understand separation logic assertions you should always think locally:
for this you might regard the h component in the semantics of assertions as describing a
‘heaplet’, a portion of heap, rather than a complete global heap in and of itself.

Exercise 3 Define 7→ in terms of ↪→, ∧, ∗, ¬ and emp.

Aside: on 7→ versus = A frequent source of confusion when first learning separation
logic concerns how the ∗ separator splits the heap but not the store, and this translates
into confusions reading assertions with = in them. Recall the definitions above

s, h |= B iff [[B]]s = true

s, h |= E 7→ F iff {[[E]]s} = dom(h) and h([[E]]s) = [[F ]]s.

Notice that the rhs of the clause for s, h |= B does not mention h at all, where for
s, h |= E 7→ F the rhs does contain h. I said I would not give a precise semantics of



boolean expressions, but let me consider just one, the expression x = y where x and y
are variables:

[[x = y]]s
∆
= (sx = sy).

Now, consider the assertion (x = y) ∗ (x = y). Can it ever be true? Well, yes, it is
satisfiable, and in fact it has the same meaning as x = y and as (x = y) ∧ (x = y). On
the other hand, consider the assertion (x 7→y) ∗ (x 7→y). Can it ever be true? How about
(x = y) ∗ (x 7→y)? Or (x = y) ∧ (x 7→y)? Work out the answers to these questions by
expanding the semantic definitions.

3.2. Inductive Definitions, Again

Earlier we considered an inductive definition of trees representing s-expressons.

tree(E, τ)⇐⇒ if (isatom?(E) ∧ E = τ) then emp
else ∃xyτ1τ2. τ = 〈τ1, τ2〉 ∧ (E 7→[l:x, r: y] ∗ tree(x) ∗ tree(y))

Now we can be more precise about its meaning. The use of if-then-else can be desugared
using boolean logic connectives in the usual way. if B then P else Q is the same
as (B ∧ P ) ∨ (¬B ∧Q) where here B is heap-independent. Therefore, in the inductive
definition we can now see that the condition (isatom?(E) ∧ E = τ) is completely
heap-independent, and not affected by ∗: it talks only about values, and not the contents
of heap cells.

It is also helpful to ponder the clause

τ = 〈τ1, τ2〉 ∧ (E 7→[l:x, r: y] ∗ tree(x) ∗ tree(y))

used in the definition. In fact, we could have rewritten it using ∗ in place of ∧, as

(τ = 〈τ1, τ2〉 ∧ emp) ∗ (E 7→[l:x, r: y] ∗ tree(x) ∗ tree(y)).

Here, we have used a general identity

B ∧ P ⇐⇒ (B ∧ emp) ∗ P

which holds whenever B is heap-independent. On the other hand, if we replaced one of
the other occurrences of ∗ by ∧, it would more dramatically alter the definition (exercise:
by playing with ∗, ∧ and perhaps inserting true , can you alter this definition so that it
describes dags rather than trees?).

In case you missed it, to be fully formal in the interpretation of this definition we
should also extend the store type to be

Stores
∆
= Variables ⇀fin (Ints + Sexp)

so that a variable can take on an s-expression as well as an integer value. We could also
distinguish s-expression variables τ from program variables x syntactically. (In practice,



one would probably want to use a many-sorted rather than one-sorted logic as we are
doing in these notes for theoretical simplicity.)

Finally, we can regard E 7→[l:x, r: y] as sugar for (E 7→x) ∗ (E+17→y) in the RAM
model. Note, though, that this low-level desugaring is not part of the essence of separa-
tion logic, only this particular model. Other models can be used where heaps are repre-
sented by L ⇀fin V where V might be a structured type to represent records. However,
that the RAM model can be used is appealing in a foundational way, as we know that
programs of all kinds are eventually compiled to such a model (modern concerns with
weak memory notwithstanding).

Generally, for any kind of data structure you will want to provide an appropriate
predicate definition which will often be inductive. Linked lists are the most basic case,
and illustrate some of the issues involved.

When reasoning about imperative data structures, one needs to consider not only
complete linked lists (terminated with nil ) but also ‘partial lists’ or linked-list segments.
Here is an example of a list segment predicate describing lists from E to F (where F is
not allocated).

ls(E,F )⇐⇒ if E = F then emp
else ∃y.E 7→y ∗ ls(y, F )

I am intending that ls is the least predicate satisfying the equation. Mathematically, it
can be worked out as the least fixed-point of a monotone function on a certain lattice,
by reference to the Tarski fixed-point theorem. (Exercise: what is the lattice and what
is the monotone function?) It is possible as well to give an alternate definition whose
formalization does not need to talk about lattices: you define a predicate ls(E,F, n)
describing a linked list segment from E to F of length n, and then define ls(E,F ) to be
∃n. ls(E,F, n).

This list segment predicate rules out cycles. However, cycles can be described using
two list predicates, or a points-to and a list segment. For example, the following assertion
is validated in the pictured model.

ls(x, y) ∗ ls(y, x)

x

y
  

 

These partial lists are sometimes used in the specifications of data structures, such
as queues. In other cases, they are needed to state the internal invariants of an algorithm,
even when the pre and post of a program use total lists only (total lists list(E) can be
regarded as abbreviations for segments ls(E,nil)). Here is a program from the SMALL-
FOOT tool [7] which exemplifies this point.



list_append(x,y) PRE: [list(x) * list(y)] {
local t;
if (x == NULL) {

x = y;
} else {

t = x; n = t->tl;
while (n != NULL) [ls(x,t) * t |-> n * list(n)] {

t = n;
n = t->tl;

}
t->tl = y;

} /* ls(x,t) * t |-> y * list(y) */
} POST: [list(x)]

This program, which appends two lists by walking down one and then swinging its last
pointer to the other, uses a partial list in its loop invariant, even though partial lists are
not needed in the overall procedure spec. In proving this program an important point is
how one gets from the last statement to the postcondition. A comment near the end of
the program shows an assertion describing what is known at that program point, and we
need to show that it implies the post to verify the program. That is, we need to show an
implication

ls(x, t) ∗ t 7→y ∗ list(y) =⇒ list(x).

