Tutorial on Separation Logic

Peter O'Hearn

Queen Mary, University of London

CAV Tutorial
Princeton, July 2008

Outline

» Part | : Fluency, Examples
» Part Il : Model Theory
» Part Ill : Proof Theory

IR DRI
o)

Some Context

» 2000's: impressive practical advances in automatic program
verification E.g.

» SLAM: Protocol properties of procedure calls in device drivers, e.g.
any call to ReleaseSpinLock is preceded by a call to
AquireSpinLock

» ASTREE: no run-time errors in Airbus code

SN

Some Context

» 2000's: impressive practical advances in automatic program
verification E.g.

» SLAM: Protocol properties of procedure calls in device drivers, e.g.
any call to ReleaseSpinLock is preceded by a call to
AquireSpinLock

» ASTREE: no run-time errors in Airbus code

» The Missing Link

» ASTREE assumes: no dynamic pointer allocation

» SLAM assumes: memory safety

» Wither automatic heap verification? (for substantial programs)

Some Context

» 2000's: impressive practical advances in automatic program
verification E.g.

» SLAM: Protocol properties of procedure calls in device drivers, e.g.
any call to ReleaseSpinLock is preceded by a call to
AquireSpinLock

» ASTREE: no run-time errors in Airbus code

» The Missing Link

» ASTREE assumes: no dynamic pointer allocation

» SLAM assumes: memory safety

» Wither automatic heap verification? (for substantial programs)

» Many important programs make serious use of heap: Linux, Apache,
TCP/IP, 10S... but heap verification is hard.

Some Context

2000’'s: impressive practical advances in automatic program
verification E.g.

» SLAM: Protocol properties of procedure calls in device drivers, e.g.
any call to ReleaseSpinLock is preceded by a call to
AquireSpinLock

» ASTREE: no run-time errors in Airbus code

The Missing Link

» ASTREE assumes: no dynamic pointer allocation

» SLAM assumes: memory safety

» Wither automatic heap verification? (for substantial programs)

Many important programs make serious use of heap: Linux, Apache,
TCP/IP, 10S... but heap verification is hard.

In some (distant?) future: automatically crash-proof Apache,
OpenSSL...

v

Some Context

2000’'s: impressive practical advances in automatic program
verification E.g.

» SLAM: Protocol properties of procedure calls in device drivers, e.g.
any call to ReleaseSpinLock is preceded by a call to
AquireSpinLock

» ASTREE: no run-time errors in Airbus code

The Missing Link

» ASTREE assumes: no dynamic pointer allocation

» SLAM assumes: memory safety

» Wither automatic heap verification? (for substantial programs)

Many important programs make serious use of heap: Linux, Apache,
TCP/IP, I0S... but heap verification is hard.

In some (distant?) future: automatically crash-proof Apache,
OpenSSL...

a possible motivation, not the motivation for separation logic “*¥¥x

k]

Outline

» Part | : Fluency, Examples
» Part Il : Model Theory
» Part Ill : Proof Theory

IR DRI
o)

Part |

Fluency, Examples

Sources

» O’Hearn-Reynolds-Yang, CSL'01: Local reasoning about programs
that alter data structures

» Reynolds, LICS'02: Separation Logic: A logic for shared mutable data
structure.

» Hoarefest’'00 paper of Reynolds, POPL'01 paper of Ishtiag-O'Hearn,
BSL'99 paper of O'Hearn-Pym, MI'72 paper of Burstall

Separation Logic

xI->y * yl->x

SN

Separation Logic

xI->y * yl->x

\%

IR DRI
o)

Separation Logic

xl->y

P

Separation Logic

yl-> x

/

IR DRI
o)

Separation Logic

xI->y * yl->x

\%

SN

Separation Logic

XI->y * yl-> X

10 42
x=10

42 10

y=42

SN

Separation Logic

XI->y * yl-> X

X y
N4
10 42

x=10
42 10

y=42

SN

Separation Logic

xl->y
X y
O—
10
x=10
42
y=42

SN

Separation Logic

yl-> x
X /y
42
x=10
10
y=42

SN

Separation Logic

xI->y * yl->x

\%

SN

Heaplets (heap portions) as possible worlds (i.e., a kind of
modal logic)

» Add to Classical Logic:
» emp : “the heaplet is empty”
» x — y : “the heaplet has exactly one cell x, holding y"
» Ax B : “the heaplet can be divided so A is true of one partition and B
of the other”.

._,«_g::;& N

Heaplets (heap portions) as possible worlds (i.e., a kind of
modal logic)

» Add to Classical Logic:
» emp : “the heaplet is empty”
» x — y : “the heaplet has exactly one cell x, holding y"
» Ax B : “the heaplet can be divided so A is true of one partition and B
of the other".
» Add inductive definitions , and other more exotic things (“magic
wand”, “septraction”) as well.

egg_m' \\k(,

Heaplets (heap portions) as possible worlds (i.e., a kind of
modal logic)

» Add to Classical Logic:
» emp : “the heaplet is empty”
» x — y : “the heaplet has exactly one cell x, holding y"
» Ax B : “the heaplet can be divided so A is true of one partition and B
of the other".
» Add inductive definitions , and other more exotic things (“magic
wand”, “septraction”) as well.

