
Automated Software Analysis and
Verification with Separation Logic

Josh Berdine Cristiano Calcagno Dino Distefano
Samin Ishtiaq Peter O’Hearn John Reynolds

Hongseok Yang

CAV 2016
Toronto



Technical Milestones

I Separation Logic
I Symbolic Heaps
I Symbolic Execution
I Frame Inference
I Syntactic Abstraction
I Interprocedural Localization
I Higher-Order Inductive Definitions
I Approximate Join
I Bi-Abduction

2 / 17



Technical Milestones

I Separation Logic
I Symbolic Heaps
I Symbolic Execution
I Frame Inference
I Syntactic Abstraction
I Interprocedural Localization
I Higher-Order Inductive Definitions
I Approximate Join
I Bi-Abduction

2 / 17



Technical Milestones

I Separation Logic
I Symbolic Heaps
I Symbolic Execution
I Frame Inference
I Syntactic Abstraction
I Interprocedural Localization
I Higher-Order Inductive Definitions
I Approximate Join
I Bi-Abduction

2 / 17



Technical Milestones

I Separation Logic
I Symbolic Heaps
I Symbolic Execution
I Frame Inference
I Syntactic Abstraction
I Interprocedural Localization
I Higher-Order Inductive Definitions
I Approximate Join
I Bi-Abduction

2 / 17



Technical Milestones

I Separation Logic
I Symbolic Heaps
I Symbolic Execution
I Frame Inference
I Syntactic Abstraction
I Interprocedural Localization
I Higher-Order Inductive Definitions
I Approximate Join
I Bi-Abduction

2 / 17



Technical Milestones

I Separation Logic
I Symbolic Heaps
I Symbolic Execution
I Frame Inference
I Syntactic Abstraction
I Interprocedural Localization
I Higher-Order Inductive Definitions
I Approximate Join
I Bi-Abduction

2 / 17



Technical Milestones

I Separation Logic
I Symbolic Heaps
I Symbolic Execution
I Frame Inference
I Syntactic Abstraction
I Interprocedural Localization
I Higher-Order Inductive Definitions
I Approximate Join
I Bi-Abduction

2 / 17



Technical Milestones

I Separation Logic
I Symbolic Heaps
I Symbolic Execution
I Frame Inference
I Syntactic Abstraction
I Interprocedural Localization
I Higher-Order Inductive Definitions
I Approximate Join
I Bi-Abduction

2 / 17



Technical Milestones

I Separation Logic
I Symbolic Heaps
I Symbolic Execution
I Frame Inference
I Syntactic Abstraction
I Interprocedural Localization
I Higher-Order Inductive Definitions
I Approximate Join
I Bi-Abduction

2 / 17



Tools & Impact

I SLAyer
I Windows kernel drivers
I 10s of kLOC
I “Quality Gate” checks when merging branches
I 10s of bugs
I “proofs” of a few drivers

I Infer
I Facebook Android and iOS apps
I 1000s of kLOC
I analyze each change submitted to continuous integration
I 1000s of changes analyzed per month
I 100s of issues reported per month (⇠ 70% fixed)

3 / 17



Influence

I Some significant practical impact
I But still much less influential on developer efficiency than e.g.

build or source control systems
I Also some significant research influence

I Many verification and analysis methods, tools, etc.
I Open, robust, rich community working on different

implementations of the fundamental ideas
I Basic ideas have migrated out of separation logic

I first-order logic encodings, and verification methodologies
I Most fundamental ideas receding into everyday practice:

I representation of memory in miTLS: separated hyperheaps

4 / 17



Influence

I Some significant practical impact
I But still much less influential on developer efficiency than e.g.

build or source control systems
I Also some significant research influence

I Many verification and analysis methods, tools, etc.
I Open, robust, rich community working on different

implementations of the fundamental ideas
I Basic ideas have migrated out of separation logic

I first-order logic encodings, and verification methodologies
I Most fundamental ideas receding into everyday practice:

I representation of memory in miTLS: separated hyperheaps

4 / 17



Important Choices

I Short human-readable proofs
I Still seem to be a good guide for scalable implementation
I Tools gamble: there exists a short proof, or else analysis

would explode no matter what
I Simplish proof-theory close to the “right” semantics

I Implementations need to manipulate a representation
I proof theory gave a reasonable one

I Close and direct relation between proof theory and semantics
I important to avoid complicated, verbose, encodings

I Semantics plays key role guiding soundness etc. arguments

5 / 17



Important Choices

I Short human-readable proofs
I Still seem to be a good guide for scalable implementation
I Tools gamble: there exists a short proof, or else analysis

would explode no matter what
I Simplish proof-theory close to the “right” semantics

I Implementations need to manipulate a representation
I proof theory gave a reasonable one

I Close and direct relation between proof theory and semantics
I important to avoid complicated, verbose, encodings

I Semantics plays key role guiding soundness etc. arguments

5 / 17



Important Observations

I Goal of verification: Increase developer efficiency
I Distinct but overlaps with classic reliability/security/. . . goals