This implication may seem unremarkable, but it is at this point that automatic tools must
begin to do something clever. For, consider how you, the human, would convince yourself
of the truth of this implication. If it were me, I would look at the semantics and prove
this fact by induction on the length of the list from x to t. But if we were to include such
reasoning in an automatic tool, we had better try to do so in an inductionless way, else
our tool will need to search for induction hypotheses (which is hard to make automatic).

Exercise 4 There are other definitions of list segments that have been used. Here is one,
the ‘imprecise list segment’.

ils(E,F )⇐⇒ (E = F ∧ emp)
∨ ∃y.E 7→y ∗ ils(y, F )

Q1. What is a heap that distinguishes ls(10, 10) and ils(10, 10) ?
Q2. What distinguishes ls(10, 11) and ils(10, 11) ?
Q3. Prove or disprove the following laws (do your proof by working in the semantics)

ls(x, y) ∗ ls(y, z) =⇒ ls(x, z) ???

ils(x, y) ∗ ils(y, z) =⇒ ils(x, z) ???

Q4. Suppose we want to write a procedure that frees all the cells in a list segment.
For which of ils or ls can you do it? If you cannot do it for one of them, why not?
That is, we are asking for terminating programs satisfying



{ls(x, y)} delete_ls(x, y) {emp}
{ils(x, y)} delete_ils(x, y) {emp}

(I have not given you the definition of the truth of pre/post specs yet, but you
should be able to answer this question anyhow.)

Exercise 5 Give a definition ls(E,F, σ) of a predicate describing a linked list from E to
F that contains the sequence σ in data fields. Write specification of programs that insert
and delete elements from sorted linked lists, where σ is sorted according to an ordering.
Give at least the loop invariants for these programs (write iterative versions). Attempt a
proof-by-execution type argument as well.

Exercise 6 The predicate tree(E, τ) we used above considers τ as an s-expression,
where the values are only at the leaves of the tree and not at internal nodes. Often, one
wants to use a data structure for mathematical trees including data at internal nodes,
and one way to describe these is with the set equation

Mtree = {nil}+ (Mtree× Atom× Mtree)

In this sort of tree, nil is the empty tree and the leaves of a non-empty tree are those
3-tuples that have nil in their first and third components.

Give an inductive definition of a predicate tree(E, τ), for τ ∈ Mtree. Hint: use a
points-to assertion of the form E 7→[l:x, d: y, r: z] where d refers to the data, or atom,
field. Define the CopyTree and DispTree procedures for this sort of tree, and give
proof-by-execution style arguments for their correctness.

3.3. Proof Rules for Programs.

The proof rules for procedure calls, sequencing, conditionals and loops are the same as
in standard Hoare logic [42,43]. Here I concentrate on the rules for primitive commands
for accessing the heap, and the surrounding rules, called the ‘structural rules’. (If you are
unfamiliar with Hoare logic probably the best way to learn is to go directly to the early
sources, such as [42,44,43,37,27], which are pleasantly simple and easy to read.)

We will use the following abbreviations:

E 7→F0, ..., Fn
∆
= (E 7→F0) ∗ · · · ∗ (E + n7→Fn)

E
.
= F

∆
= (E = F ) ∧ emp

E 7→− ∆
= ∃y.E 7→y (y 6∈ Free(E))

where Free(E) is the set of free variables in E.
We have axioms for each of four atomic commands. In the axioms x,m, n are as-

sumed to be distinct variables.



THE SMALL AXIOMS

{E 7→−} [E] := F {E 7→F}

{E 7→−} free(E) {emp}

{x .
= m}x := cons(E1, ..., Ek){x 7→E1[m/x], ..., Ek[m/x] }

{x .
= n}x := E {x .

= (E[n/x])}

{E 7→n ∧ x = m}x := [E] {x = n ∧ E[m/x]7→n}

The first small axiom just says that if E points to something beforehand (so it is in
the domain of the heaplet), then it points to F afterwards, and it says this for a small
portion of the state (heaplet) in which E is the only active cell. This corresponds to
the operational idea of [E] := F as a command that stores the value of F at address
E in the heap. The other commands have similar explanations. Notice that each axiom
mentions only the cells accessed or allocated: the axioms talk only about footprints,
and not the entire global program state. We only get fixed-length allocation from x :=
cons(E1, ..., Ek). but it is also possible to axiomatize a command x := alloc(E) that
allocates a block of length E.

Notice that our axioms allow us to free any cell that is allocated, even from the mid-
dle of a block given by cons. This is different from the situation in the C programming
language, where you are only supposed to free an entire block that has been allocated by
malloc(). An elegant treatment of this problem has been given using predicate variables
in [66].

The assignment statement x := E is for a variable x and heap-independent arith-
metic expressionE. Thus, this statement accesses and alters the store, but not the heap. It
is the assignment statement considered by Hoare in his original system [42]. In contrast,
the form [E] := F alters the heap but not the store.

To go along with the small axioms we have additional surrounding rules.

THE STRUCTURAL RULES

Frame Rule

{P}C{Q}
{P ∗R}C{Q ∗R}

Modifies(C) ∩ Free(R) = ∅

Auxiliary Variable Elimination

{P}C {Q}
x 6∈ Free(C)

{∃x.P}C {∃x.Q}

Variable Substitution

{P}C {Q} {x1, ..., xk} ⊇ Free(P,C,Q), and
xi ∈ Modifies(C) implies
Ei is a variable not free in any other Ej

({P}C {Q})[E1/x1, ..., Ek/xk]

Rule of Consequence

P ′ ⇒ P {P}C {Q} Q⇒ Q′

{P ′}C {Q′}



Modifies(C) here is the set of variables that are assigned to within C. The Modifies set
of each of x := cons(E1, ..., Ek), x := E and x := [E] is {x}, while for free(E) and
[E] := F it is empty. Note that the Modifies set only tracks potential alterations to the
store, and says nothing about the heap cells that might be modified.

Two of these rules we have already seen: the frame and consequence rules. The
others are rules that have been considered in the Hoare logic literature. This collection
of axioms and rules is complete in the sense that all true Hoare triples for the basic
statements can be derived them (assuming an oracle for implication in the consequence
rule). A proof of this fact is contained in Hongseok Yang’s thesis [84] (in fact, Yang
chose the existential and substitution structural rules precisely in order to make the small
axioms complete).