» Standard model: RAM model
heap: N —¢ Z

and lots of variations (records, permissions, ownership... more later).
S

A Substructural Logic

A H AxA

103 I 10— 310+ 3

A«B I/ A

10— 3%x42—5 ¥ 10— 3

-~

An inconsistency: trying to be two places at once

101->3 * 101->3
10 10
o [

18

-SH_:M,

In-place Reasoning

{(x—)« P} [x]:=7 {(x —T7) x P}

10

In-place Reasoning

{(x—)« P} [x]:=7 {(x —T7) x P}

{true} [x]:=7 {77}

10

In-place Reasoning

{(x—)« P} [x]:=7 {(x —T7) x P}

{true} [x]:=7 {77}

{P x(x+— —)} dispose(x) {P}

-

In-place Reasoning

{(x—)« P} [x]:=7 {(x —T7) x P}

{true} [x]:=7 {77}

{P x(x+— —)} dispose(x) {P}

{true} dispose(x) {77}

In-place Reasoning

{(x—)« P} [x]:=7 {(x —T7) x P}

{true} [x]:=7 {77}

{P x(x+— —)} dispose(x) {P}

{true} dispose(x) {77}

{P} x =cons(a,b) {Px*(x+ a,b)} (x ¢ free(P))

P

Linked Lists
List segments (list(E) is shorthand for Iseg(E, nil))

Iseg(E,F) <= if E = F then emp
else dy.Ertl:y x Iseg(y, F)

Iseg(x, y) * Iseg(y, x)

20

Linked Lists
List segments (list(E) is shorthand for Iseg(E, nil))

Iseg(E,F) <= if E = F then emp
else dy.Ertl:y x Iseg(y, F)

Iseg(x, t) * t—[tl: y] * list(y)

X t y

00000

R SREN
e

Linked Lists
List segments (list(E) is shorthand for Iseg(E, nil))
Iseg(E,F) <= if E = F then emp
else dy.Ertl:y x Iseg(y, F)

Entailment Iseg(x, t) * t—[tl: y] = list(y) F list(x)

X t y

00000

IR DRI
e

Linked Lists
List segments (list(E) is shorthand for Iseg(E, nil))

Iseg(E,F) <= if E = F then emp
else dy.Ertl:y x Iseg(y, F)

Non-Entailment Iseg(x, t) * tr—nil * list(y) F list(x)

_ag gl

IR DRI
o)

In-place reasoning and Inductive Definitions

Example Inductive Definition:
tree(E) <= if E=nil then emp

else 3x,y. (E—1: x,r: y) % tree(x) * tree(y)

Example Proof:
{tree(p) A p #nil}

ii=p—I; ji=p—r,;
dispose(p);

{tree(i) * tree(j)}

PR

21

In-place reasoning and Inductive Definitions

Example Inductive Definition:

tree(E) <= if E=nil then emp
else 3x,y. (E—1: x,r: y) % tree(x) * tree(y)

Example Proof:

{tree(p) A p #nil}
{(p—1: X', r: y'") * tree(x') * tree(y’)}
ii=p—lI; ji=p—r,;

dispose(p);

{tree(i) * tree(j)}

PR

21

In-place reasoning and Inductive Definitions

Example Inductive Definition:

tree(E) <= if E=nil then emp
else 3x,y. (E—1: x,r: y) % tree(x) * tree(y)

Example Proof:
{tree(p) A p #nil}
{(p—1: X', r: y'") * tree(x') * tree(y’)}
ii=p—lI; ji=p—r,;
{(p—1:1i,r:j) * tree(i) * tree(j)}
dispose(p);

{tree(i) * tree(j)}

._,«_g::;& N

21

In-place reasoning and Inductive Definitions

Example Inductive Definition:

tree(E) <= if E=nil then emp
else 3x,y. (E—1: x,r: y) % tree(x) * tree(y)

Example Proof:
{tree(p) A p #nil}
{(p—1: X', r: y'") * tree(x') * tree(y’)}
ii=p—lI; ji=p—r,;
{(p—1:1i,r:j) * tree(i) * tree(j)}
dispose(p);
{emp * tree(i) * tree(j)}

{tree(i) * tree(j)}

._,«_g::;& N

21

Extended In-place Reasoning

» Spec
{tree(p)} DispTree(p) {emp}

» Rest of proof of evident recursive procedure

{tree(i)*tree(j)}
DispTree(/);
{emp * tree())}
DispTree(J);
{PrC{Q}
{P+RIC{Q+R} Frame Rule

I e
)