I Deployment model is extremely important
I precision vs. scalability

I SLAyer useless no matter how fast if not precise enough
I Infer useless no matter how precise if not scalable enough

I developer groups differ
I how much evidence required to justify code change
I expectations and tolerance re missed/useless reports
I batch mode vs. code review

6 / 17



Important Observations

I Goal of verification: Increase developer efficiency
I Distinct but overlaps with classic reliability/security/. . . goals

I Deployment model is extremely important
I precision vs. scalability

I SLAyer useless no matter how fast if not precise enough
I Infer useless no matter how precise if not scalable enough

I developer groups differ
I how much evidence required to justify code change
I expectations and tolerance re missed/useless reports
I batch mode vs. code review

6 / 17



Theoretical Research to Practical Application

7 / 17



Theory to Practice Continuity

I The narrower the gaps between theoretical research,
experimental research, and practical application the better

I Practical application seems to take a team of engineers
where a large fraction have verification/analysis PhDs

I Knowing or being able to read the literature not enough
I Seems to require / benefit hugely from experience exploring

the theoretical research design space
I Hard to scale application of verification in this situation

I It would strengthen the field to
I Explicitly take continuity from theoretical research through

practical application as a goal
I Consciously evaluate work such that the whole spectrum is

incentivized

8 / 17



Theoretical Impact

I The further theoretical results can provide good guidance for
applied work the better

I To optimize exploration of the design space
I To optimize division of labor

I Simplifying assumptions
I E.g.: abstractions are finite, transformers are distributive, etc.
I Making them is necessary to make progress
I Eventual practical applications usually need to lift them
I It is “suboptimal” if “last mile” practitioners are the only ones

trying to lift them
I Need to be careful not to under-value work that lifts

simplifying assumptions or “just applies” an existing theory

9 / 17



Empirical Impact

I Convincing empirical arguments are hard
I Measuring one variable and controlling the rest is difficult
I What metrics are accurate predictors of utility?

I How closely correlated is what we measure in experimental
papers with limiting factors in practice? (Or what we prove
in theoretical papers?)

I efficiency vs. scalability
I “small” vs. “large” instances
I synthetic vs. organic instances
I worst-case vs. “average”-case vs. observed complexity
I increased performance vs. increased precision/expressivity

10 / 17



Objective Subjectivism
or Subjective Objectivism

I Need to encourage work that is significantly different, even
if not measurably better

I We may not know the metric that shows improvement
I May only find the metric by contrasting different but

incomparable approaches

11 / 17



Practical Impact

I People doing practical applications and theoretical or
experimental research usually have:

I different organizations
I different motivations
I different incentives
I different timeframes
I . . .

I Some “impedance matching” to do, effective communication
may not be trivial

I Dialogue can enable higher impact across the spectrum

12 / 17



Technical Challenges

13 / 17



Compositional & Differential

I Compositional, bottom-up, analysis
I absolutely critical to Infer’s scalability
I extremely under-explored in the literature
I probably every theoretical question except soundness is open

I Differential analysis
I analyze a code change, not an entire code base
I step further than differential reporting

I cheap way to obtain specifications: use previous version
I also critical for scalability, and extremely under-explored

14 / 17



Compositional & Differential

I Compositional, bottom-up, analysis
I absolutely critical to Infer’s scalability
I extremely under-explored in the literature
I probably every theoretical question except soundness is open

I Differential analysis
I analyze a code change, not an entire code base
I step further than differential reporting

I cheap way to obtain specifications: use previous version
I also critical for scalability, and extremely under-explored

14 / 17



Unknown / Incomplete Code
I Code to be analyzed always refers to code that is unknown,

impossible to verify, etc.
I How should unknown code be treated?

I write specifications
I write models (i.e. specifications)
I be pessimistic
I be optimistic
I be optimistic, but test dynamically
I synthesize (and inspect?) specifications / models
I . . .

I There is some work, but still lots of progress needed
I Even harder when properties are not global invariants

I trace properties for taint analysis
I isolation properties for separation logic

15 / 17



Principled Reporting
I Developers want soundness and completeness

I in practice, cannot have either one absolutely
I Trade-off: Sound relative to idealized, optimistic model
I Still far too incomplete

I Analyzer finds many useless/spurious/false issues
I Trade-off: Reduce noise, only report “high-confidence” issues
I “High-confidence” determined by ad-hoc heuristic based on

I execution history leading to violation
I providence of values involved
I known inaccuracies
I . . .

I Principled definitions of such confidence metrics seem
under-explored

16 / 17



Conclusion

I Milestones, Choices, Observations
I Many bugs in lots of code, Migration of ideas
I Community Challenges

I Narrow gaps between theoretical research, experimental
research, and practical application

I Beware systemic under-valuation of points on the spectrum
I What metrics are accurate predictors of utility?

I Technical Challenges
I Compositional & Differential verification / analysis
I Unknown / Incomplete Code
I Principled Reporting

17 / 17