This presentation of the proof system above is from [61]. In his LICS’02 paper
[74] Reynolds gives a comprehensive description of a variety of axioms, in local (small)
and global and backwards forms, for the various atomic commands. The additional laws
are important because one prefers to have derived laws that can be applied at once in
common situations without going back to the small axioms every time and invoking the
structural rules extensively.

For example, it follows from Yang’s results that Hoare’s assignment axiom

{P [E/x]}x := E {P}

can be derived, where x := E is the assignment statement that is heap independent. One
can also derive Floyd’s forwards-running axiom [36]

{P}x := E {∃x′. x = E[x′/x] ∧ P [x′/x]}

where the existentially quantified variable x′ (which must be fresh) provides a way to
talk about x’s value in the pre-state. The symbolic execution rules in SMALLFOOT and
related tools use forwards-running rules of this variety (Section 4.2).

As an example derived rule for a heap-accessing command, with the frame rule and
auxiliary variable elimination one can obtain an axiom from [73]

{∃x1, · · · , xn. (E 7→−) ∗ R} [E] := F {∃x1, · · · , xn. (E 7→F ) ∗ R}
(where x1, ..., xn 6∈ Free(E,F ).)

that will be useful when defining symbolic execution later.
The −∗ connective has not often been used in proofs of particular programs (some

examples are in [84,66,32]). But it is a handy thing to have when doing metatheoretic
reasoning about a system [47,86,67,17]. The de Morgan dual ¬(P−∗¬Q) (called ‘sep-
traction’ in [81]) has played a central role in the formulation of a logic marrying sepa-
ration logic and the rely-guarantee method for concurrent programs, and it is used in an
automated tool based on the marriage logic [19].

An example metatheoretic use of−∗ is in proving completeness results. For example,
the following derivation

{E 7→−} [E] := F {E 7→F}
{(E 7→−) ∗ ((E 7→F )−∗Q)} [E] := F {(E 7→F ) ∗ ((E 7→F )−∗Q)} Frame

{(E 7→−) ∗ ((E 7→F )−∗Q)} [E] := F {Q}
Consequence



gives us general precondition for any postconditionQ, and this is key to showing that the
small axiom for mutation is not missing anything.

Exercise 7 Go back over the proof-by-execution style arguments you gave in the previous
exercises, and convince yourself that you can formalize them in the proof system given
in this section. You will probably want to use derived laws for each of the basic program
statements. In such proofs you get to use the semantics as an oracle when deciding the
implication statements in the rule of consequence.

Exercise 8 Formulate an operational semantics of [E] := F in terms of stores and
heaps. I.e., say when [E] := F, s, h evaluates to s, h′. Don’t use separation logic in this
formulation.

For a given set of states Q, say what it means to be the weakest precondition of
[E] := F with postcondition Q.

Finally, prove (in math, not in logic) that (E 7→−) ∗ ((E 7→F )−∗Q) expresses the
weakest precondtion.

Aside: On Variable Conditions and store-vs-environment. In Section 2 I skated over
the issue of Modifies sets, not mentioning them when introducing the frame rule. Con-
ditions involving Modifies sets are inelegant, and are all the more irritating because they
arise from a deliberate punning in Hoare logic between store and environment, which is
uncommon in programming languages.

At the birth of program semantics, in one of the founding papers of the field, Stra-
chey advised to distinguish the environment (association of variables to values), which
can be altered by variable binding in a way that obeys a stack discipline, from the store
(association of values to locations), which can be mutated by assignment [78]. Program-
ming languages from C to ML to Java observe Strachey’s distinction. The benefit from
conflating the ideas is that one gets beautifully simple specifications and proofs of simple
example programs in Hoare logic, or in Dijkstra’s wp calculus: it leads to neater (shorter)
examples to illustrate ideas, so in that sense the pun was worth it. I persist with the pun in
these lectures for the same reason. But, researchers are more and more avoiding conflat-
ing store and environment in working out their theories, and proof tools for C and Java
do not need to worry about Modifies sets. See [65] for further discussion.

3.4. Tight Specifications

The issues related to frame axioms that we discussed in Section 2.2 go a long way back,
to the beginning work on logic in AI [57]. Fundamentally, the reason why AI issues are
relevant to program logic is just that programmers describe their code in a way that cor-
responds to a commonsense reading of specifications, where much is left unsaid. Practi-
cally, if we do not employ some kind of solution to the AI problems, then specifications
quickly become extremely complicated [11].

Some people think that the real problem is in a way negative in nature, is to avoid
writing nasty frame axioms like we did in the ‘back in the day’ discussion in Section
2.2. Other people think the problem is just to have succinct specs, however one gets
them. I have always thought both of these, succinct specs and avoiding writing frame
axioms, should be a consequence of a solution, but are not themselves the problem. My



approach to this issue has always been to embrace the ‘commonsense reasoning’ aspect
first, and for this the idea of a ‘tight specification’ is crucial: the idea is that if you don’t
say that something changes, then it doesn’t. For example, if you say that a robot moves
block A from position 1 to position 2, then the commonsense reading is that you are
implicitly saying as well that this action does not change the position of a separate block
B (unless, perhaps, block B is on top of block A). Programmers’ informal descriptions
of their code are similar. In the java.util List interface the description of the copy method
is just that it ‘copies all of the elements from one list into another’. There is no mention
of frames in the description: the description carries the understanding that the frame
remains unchanged. The need to describe the frames explicitly in some formalisms is
just an artefact, which programmers do not find necessary when talking about their code
(because of this commonsense reasoning that they employ).

Be that as it may, formalization of the notion of tight specification proved to be
surprisingly difficult, and in AI there have been many elaborate theories advanced to try
to capture this notion – circumscription, default logic, nonmonotonic logic, and more
– far too many to give a proper account of here. Without claiming to be able to solve
the general AI problem, this section explains how an old idea in program logic, when
connected to the principle of local reasoning (that you only need to talk about the cells a
program touches), gives a powerful and yet very simple approach to tight specifications.