29

Extended In-place Reasoning

» Spec
{tree(p)} DispTree(p) {emp}

» Rest of proof of evident recursive procedure

{tree(i)*tree(j)}
DispTree(/);
{emp * tree())}
DispTree(J);
{PrC{Q}
{P+RIC{Q+R} Frame Rule

I e
)

29

Extended In-place Reasoning

» Spec
{tree(p)} DispTree(p) {emp}

» Rest of proof of evident recursive procedure

{tree(i)xtree(j)}
DispTree(/);
{emp * tree())}
DispTree(J);
{emp * emp}
{PrC{Q}
{P+RIC{Q+R} Frame Rule

I e
)

29

Extended In-place Reasoning

» Spec
{tree(p)} DispTree(p) {emp}

» Rest of proof of evident recursive procedure

{tree(i)xtree(j)}
DispTree(/);
{emp * tree())}
DispTree(J);
{enp)
{PrC{Q}
{P+RIC{Q+R} Frame Rule

I e
)

29

Back in the day...(before Sep Logic)

» procedure DispTree(p)
local i,j;
if p#nil then
i = p—l; ji=p-r;
DispTree(/);
DispTree(j);
dispose(p)

R DN
e

23

Back in the day...(before Sep Logic)

» procedure DispTree(p)
local i, J;
if p#nil then
i = p—l; ji=p-r;
DispTree(/);
DispTree());
dispose(p)

» An Unhappy Attempt to Specify

{tree(p) A reach(p,n)}
DispTree(p)

{—allocated(n)}

Back in the day...(before Sep Logic)

» procedure DispTree(p)
local i, J;
if p#nil then
i = p—l; ji=p-r,;
DispTree(/i);
DispTree(j);
dispose(p)

» An Unfortunate Fix

{tree(p) A reach(p, n)

A—reach(p, m) A allocated(m) A m.f = m' A —allocated(q)}
DispTree(p)

{—allocated(n) »
A—reach(p, m) A allocated(m) A m.f = m' A —\allocated(qjsf??m:_

23

Back in the day...(before Sep Logic)

» An unhappy proof

{

def?(p.tl) A

). list([ljg1, - lnd, pAL LS p — Q) A

Niy—y ~def?(ly-(t @ p — Q) }
q:=p;

def?(p.tl) ANdef?(q.tl) A

3j. list([ljg1, - - - »lnl, DL S g — Q) A

/\izl—-def?(lk.(tl@qr—)Q)) }
p = p.tl,

def?(q.tl) A

3j. list([Lj4 1, - nd, P HL © g+) A
/\izl—\def?(lk.(tleaq»—» Q)) }
def?(q.tl) A

(EIJ list([Ljg1,---sin], Pt A

N,—1 — def?(I.t1)) [Q/q.t] }
dispose(q);

3 list([Ljg1, - lnl, 2, 1) ANL_y ~def?(Utl) }

24

-

Extended In-place Reasoning

» Spec
{tree(p)} DispTree(p) {emp}

» Rest of proof of evident recursive procedure

{tree(i)xtree(j)}
DispTree(/);
{emp * tree())}
DispTree(J);
{enp)
{PrC{Q}
{P+RIC{Q+R} Frame Rule

I e
)

25

Main Points

» x lets you do in-place reasoning
» x interacts well with inductive definitions

» powerful way to avoid writing frame axioms

bl N

v

v

v

v

Main Points

* lets you do in-place reasoning
* interacts well with inductive definitions

powerful way to avoid writing frame axioms

Pre/post specs tied to footprint (describe “local surgeries™)

A Bit of Concurrency

{Pi}G{Q1} {P}G{Q2}
{P1* P2} Cy || G{Q1* Q2}

Prog x=E | x:=[E]|[E]:=F
x:=cons(Eq,...., E,) | dispose(E)
skip | C; C | if B then C else C
while Bdo C

cllc

IR DRI
b

27

A Bit of Concurrency

{Pi}G{Q1} {P}G{Q2}
{P1* P2} || G{Qr* Q2}

We can’t prove racy programs like

(10— -}
[10]:=42 || [10]:=6
{77}

I e
)

27

A Bit of Concurrency

{Pi}G{@1} {P}G{Q2}
{P1x P} G || G{Qru* Q2}

We can't prove racy programs like

{10 — -}
[10]:=42 || [10]:=6
{77}

We cannot send 10 to both processes in their preconditions, since
(10—) * (10— -)

is false. But... e - 3

A Bit of Concurrency

{Pi}G{Q1} {P}C{Q2}
{P1*P}C || G{ Q1+ Q}

Preconditions can pick out race-free start-states, when they exist:

{x3) {y —3}
=4 | =5
x4 {y — 5}

R DN
e

27

A Bit of Concurrency

{P1}G{@1} {P}C{ @}
{P1* P2} Cy || G{Q1 * Q2}

Preconditions can pick out race-free start-states, when they exist:

{x3%y—3}

{x3) {y—3)
=4 | =5
x4 {y — 5}

{x+—4 % y+— 5}

That ‘proof figure” is an annotation form for
{x =3} [x:=4{x—4} {y—3}[yl:=5{y — 5}
{x—3xy—3}[x]:=4| [y]=5{x— 4 x y — 5}

27

SN

Racy programs and phantom blocks

» Brookes's theorem: proven programs are race free

28

Racy programs and phantom blocks

» Brookes's theorem: proven programs are race free

» To deal with racy programs, need to be explicit about granularity:

(with phantom do [10]:=3) || (with phantom do [10]:=42)

-

Example: Parallel Mergesort

{array(a, i,))}
procedure ms(a,/,j)
newvar m:= (i + j)/2;
if /< jthen
(ns(a, i, m) || ms(a,m+1,)));
merge(a,i,m+1,j);
{sorted(a, i,j)}

20

T
)

Example: Parallel Mergesort

{array(a, i,))}
procedure ms(a,/,j)
newvar m:= (i + j)/2;
if J < jthen
(ms(a,i,m) || ms(a,m+1,j));
merge(a,i,m+1,j);
{sorted(a, i,j)}

Can't prove with disjoint concurrency rule

{PrC{@) {PCHQY
{PAPICC{QAQY

where C does not modify any variables free in P’, C’, Q’, and
conversely. Because: Hoare logic treats an assignment to an arra;(\
component as an assignment to the whole array.

‘3’3&;(

20

Example: Parallel Mergesort

{array(a,i,j)}
procedure ms(a, /,)
newvar m:= (i +j)/2;
if i <, then
(ms(a, i,m) || ms(a,m+ l,j));
merge(a,i,m+1,/);
{sorted(a, i,j)}

» To prove with invariants+preservation, you track many irrelevant

interleavings
» and... state complex recursion hypothesis

°"W “%"

20

Example: Parallel Mergesort

{array(a, i, j)}
procedure ms(a, /,)
newvar m:= (i +j)/2;
if 7 < jthen
(as{a, i, m) || ms(a,m+1,));
merge(a,i,m+1,j);
{sorted(a, i,j)}

» To prove with rely/guarantee, you complicate the spec (not just the
reasoning)

> Rely: no one else touches my segment
» Guarantee: | only touch my own segment (frame axiom)

SN

In Separation Logic*

» We just use the given pre/post spec.
{array(a, i, m) x array(a,m + 1,)}
{array(a,i,m)} {array(a,m+1,j)}
ms(a, i, m) I ms(a,m+1,)
{sorted(a, i, m)} {sorted(a,m +1,j)}
{sorted(a, i, m) x sorted(a,m+1,j)}

» Concurrency proof rule:

{P1}G{Q1} {P2}C{ @}
{P1* P2} || G{Qr* Q2}

IR DRI
e

La[i] is sugar for [a + i] in RAM model

20

Part 11

Model Theory

Sources:

» Papers of Calcagno, O'Hearn, Pym, Yang

21

.su:%&\‘:,

General and Particular Models

» Generally. A partial commutative monoid (H, o, e)

o:HxH—~H ; ecH

.,3_3;::;& ;m,

k¥l

General and Particular Models

» Generally. A partial commutative monoid (H, o, e)

o:HxH—~H ; ecH

» Particularly. RAM model (lots of others possible)
» H=N-—=rZ
» o = union of functions with disjoint domain, undefined when

overlapping domains
» e = empty partial function

SN

General and Particular Models

» Generally. A partial commutative monoid (H, o, e)

o:HxH—~H ; ecH

» Particularly. RAM model (lots of others possible)
» H=N-—=rZ
» o = union of functions with disjoint domain, undefined when

overlapping domains
» e = empty partial function

» An order hy C hs

SN

General and Particular Models

» Generally. A partial commutative monoid (H, o, e)

o:HxH—~H ; ecH

» Particularly. RAM model (lots of others possible)
» H=N-—=rZ
» o = union of functions with disjoint domain, undefined when

overlapping domains
» e = empty partial function

» An order hy C hs
» General: J3hy. hy o hy = hs

SN

General and Particular Models

» Generally. A partial commutative monoid (H, o, e)

o:HxH—~H ; ecH

» Particularly. RAM model (lots of others possible)
» H=N-—=rZ
» o = union of functions with disjoint domain, undefined when

overlapping domains
» e = empty partial function

» An order hy C hs
» General: J3hy. hy o hy = hs
» Particular: h; C h3

SN

Algebraic Structure
» Wecan lift o: Hx H— H to x: P(H) x P(H) — P(H)
he Ax B iff 3ha,hg.h = hao hg and
ha € Aand hg € B

23

Algebraic Structure
» Wecan lift o: Hx H— H to x: P(H) x P(H) — P(H)
he Ax B iff Jha, hg. h = hy o hg and
ha € Aand hg € B
» emp = {e}.