The old idea is of fault-avoiding specifications. To formulate this, let us suppose that
we have a semantics of commands whereC, σ ;∗ σ′ indicates that there is a terminating
computation of command C from state σ to state σ′. In the RAM model σ can be a
pair of a store and a heap, but the notion can be formulated at a more general level than
this particular model. Additionally, we require a judgement form C, σ ;∗ fault. In
the RAM model, fault can be taken to indicate a memory fault: a dereferencing of a
dangling pointer or a double-free. Again, more generally, fault can be used for other
sorts of errors.

Here, then, is a fault-avoiding semantics of triples, where for generality we are view-
ing the preconditions and postconditions as sets of states rather than as formulae written
in some particular assertion language.

Faut-Avoiding Partial Correctness

{A}C {B} holds iff ∀σ ∈ A

1. no faults: C, σ 6;∗ fault
2. partial correctness: C, σ ;∗ σ′ implies σ′ ∈ B.

The ‘no faults’ clause is a reasonable thing to have as a way for proven programs to avoid
errors, and was used as far back as Hoare and Wirth’s axiomatic semantics of Pascal in
1973 [45]. Notice that the small axioms given above are already in a form compatible
with the fault-avoiding semantics. For instance, in the axiom

{E 7→−} [E] := F {E 7→F}

the E 7→− in the precondition ensures that E is not a dangling pointer, and so [E] := F
will not memory fault.

Remarkably, besides ensuring that well-specified programs avoid certain errors, it
was realized much later [47] that the fault-avoiding interpretation gives us an approach
to tight specifications. The key point is a consequence of the ‘no faults’ clause: touching



any cells not known to be allocated in the precondition falsifies the triple, so any cells
not ‘mentioned’ (known to be allocated) in the pre will remain unchanged. To see why,
suppose I tell you

{10 7→ −}C {10 7→ 25}

but I don’t tell you what C is. Then I claim C cannot change location 11 if it happens to
be allocated in the pre-state (when 10 is also allocated). For, if C changed location 11, it
would have to access location 11, and this would lead to fault when starting in a state
where 10 is allocated and 11 is not. That would falsify the triple (no error clause). As a
consequence we obtain that

{107→ − ∗117→4}C {10 7→25 ∗ 11 7→4}

should hold.
This reasoning is the basis for the frame rule. But the semantic fact that location 11

doesn’t change is completely independent of separation logic. In fact, we could state a
similar conclusion without mentioning ∗ at all

{10↪→−∧11↪→4}C {10↪→25 ∧ 11↪→4}

Separation logic, and the frame rule, only give you a convenient way to exploit the tight-
ness (that things don’t change if you don’t mention them) in the fault-avoiding interpre-
tation. This tightness phenomenon is in a sense at a more fundamental level, prior to
logic.

It is useful to consider that for this approach to tight specifications to work fault

does not literally need to indicate memory fault, and it is not necessary to use a low-level
memory model. For instance, we can put a notion of ‘accesses’ or ‘ownership’ in a model,
and then when the program strays beyond what is owned we declare a specification false:
then, the same argument as above lets us conclude that certain cells do not change. This
is the idea used in implicit dynamic frames [77], and in separation logics for garbage-
collected languages like Java where there are no memory faults (e.g., [66]). Alternate
approaches may be found in [4,3,49].

I have tried to explain the basis for tight specifications above in a semi-formal way.
But, the reader might have noticed that there were some unstated assumptions behind my
arguments. One can imagine mathematical relations on states and fault that contradict
our conclusion that 11 will remain unchanged. One such relation is as follows: if the
input heap is a singleton, it sets the contents of the only allocated location to be 25, and
otherwise sets all allocated locations in the input heap to have contents 50. This is not
a program that you can write in C, but it shows that that there are locality properties
of the semantics of programs at work behind the tight interpretation of triples, and it is
important theoretically to set these conditions down precisely; see [86,18,72].

Exercise 9 Without saying what the commands C are, and ignoring the store component
(i.e., think about heap only), formulate sufficient conditions on the relations C, σ ;∗ σ′

and C, σ ;∗ fault which make the frame rule valid according to fault-avoiding partial
correctness. Give a proof of the validity of the frame rule from these conditions.

Are your conditions necessary as well as sufficient?



4. Symbolic Heaps, Symbolic Execution and Abstract Interpretation

In the previous sections I emphasized an informal view of program proof as a form
of symbolic execution. That is the view implemented in a number of verification and
analysis tools based on separation logic, beginning with SMALLFOOT [7]. In this section
I describe the foundations of this approach, and give a short introduction to its extension
to program analysis (where abstraction is used to calculate loop invariants).

4.1. Symbolic Heaps

When designing an automatic program verification tool there are almost always compro-
mises to be made, forced by the constraints of recursive undecidability of so many ques-
tions about logics and programs. The first tools based on separation logic chose to restrict
attention to a certain format of assertions which made three tasks easier than they might
otherwise have been: symbolic execution, entailment checking, and frame inference.

Symbolic heaps [6,30] are formulae of the form

∃ ~X.(P1 ∧ · · ·Pn) ∧ (S1 ∗ · · · ∗ Sm)

where the Pi and Sj are primitive pure and spatial predicates, and ~X is a vector of logical
variables (variables not used in programs). We understand the nullary conjunction of Pi’s
as true and the nullary ∗-conjunction of Si’s as emp. The special form of symbolic heaps
does not allow, for instance, nesting of ∗ and ∧, or boolean negation ¬ around ∗, or the
separating implication −∗ . This special form was chosen, originally, to match the usage
of separation logic in a number of by-hand proofs that had been done. The form does not
cover all proofs, such as Yang’s proof of the Schorr-Waite algorithm [84], so there are
immediately-known limitations.

The grammar for symbolic heaps can be instantiated with different sets of basic pure
and spatial predicates. Pure formulae are heap-independent, and describe properties of
variables only, where the spatial formulae specify properties of the heap. One instantia-
tion is as follows

SIMPLE LISTS INSTANTIATION

P ::= E=E | E 6=E |
S ::= E 7→E | lsne(E,E) | true

Expressions E include program variables x, logical variables X , or constants κ (e.g.,
nil ). Here, the points-to predicate x 7→y denotes a heap with a single allocated cell at ad-
dress x with content y, and lsne(x, y) denotes a nonempty list segment from x to y. This
is the list segment predicate used in the paper [30] on program analysis, which described
the analysis that we call BABY SPACEINVADER (the grown up version is represented in
[5,85]). In contrast, the ‘possibly empty list segments’ predicate ls we described before
was used in SMALLFOOT. It turns out that there is no one best predicate. In a practical
program analysis tool, it is helpful to keep both forms of segment ls and lsne in the
assertion language, even though they can be expressed in terms of one another and dis-
junction: keeping distinct predicates for empty and nonempty list segments in a language
provides a means to help limit the number of disjuncts that need to be considered by the



program analysis, a key issue in dealing with state-space explosion [85]. Some tools even
prefer the imprecise list segment predicate ils from Exercise 4, to make the abstraction
or widening step in an abstract interpreter easier to design.

There are many other instantiations that one can consider. One instantiation keeps P
the same and replaces simple linked-lists by a higher-order variant which allows lists to
be nested [5]. Varieties of trees, possibly with back pointers, have been considered [20].
As have predicates that track arithmetic information or the contents of data structures
[8,51,80]. Very complicated abstract domains are needed to cope with the complicated
data structures occurring in real-world programs. But in these lectures we will stick with
the simple lists, for simplicity of presentation.

CONVENTIONS. We observe the following conventions. In writing a symbolic heap
we omit the leading ∃ ~X , understanding that the logical variables X are implicitly ex-
istentially quantified. Also, we overload the ∗ operator, so that it also works for entire
symbolic heaps H and not only the components.(

(P1 ∧ · · ·Pn) ∧ (S1 ∗ · · · ∗ Sm)
)
∗
(
(P ′1 ∧ · · ·P ′n′) ∧ (S′1 ∗ · · · ∗ S′m′))

∆
= (P1 ∧ · · ·Pn ∧ P ′1 ∧ · · ·P ′n′) ∧ (S1 ∗ · · · ∗ Sm ∗ S′1 ∗ · · · ∗ S′m′)

4.2. Symbolic Execution

The symbolic execution semanticsH,A =⇒ H ′ takes a symbolic heapH and an atomic
command, and transforms it into an output symbolic heap or fault. In these rules we
require that the logical variables X,Y be fresh.

SYMBOLIC EXECUTION RULES

H x := E =⇒ x = E[X/x] ∧H[X/x]

H ∗ E 7→F x := [E] =⇒ x = F [X/x] ∧H ∗ E 7→F )[X/x]

H ∗ E 7→F [E] := G =⇒H ∗ E 7→G
H x := cons(−) =⇒H[X/x] ∗ x 7→X
H ∗ E 7→F free(E) =⇒H

With the convention that the logical variables are implicitly existentially quantified, the
first rule is just a restating of Floyd’s axiom for assignment. The other rules can be
obtained from the small axioms of Section 3 by applications of the structural rules.

The rules for x := [E], [E] := G and [E] := G all assume that we have E 7→F
explicitly in the precondition. In some cases, this knowledge that E points to some-
thing will be somewhat less explicit, as in the symbolic heap E = E′ ∧ E′ 7→F . Then,
a simple amount of logical reasoning can convert this formula to the equivalent form
E = E′∧E 7→F , which is now ready for an execution step. In another case, lsne(E,F ),
we might have to unroll the inductive definition to reveal the 7→. In general, for any of
these heap-accessing forms, we need to massage a symbolic heap to ‘makeE 7→ explicit’.
Here are sample rules for doing this massaging.



REARRANGEMENT RULES

A(E) ::= [E] := G | [E] := G | [E] := G
P (E,F ) ::= E 7→F | lsne(E,F )

H0 ∗ P (E,G), A(E) =⇒ H1

H0 ∗ P (F,G), A(E) =⇒ H1
H0 ` E = F

H0 ∗ E 7→X ∗ lsne(X,G), A(E) =⇒ H1

H0 ∗ lsne(E,G), A(E) =⇒ H1

H0 ∗ E 7→F, A(E) =⇒ H1

H0 ∗ lsne(E,F ), A(E) =⇒ H1

H 6` Allocated(E)

H, A(E) =⇒ fault

In these rules we referred to a notion of entailment ` that will be discussed in Section
4.4. Allocated(E) can be represented by the assertion E 7→X ∗ true where X is fresh.

[Aside: This rearrangement notion is related to the partial concretization operation
used in shape analysis [75,76], where one concretizes just enough of an abstract value
so that the concrete program semantics can be applied. Rearrangement is also a special
case of the concept of frame inference discussed later in Section 4.5.]

It is a good idea, and good for practice, for you to become familiar with the different
variations on list segments.

Exercise 10 Without looking at any of the papers referenced in this section...

1. Give an inductive definition of the predicate for necessarily non-empty list seg-
ments lsne , corresponding to the rearrangement rules above.

2. Give rearrangement rules that would be appropriate for the earlier definition of
possibly empty list segments, ls .

3. Consider the formulae

ls(x, y) ∗ ls(x, z) and lsne(x, y) ∗ lsne(x, z)

Is either formula satisfiable? Might this affect any of the steps in symbolic exe-
cution?

4. (Advanced) Write an inductive definition for a predicate that describes doubly-
linked list segments. It should have four arguments. Be careful about the base
case.
Write rearrangement rules for this doubly-linked list predicate.

4.3. Recipe for Cooking a Verifier

Using symbolic execution, it is possible to construct an automatic verification tool as
follows. The input to the tool is a while program with heap-manipulating primitives as
in the previous section. The program must be annotated with loop invariants and a pre-



condition and a postcondition. The SMALLFOOT list_append program from Section
3.2 is of this form. The usual rules of Hoare logic for loops and conditionals then enable
us to chop up the correctness of such a program into a number of questions of the form
{H} c1; ...; cn {H ′} for atomic commands ci. If we can verify that each of these straight-
line specifications {H} c1; ...; cn {H ′} is true then we can conclude that the beginning
program satisfies its pre/post spec.

In many verification tools the straightline specs {H} c1; ...; cn {H ′} are decided by
using a weakest preconditon calculation to obtain a formula wp(c1; ...; cn, H

′) and then
asking a theorem prover if H ⇒ wp(c1; ...; cn, H

′). Or, a strongest postcondition could
be used.