> “| have a heap, and it is empty” (not the empty set of heaps)
» (P(H),*,emp) is a total commutative monoid

I e
)

23

Algebraic Structure
» Wecan lift o: Hx H— H to x: P(H) x P(H) — P(H)
he Ax B iff Jha, hg. h = hy o hg and
ha € Aand hg € B
» emp = {e}.

> “| have a heap, and it is empty” (not the empty set of heaps)
» (P(H),*,emp) is a total commutative monoid

» P(H) is (in the subset order) both

» A Boolean Algebra, and
» A Residuated Monoid

AxBCC < ACB—=xC

T
)

23

\4

v

v

v

Algebraic Structure
We can lift o: H x H —~ H to x: P(H) x P(H) — P(H)
he Ax B iff 3ha,hg.h = hao hg and
ha € Aand hg € B
emp = {e}.

> “| have a heap, and it is empty” (not the empty set of heaps)
» (P(H),*,emp) is a total commutative monoid

P(H) is (in the subset order) both

» A Boolean Algebra, and
» A Residuated Monoid

AxBCC < ACB—=xC

cf. Boolean Bl logic (O'Hearn, Pym)

23

IR DRI
o)

Models of Programs
» Program = while programs with

[e]:= ¢ x:=[e] x:=new(ey,...., e,) dispose(x)

» We represent a program as a transition system
» Each program Prog determines a set of (finite, nonempty) traces

hy---h,
possibly terminated with a special state

hi--- h,Error

SN

24

Models of Programs
» Program = while programs with

[e]:= ¢ x:=[e] x:=new(ey,...., e,) dispose(x)

» We represent a program as a transition system
» Each program Prog determines a set of (finite, nonempty) traces

hy---h,
possibly terminated with a special state

hi--- h,Error

. . " AT
» These transition systems/traces have special structure e}

24

[XI=y ; [yl= X

Y

P

[XI=y ; [yl= X

[X]=y ; [y]= x

[X]=y ; [y]= x

Error

Footprint Theorem

1. Recall order on states h C A

. Extend pointwise to traces, t C t/

hh C H
hy T
. Notes: requires traces of same length; Error C only itself.

. Footprint Theorem If ¢t is a trace of program Prog , then there is a
smallest tr C t where tr is a trace of Prog

SN

20

The “smallness” of the tree assertion

tree(E) <= if E=nil then emp
else 3x,y. (E—1: x,r: y) * tree(x) x tree(y)

-SH_:M,

a0

The “smallness” of the tree assertion
tree(E) <= if E=nil then emp

else Ax,y. (E—1: x,r: y) = tree(x) * tree(y)

» tree(E) is true of

e

The “smallness” of the tree assertion
tree(E) <= if E=nil then emp

else Ax,y. (E—1: x,r: y) = tree(x) * tree(y)

» tree(E) is false of

e

The “smallness” of the tree assertion
tree(E) <= if E=nil then emp

else Ax,y. (E—1: x,r: y) = tree(x) * tree(y)

» and even false of

-S&:m,

Small Specs (only talk about footprint)

» We saw
{tree(p)} DispTree(p) {emp}

-SH_:M,

a1

Small Specs (only talk about footprint)

» We saw
{tree(p)} DispTree(p) {emp}

» and we could have given
{E— -} [E]=b{E — b}
{emp} x = new(y,z){x —y,z}

{E — —}dispose(E) {emp}

P

a1

Frame Theorem

» Frame Theorem: If ¢ is a trace of program Prog and t C t' then t/
is a trace of Prog

S

42

Frame Theorem

» Frame Theorem: If ¢t is a trace of program Prog and t C t' then t/
is a trace of Prog (Wrong Theorem!)

.,_«_3;:;;& ;m,

42

Frame Theorem

» Frame Theorem: If ¢ is a trace of program Prog and t C t' then t/
is a trace of Prog (Wrong Theorem!)

[XI=y ; [yl= x

-

Error e

43

Frame Theorem

» Frame Theorem: If ¢ is a trace of program Prog and t C t' then t/
is a trace of Prog (Wrong Theorem!)

[X]=y ; [y]l= X

.,3_3;::;& ;m,

43

Frame Theorem

» Frame Theorem: If ¢ is a successful (non-error) trace of program
Prog and t C t' then t' is a trace of Prog

S

a4

Frame Theorem

» Frame Theorem: If ¢ is a successful (non-error) trace of program
Prog and t C t then t' is a trace of Prog (Wrong Theorem!)

[X]=y ; [y]= X

PR

a4

Recall the Order

1. Order on states h — H' .

2. Extend pointwise to traces, t C t’

h

Im

h

hn

1M
=

-

45

Frame Theorem
> Ift="hy---h, ,definetoh = (hioh)---(hyoh)

46

Frame Theorem

» Ift=hy---h, ,definetoh = (hioh)---(h,oh)
» Frame Theorem: If ¢t is a successful (non-error) trace of program
Prog and t o h is defined, then then to h is a trace of Prog

IR DRI
e

46

Frame Theorem

» Ift=hy---h, ,definetoh = (hioh)---(h,oh)
» Frame Theorem: If ¢t is a successful (non-error) trace of program
Prog and t o h is defined, then then to h is a trace of Prog

[X]=y ; [yl= x

I e
)

46

Frame Theorem

» Ift=hy---h, ,definetoh = (hioh)---(h,oh)
» Frame Theorem: If ¢t is a successful (non-error) trace of program
Prog and t o h is defined, then then to h is a trace of Prog

[x]=y ; [yl= x

R DN
e

a7

Recall the 777

{(x—) *P} [x]:=7 {(x —T7) % P}

{true} [x]:=7 {77}

{P % (x+— —)} dispose(x) {P}

{true} dispose(x) {77}

.3&:%~§§:T,

Tight Specs for (nearly) Free®

» {A}Prog{B} holds iff Vh € A,
1. no error: —3t. htError € Traces(Prog)
2. partial correctness: Vt, h'. hth' € Traces(Prog) = h' € B

» If we run Prog in ho hs where h €A, then hg will not change.?

20One more technical property concerning safety and footprints is needed to imply
this: any safe (doesn't lead to error) state has a smallest safe state below it, and start
states of footprints are below (or equal) those. eﬁ“\?‘&;\f'
®Error-avoiding used in Hoare-Wirth 1972, tightness observed in 2000 o
40

Tight Specs for (nearly) Free®

» {A}Prog{B} holds iff Vh € A,
1. no error: =3t. htError & Traces(Prog)
2. partial correctness: Vt, h'. hth' € Traces(Prog) = h' € B

» If we run Prog in ho hs where h €A, then hg will not change.?

» This “will not change” property is a fact of the semantics of programs
and specs. It is independent of separation logic.

20One more technical property concerning safety and footprints is needed to imply
this: any safe (doesn't lead to error) state has a smallest safe state below it, and start
states of footprints are below (or equal) those. “ﬁ“\{?ﬁ;\"
®Error-avoiding used in Hoare-Wirth 1972, tightness observed in 2000 o

40

Tight Specs for (nearly) Free®

v

{A}Prog{B} holds iff Yh € A,
1. no error: =3t. htError & Traces(Prog)
2. partial correctness: Vt, h'. hth' € Traces(Prog) = h' € B

If we run Prog in ho hg where h €A, then hs will not change.?

This “will not change” property is a fact of the semantics of programs
and specs. It is independent of separation logic.

It is true of many more models than the RAM

v

v

v

20One more technical property concerning safety and footprints is needed to imply
this: any safe (doesn't lead to error) state has a smallest safe state below it, and start
states of footprints are below (or equal) those. “ﬁ“\{?ﬁ;\"
®Error-avoiding used in Hoare-Wirth 1972, tightness observed in 2000 o

490

Tight Specs for (nearly) Free®

v

{A}Prog{B} holds iff Yh € A,

1. no error: =3t. htError & Traces(Prog)
2. partial correctness: Vt, h'. hth' € Traces(Prog) = h' € B

If we run Prog in ho hg where h €A, then hs will not change.?

This “will not change” property is a fact of the semantics of programs
and specs. It is independent of separation logic.

It is true of many more models than the RAM

We can just “exploit” this fact with the frame rule

{PYCLQ}
{PxR}C{Q+R}

v

v

v

v

Frame Rule

20One more technical property concerning safety and footprints is needed to imply
this: any safe (doesn't lead to error) state has a smallest safe state below it, and start
states of footprints are below (or equal) those. ﬁ“%@&:\r'

3Error-avoiding used in Hoare-Wirth 1972, tightness observed in 2000
40

Summary (Model Theoretic Properties)

1. Footprint Theorem If t is a trace of program Prog, then there is a
smallest tr C t where tf is a trace of Prog

2. Frame Theorem: If t is a successful (non-error) trace of program
Prog and t o h is defined, then then to h is a trace of Prog

SN

50

Part 111

Proof Theory

» Papers of Berdine, Calcagno, Distefano, Yang, O'Hearn

PR

51

A Special Format

A special form*
(By A+~ ABp)A(Hy -+ % Hpy)

where
H == E—p|tree(E)|lseg(E, E)
B == E=E|E#E
E ::= x| nil

pu="Mf:E,....fh: Ey
B:=E=E| E#E

and many other inductive predicates e

4assertional if-then-else as well
o

Entailments P - Q (Berdine/Calcagno Proof Theory)

» A proof theory oriented around Abstraction and Subtraction .

1]

Entailments P + Q (Berdine/Calcagno Proof Theory)

v

A proof theory oriented around Abstraction and Subtraction .

v

Sample Abstraction Rule

Iseg(x, t) = list(t) F list(x)

-

1]

Entailments P + Q (Berdine/Calcagno Proof Theory)

v

A proof theory oriented around Abstraction and Subtraction .

v

Sample Abstraction Rule

Iseg(x, t) = list(t) F list(x)

v

Subtraction Rule

Q1@
Q1*5|—02*5

R

Entailments P + Q (Berdine/Calcagno Proof Theory)

» A proof theory oriented around Abstraction and Subtraction .