The approach used often in separation logic tools is something like the strongest
post calculation, except that lots of subsidiary calls are made to a theorem prover along
the way. To decide {H} c1; ...; cn {H ′} we first ask the theorem prover if H is inconsis-
tent. If it is, we are done (the spec is true). Second, if c1, ..., cn is the empty sequence
we ask a prover if H ` H ′. Otherwise, we apply symbolic execution the first statement
c1, and this gives us fault or several symbolic heaps (several because there is nonde-
terminism in rearrangement, and since some basic commands in a real language might
have disjunctions in their postconditions. (Why might malloc() have a disjunction
as its post?). A theorem prover is consulted in the rearrangement phase here. If fault
resulted from symbolic execution then were are done (the spec is false). If, instead, ex-
ecution yields several heaps H1, ...,Hm then we return the conjunction of the smaller
questions {Hi} ..; cn {H ′}. This last case essentially relies on the rule

{P1}C {Q} · · · {Pn}C {Q}
{P1 ∨ · · · ∨ Pn}C {Q}

of Hoare logic.
This verification strategy relies on having a theorem prover to answer entailment

questions H ` H ′. A straightforward embedding of separation logic into a classical
logic, where one writes the semantics in the target logic (e.g., ‘∃σ1σ2.σ = σ1 • σ2...’),
has not yet yielded an effective prover, because it introduces existential quantifiers to give
the semantics of ∗. Therefore, proof tools for separation logic has used dedicated proof
procedures, built from the proof rules of the logic. (Work is underway on more nuanced
interpretations into existing provers that do more than a direct semantic embedding.)

4.4. Proof Procedures for Entailment

An approach to proving symbolic heaps was pioneered by Josh Berdine and Cristiano
Calcagno [6]. Their approach revolves around proof rules for abstraction and subtraction.
A sample abstraction rule is

ls(x, t) ∗ list(t) ` list(x)

where the subtraction rule is

Q1 ` Q2

Q1 ∗ S ` Q2 ∗ S



Their basic idea is to try to reduce an entailment to an axiom B ∧ emp ` true ∧ emp by
successively applying abstraction rules, and Subtracting when possible. The basic idea
can be appreciated by considering two examples.

First, a successful example:

¨̂

emp ` emp Axiom!
list(x) ` list(x) Subtract
ls(x, t) ∗ list(t) ` list(x) Abstract (Inductive)
ls(x, t) ∗ t7→y ∗ list(y) ` list(x) Abstract (Roll)

The entailment on the bottom is the one we needed to prove at the end of the
list_append procedure from Section 3.2. The first step, going upward, is a simple
rolling up of an inductive definition. The second step is more serious: it is one that we
would use induction in the metalanguage to justify. We then get to a position where we
can apply the subtraction rule, and this gets us back to a basic axiom.

For an unsuccessful example

_̈

list(y) ` emp Junk: Not Axiom!
list(x) ∗ list(y) ` list(x) Subtract
ls(x, t) ∗ t7→nil ∗ list(y) ` list(x) Abstract (Inductive)

The last line is an entailment that SMALLFOOT would attempt to prove if the statement
t->tl = y at the end of the list_append program were replaced by t->tl =
nil. There we do an abstraction followed by a subtraction and we get to a position
where we cannot reduce further. Rightly, we cannot prove this entailment.

The detailed design and theoretical analysis of a proof theory based on these ideas
is nontrivial. For the specific case of singly-linked list segments, Berdine and Calcagno
were able to formulate a complete and terminating proof theory. There is no space to go
into all the details of their theory, but it is worth listing their abstraction rules, presented
here as entailments.

Rolling

emp ` ls(E,E)

E1 6= E3 ∧ E1 7→E2 ∗ ls(E2, E3) ` ls(E1, E3)

Induction Avoidance

ls(E1, E2) ∗ ls(E2,nil) ` ls(E1,nil)

ls(E1, E2) ∗ E2 7→nil ` ls(E1,nil)

ls(E1, E2) ∗ ls(E2, E3) ∗ E3 7→E4 ` ls(E1, E3) ∗ E3 7→E4

E3 6= E4 ∧ ls(E1, E2) ∗ ls(E2, E3) ∗ ls(E3, E4)
` ls(E1, E3) ∗ ls(E3, E4)



The remarkable thing about these abstraction rules is not that they are sound, but in a
sense complete: any true fact about list segments and points-to facts that can be expressed
in symbolic heap form can be proven using these axioms, without appealing to an explicit
induction axiom or rule. The Berdine/Calcagno proof theory works by using these rules
on the left (in effect employing a special case of the Cut rule of sequent calculus). It has
other rules as well, such as for inferring x 6= nil from x 7→−: at every stage, their decision
procedure records as many pure disequalities as possible on the left, and it substitutes
out all equalities, getting to a kind of normal form. It is this normal form that makes the
subtraction rule complete (a two-way inference rule).

Note: in this subsection we have gone back to the ls rather than lsne predicate, as
Berdine and Calcagno formulated their rules for ls . In fact, it is easier to design a com-
plete proof theory for lsne rather than ls . It is also relatively easy (and was folklore
knowledge) to see that entailment for the lsne symbolic heaps can be decided in poly-
time, but the question for the ls remained open until a recent paper which showed the
entailment is indeed in polytime in the original problem [23]. (The reason for subtlety in
this question is related to question 3 of Exercise 10; you might go back there and wonder
about it.)

I like to call this approach of combining abstraction and subtraction rules the
‘crunch, crunch’ method. It works by taking a sequent H ` H ′ and applying abstraction
and subtraction rules to crunch it down to a smaller size by removing ∗-conjuncts, until
you get emp as the spatial part on one side or the other of `. If you have emp on only one
side, you have a failed proof. If you have other pure facts, of the form Π∧emp ` Π′∧emp
you can then ask a straight classical logic question Π ` Π′. The final check, Π ` Π′,
is a place where one could call an external theorem prover, say for a decidable theory
such as linear arithmetic, and that is all the more useful when the pure part can contain a
richer variety of assertions than in the simple fragment considered in this section. Indeed,
there have been a number of provers for separation logic developed that use variations on
this ‘crunch, crunch’ approach together with an external classical logic solver, including
[13,68] and the provers inside VERIFAST [48], JSTAR [31], HIP [60] and SLAYER [9].

4.5. Frame Inference

Entailment is a standard problem for verifiers to face. In work applying separation logic,
a pivotal development has been identification of the notion of frame inference, which is
an extension of the entailment question:

In a frame inference question of the form

A ` B ∗ ?frame

the task is, given A and B, to find a formula ?frame which makes the entailment
valid.

Frame inference gives a way to find the ‘leftover’ portions of heap needed to automati-
cally apply the frame rule in program proofs. This extended entailment capability is used
at procedure call sites, where A is an assertion at the call site and B a precondition from
a procedure’s specification.



A first solution to frame inference was sketched in [6] and implemented in the
SMALLFOOT tool. The SMALLFOOT approach works by using information from failed
proofs of the standard entailment question A ` B. Essentially, a failed proof of the form

F ` emp
...

A ` B

tells us that F is a frame. For, from such a failed proof we can form a proof

F ` F
F ` emp ∗ F

...
A ` B ∗ F

by tacking ∗F on the right everywhere in the failed proof. So, the frame inferring pro-
cedure is to go upwards using the ‘crunch, crunch’ proof search method until you can
go no further: if your attempted proof is of the form indicated above, it can tell you a
frame. (Dealing with multiple branches in proofs requires some more subtlety than this
description indicates.)

Frame inference is a workhorse of separation logic verification tools. As you can
imagine from the discussion surrounding Disptree in Section 2, it is used at procedure
call sites to identify the part of a symbolic heap that is not not touched by a procedure.
Interprocedural program analysis tools typically use (often incomplete) implementations
of frame inference for reasoning with ‘procedure summaries’ [39,59]. In SMALLFOOT,
proof rules for critical regions in concurrent programs are verified using little phantom
procedures (called ‘specification statements’) with specs of the form {emp} − {R} and
{R} − {emp} for materializing and annihilating portions of storage protected by a lock.
Indeed, if one has a good enough frame inference capacity, then symbolic execution can
be seen to be a special case of a more general scheme, where basic commands are treated
as specification statements (the small axioms), and frame inference is used in place of the
special concept of rearrangement. SMALLFOOT and SPACEINVADER did not follow this
idealistic approach, preferring to optimize for the common case of the basic statements,
but the more recent JSTAR and SLAYER are examples of tools that call a frame inferring
theorem prover at every step of symbolic execution [31,9].

4.6. A Taste of Abstract Interpretation

Beginning in 2006 [30,52], a significant amount of work has been done on the use of
separation logic in automatic program analysis. There are a number of academic tools,
including SPACEINVADER [5,85], THOR [53], XISA [20], FORRESTER [41], PREDATOR
[33], SMALLFOOTRG [19], HEAP-HOP [83] and JSTAR [31], and the industrial tools
INFER from Monoidics [16] and SLAYER from Microsoft [9]. The tools in this area are
a new breed of shape analysis, which attempt to discover the shapes of data structures
(e.g., whether a list is cyclic or acyclic) in a program [75]. These tools cannot prove
functional correctness, but can be applied to code in the thousands or even millions of
LOC [85,17].



The general context for this use of separation logic concerns the relation between
program logic and program analysis. It has been known since the work of the Cousots
in the 1970s [24,25] that concepts from Hoare logic and static program analysis are
related. In principle, static analysis can be used to calculate loop invariants and procedure
specifications via fixed-point computations, thereby lessening annotation burden. There
is a price to pay in that trying to be completely automatic in this way almost forces one
to step away from the ideal of proving full functional correctness.

While the relation between analysis and verification has been long known in prin-
ciple, the last decade has seen a surge of interest in verification-by-static-analysis, with
practical demonstrations of its potential such as in SLAM’s application of proof tech-
nology to Microsoft device drivers [2] and ASTRÉE’s proof of the absence of run-time
errors in Airbus code [26]. Separation logic enters the picture because these practical
tools for verification-oriented static analysis ignore pointer-based data structures, or use
coarse models that are insufficient to prove basic properties of them; e.g., SLAM assumes
memory safety, and ASTRÉE works only on input programs that do not use dynamic
allocation. Similar remarks apply to other tools such as BLAST, Magic and others. Data
structures present a significant problem in verification-oriented program analysis, and
that is the point that the separation logic program analyses are trying to address.

This section illustrates the ideas in the abstractions used in separation logic program
analyzers. To begin, suppose you were to continually symbolically execute a program
with a while loop. You collect sets of formulae (abstract states) at program points, and
generate new ones by symbolically executing program statements. The immediate prob-
lem is that you would go on generating symbolic heaps on loop iterations, and the pro-
cess could diverge: you would never stop generating new symbolic heaps. The most basic
idea of program analysis is to use abstraction, the losing of information, to ensure that
such a process terminates.

Consider the following program that creates a linked list of indeterminate length.

{Pre : emp}
x := nil;
while (nondet()){

y := cons(-);
y→tl := x;
x := y;

}

Suppose we start symbolically executing the program from pre-state emp. On the first
iteration, at the program point immediately inside the loop, we will certainly have that
x = nil ∧ emp is true, so let us record this in

Loop Invariant so far (1st iteration)
x = nil ∧ emp.

Now, if we go around the loop once more, then it is clear that x 7→ nil will be true at the
same program point, so let us add that to our calculation.

Loop Invariant so far (2nd iteration)
(x = nil ∧ emp) ∨ (x 7→ nil).

At the next step we get



Loop Invariant so far (3rd iteration)
(x = nil ∧ emp) ∨ (x 7→ nil) ∨ (x 7→X ∗X 7→nil)

because we put another element on the front of the list. If we keep going this way, we
will get lists of length 3, 4 and so on: infinite regress. However, before we go around the
loop again, we might employ abstraction, to conclude that we have a list segment. That
is, we use the entailment

x 7→X ∗X 7→nil ` lsne(x,nil)

on the third disjunct, giving us

Loop Invariant so far (3rd iteration after abstraction)
(x = nil ∧ emp) ∨ (x 7→ nil) ∨ lsne(x,nil)

Loss of information has occurred because in the third disjunct we have forgotten that
the list from x is of length precisely 2. And, by this step we have taken ourselves to
a situation where the assertion describes finitely many heaps (up to isomorphism), to
an assertion that describes infinitely many concrete heaps: combining abstraction with
symbolic execution allows us to cover a great many more heaps.