» Sample Abstraction Rule
Iseg(x, t) = list(t) F list(x)
» Subtraction Rule

Q1@
Q1*5|—02*5

» Try to reduce an entailment to the axiom

B A emp | true A emp

PR

1]

Works great!

Iseg(x, t) * t—[tl: y] *list(y) F list(x) Abstract (Roll)

P

54

Works great!

Iseg(x, t) * list(t) F list(x) Abstract (Inductive)
Iseg(x, t) * t—[tl: y] *list(y) F list(x) Abstract (Roll)

.,3_3;::;& ;m,

54

Works great!

list(x) F list(x) Subtract
Iseg(x, t) * list(t) F list(x) Abstract (Inductive)
Iseg(x, t) * t—[tl: y] *list(y) F list(x) Abstract (Roll)

"ﬁﬁf:%> ;m,

54

Works great!

~—

emp emp Axiom!

list(x) F list(x) Subtract

Iseg(x, t) * list(t) F list(x) Abstract (Inductive)
Iseg(x, t) * t—[tl: y] *list(y) F list(x) Abstract (Roll)

PR

54

Works great!

~—

emp F emp Axiom!

list(x) F list(x) Subtract

Iseg(x, t) * list(t) F list(x) Abstract (Inductive)
Iseg(x, t) * t—[tl: y] *list(y) F list(x) Abstract (Roll)
Iseg(x, t) * tr—nil * list(y) F list(x) Abstract (Inductive)

I e
)

54

Works great!

~—

emp F emp Axiom!

list(x) F list(x) Subtract

Iseg(x, t) * list(t) F list(x) Abstract (Inductive)
Iseg(x, t) * t—[tl: y] *list(y) F list(x) Abstract (Roll)
list(x) * list(y) F list(x) Subtract

Iseg(x, t) * tr—nil * list(y) F list(x) Abstract (Inductive)

I e
)

54

Works great!

~—

emp F emp Axiom!

list(x) F list(x) Subtract

Iseg(x, t) * list(t) F list(x) Abstract (Inductive)
Iseg(x, t) * t—[tl: y] *list(y) F list(x) Abstract (Roll)
list(y) F emp Junk: Not Axiom!
list(x) « list(y) F list(x) Subtract

Iseg(x, t) * tr—nil * list(y) F list(x) Abstract (Inductive)

R DN
e

54

List of abstraction rules for Iseg

Rolling
emp — lIseg(E,E)
E175E3 AN El'—>[1.'/: E,, p] * Iseg(Ez, E3) — |seg(E1, E3)

Induction Avoidance
Iseg(Eq, E2) * Iseg(Ep, nil) — lIseg(Ey, nil)
Iseg(Eq, E2) * Ex—[t:nil] — Iseg(Eq, nil)
Iseg(Ey, E2) * Iseg(Ez, E3) x E3—[p] — lIseg(Ex, E3) * E3—|p]

Es#E, Nlseg(E1, E2) * Iseg(Ea, E3) * Iseg(Es, Ea)
— Iseg(E1, E3) Iseg(Es3, Ea) S ¥

15459

v

v

v

v

v

Proof Procedure for Q; = Q», Normalization Phase

Substitute out all equalities

Q1[E/x] - Q[E/X]
x=ENQFQ

Generate disequalities. E.g., using

x—[p] * y—=[p] — x#y

Remove empty lists and trees: Iseg(x, x), tree(nil)

Check antecedent for inconsistency, if so, return “valid”.
Inconcistencies: x+—[p] * x—[p] nil— — X # x

Check pure consequences (easy inequational logic), if failed ther_lemm&i;w
. . TR
“invalid” 5

1Y

Proof Procedure for @ = Qo, Abstract/Subtract Phase

Trying to prove By A H1 F H»

» For each spatial predicate in H,, try to apply abstraction rules to
match it with things in Hj.

» Then, apply subtraction rule.

Q1@
Q]_*Sl_QZ*S

» If you are left with
B A emp F true A emp

report “valid”, else “invalid”
'338.1%“\\{'

57

Perspective

» The BC procedure is cubic and complete on certain formulae

» In general it is incomplete, but BC have another (exponential)
procedure that is complete.

P

143

Perspective

» The BC procedure is cubic and complete on certain formulae

» In general it is incomplete, but BC have another (exponential)
procedure that is complete.

» It shows that you can do some very effective substructural theorem
proving

143

Perspective

The BC procedure is cubic and complete on certain formulae

In general it is incomplete, but BC have another (exponential)
procedure that is complete.

It shows that you can do some very effective substructural theorem
proving

Nguyen-Chin and Brotherston handle more inductive definitions.
Nguyen and Chin show how to call upon off-the-shelf provers (see
Chin’s CAV talk on Saturday)

143

Perspective

The BC procedure is cubic and complete on certain formulae

In general it is incomplete, but BC have another (exponential)
procedure that is complete.