Now, if we go around the loop again, we obtain

Loop Invariant so far (4th iteration before abstraction)
(x = nil ∧ emp) ∨ (x 7→ nil) ∨ (x 7→X ∗ lsne(X,nil))

and we can apply a Berdine/Calcagno abstraction rule

x 7→X ∗ lsne(X,nil) ` lsne(x,nil)

to obtain

Loop Invariant so far (4th iteration after abstraction)
(x = nil ∧ emp) ∨ (x 7→ nil) ∨ lsne(x,nil)

Lo and behold, what we have obtained on the 4th iteration after abstraction is the same
as the 3rd. We might as well stop now, as further execution of this variety will not give
us anything new: we have reached a fixed-point. As it happens, this loop invariant is also
the postcondition of the procedure in this example.

In this narrative the human (me) was the abstract interpreter, choosing when and
how to do abstraction. To implement a tool we need to make it systematic. In the
SPACEINVADER breed of tools, this is done using rewrite rules that correspond to
Berdine/Calcagno abstraction rules for entailment described in Section 4.4. The abstract
interpreter is sound automatically because applying those rules to simplify formulae is
just using the Hoare rule of consequence on the right. The art is in not applying the
rules too often, which would make one lose too much information, sometimes resulting
in fault coming out of your abstract interpreter for perfectly safe problems (a ‘false
alarm’).

The way you set up a proof-theoretic abstract interpreter is as follows. In addition to
symbolic execution rules, there are abstraction rules which you apply periodically (say,
when going through loop iterations); this allows the exection process to saturate (find a
fixed-point). Here are some of the rules used in (baby) SPACEINVADER [30].



(ρ, ρ′ range over lsne, 7→)

∃ ~X.H ∗ ρ(x, Y ) ∗ ρ′(Y,Z) −→ ∃ ~X.H ∗ lsne(x, Z) where Y not free in H

∃ ~X.H ∗ ρ(Y,Z) −→ ∃ ~X.H ∗ true where Y not provably reachable
from program vars

The first rule says to forget about the length of uninterrupted list segments, where there
are no outside pointers (from H) into the internal point. The abstraction ‘gobbles up’
logical variables appearing in internal points of lists, by swallowing them into list seg-
ments, as long as these internal points are unshared. This is true of either free or bound
logical variables. The requirement that they not be shared is an accuracy rather than
soundness consideration; we stop the rules from firing too often, so as not to lose too
much information.

[A remark on terminology: What I am simply calling the ‘abstraction’ step is a
special case of what is called Widening in the abstract interpretation literature [24], and
a direct analogue of the ‘canonical abstraction’ used in 3-valued shape analysis [76].]

Exercise 11 Define a program that never faults, but for which the abstract semantics just
sketched returns fault.

Although I have not given a fully formal specification of the abstract interpreter
above, thinking about the nature of the list segment predicates and the restricted syntax
of symbolic heaps is one way to find such a program (e.g., if the program needs a loop
invariant that is not expressible with finitely many symbolic heaps).

This exercise actually concerns a general point in program analysis. If you have a ter-
minating analysis that is trying to solve an undecidable problem, it must necessarily be
possible to trick the analysis. Since most interesting questions about programs are un-
decidable, we must accept that any program analysis for these questions will have an
heuristic aspect in its design.

4.7. Contextual Remarks

This specific abstraction idea in the illustration in this section, to forget about the length
of uninterrupted list segments, is sometimes called ‘the Distefano abstraction’: it was
defined by Distefano in his PhD thesis [29]. The idea does not depend on separation
logic, and similar ideas have been used in other abstract domains, such as based on 3-
valued logic [54] or on graphs [55]. Once SMALLFOOT’s symbolic execution appeared,
it simply was relatively easy to port Distefano’s abstraction to separation logic, when
defining BABY SPACEINVADER [30]. Around the same time, very similar ideas were
independently discovered by Magill et. al. [52].

These first abstract interpreters did not achieve a lot practically, but opened up
the possibility of exploring the use of separation logic in program analysis. A growing
amount of work has been going forward in a number of directions, an incomplete list of
which includes the following, which are good places to start for further reading.

1. The use of the frame rule and frame inference A ` B ∗ ?frame in interproce-
dural analysis [39];



2. The use of abductive inference A ∗ ?antiframe ` B to approximate foot-
prints, leading to a compositional analysis, and a boost to the level of automation
and scalability [17];

3. The use of a higher-order list segment notion to attack complicated data structures
in device drivers [5,85];

4. Analyses for concurrent programs [40];
5. Automatic parallelization [71,46];
6. Program-termination proving [8,51,14];
7. Analysis of data structures with sharing [21,50].

This last section has been but a sketch, and I have left out a lot of details. I will
possibly extend these notes in future to put more formalities into this last section. For
now I just point you to [30] for a mathematically thorough description of one abstract
interpreter based on separation logic.

The leading edge, as of 2011, of what can be achieved practically on real-world
code by these tools is probably represented by SLAYER [9] and INFER [16], and can
be glimpsed by academic papers that fed into them [85,17]. However, there are some
areas (sharing, trees) where academic prototypes outperform them precision-wise, and
the leading edge in any case is moving quickly at this moment.

I have talked about automatic verification and analysis in these notes, but many of the
ideas – such as frame inference, symbolic execution, abstraction/subtraction-based proof
theory – are relevant as well in interactive proving. There have been several embeddings
of separation logic in higher-order logics used in interactive proof assistants (e.g., [56,
35,82,79,58,1]), where the proof theoretic or symbolic execution rules are derived as
lemmas. A recent paper [22] gives a good account of the state of the art and references
to the literature, as well as an explanation of expressivity limitations of approaches to
program verification based on automatic theorem proving for first-order logic.

It should be mentioned that there is no conflict here of having several logics (sepa-
ration, first-order, higher-order, etc.): there is no need to search for ‘the one true logic’.
In particular, even though they can be embedded in foundational higher-order logics,
special-purpose formalisms like separation and modal and temporal logics are useful for
identifying specification and reasoning idioms that make specifications and proofs easier
to find, for either the human or the machine.
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