It shows that you can do some very effective substructural theorem
proving

Nguyen-Chin and Brotherston handle more inductive definitions.
Nguyen and Chin show how to call upon off-the-shelf provers (see
Chin’s CAV talk on Saturday)

For embeddings in proof assistants, similar strategies can be used in
tactics (I think).. ConcCminor, ArmCam, L4.verified, TopsyTokyo...

143

Perspective

The BC procedure is cubic and complete on certain formulae

In general it is incomplete, but BC have another (exponential)
procedure that is complete.

It shows that you can do some very effective substructural theorem
proving

Nguyen-Chin and Brotherston handle more inductive definitions.
Nguyen and Chin show how to call upon off-the-shelf provers (see
Chin’s CAV talk on Saturday)

For embeddings in proof assistants, similar strategies can be used in
tactics (I think).. ConcCminor, ArmCam, L4.verified, TopsyTokyo...
Abstract interpreters based on sep logic — Space Invader, SLAyer,
THOR, jStar, Xisa, VELOCITY — use special versions of the
abstraction rules to ensure convergence. See Yang's and Magill's CAV
talks on Saturday. e

143

Earlier Slide... Let's think about automating

» Spec
{tree(p)} DispTree(p) {emp}

» Rest of proof of evident recursive procedure

{tree(i)*tree(j)}

DispTree(/);
{emp * tree(j)} {emp * tree(j)}
DispTree(J);

{emp + emp} {emp}

{PHc{Q}
{PxR}C{Q«*R}

Frame Rule

50

'ﬁ&::,%»

G

a

Extensions of the entailment question I: Frame Inference

60

Extensions of the entailment question I: Frame Inference

AF Bx?7

60

Extensions of the entailment question I: Frame Inference

tree(i) x tree(j) F tree(i)x7?

60

Extensions of the entailment question I: Frame Inference

tree(i) x tree(j) b tree(i)* tree())

-SH_:M,

60

Extensions of the entailment question I: Frame Inference

x #nil Alist(x) F Ix. x+— x" %7

60

Extensions of the entailment question I: Frame Inference

x #nil Alist(x) F 3Ix". x — x" * list(x)

60

Extensions of the entailment question I: Frame Inference

AF Bx?7

60

How to infer a frame

Convert a failed derivation

list(y) F emp Junk: Not Axiom!
list(x) = list(y) F list(x) Subtract
Iseg(x, t) * t—nil * list(y) F list(x) Abstract (Inductive)

into a successful one

emp F emp Axiom

list(y) F list(y) Subtract

list(x) = list(y) F list(x) = list(y) Subtract

Iseg(x, t) * t—nil x list(y) F list(x) * list(y) Abstract (Inductive)

IR DRI
e

61

How to infer a frame, more generally

» Problem: A+ Bx?

» Apply abstraction and subtraction to shrink your goal:
if you get to F I emp then F is your frame axiom.

F - emp T
:)
AFB T

» Sometimes you need to deal with multiple leaves at top (case analysis)

SN

Extensions of the entailment question II:

W SRE
5505
®Calcagno, Distefano, O'Hearn, Yang, 2008 (forthcoming) T

62

Extensions of the entailment question II:

Ax?7 + B

W SRE
5505
®Calcagno, Distefano, O'Hearn, Yang, 2008 (forthcoming) T

62

Extensions of the entailment question II: Abduction

Ax?7 + B

®Calcagno, Distefano, O'Hearn, Yang, 2008 (forthcoming) o
62

Extensions of the entailment question II:

Ax?7 + B

» We call the ? here an “anti-frame” %

AN

®Calcagno, Distefano, O'Hearn, Yang, 2008 (forthcoming)
62

Abduction Example: Inferring a pre/post pair

1 void p(list-item *y) {

list-item *x;
x=malloc(sizeof(list-item));
x—tail = 0;

merge(x,y):

return(x); }

SOl WN

Abductive Inference:

Given Summary/spec: {list(x) x list(y)} merge(x, y){list(x)}

R DN
e

Abduction Example: Inferring a pre/post pair

1 void p(list-item *y) { emp
2 list-item *x;

3 x=malloc(sizeof(list-item));

4 x—tail = 0;

5 merge(x,y);

6 return(x); }

Abductive Inference:

Given Summary/spec: {list(x) x list(y)} merge(x, y){list(x)}

R DN
e

Abduction Example: Inferring a pre/post pair

1 void p(list-item *y) { emp

2 list-item *x;

3 x=malloc(sizeof(list-item));

4 x—tail = 0; x—0
5 merge(x,y);

6 return(x); }

Abductive Inference:

Given Summary/spec: {list(x) x list(y)} merge(x, y){list(x)}

R DN
e

Abduction Example: Inferring a pre/post pair

1 void p(list-item *y) { emp

2 list-item *x;

3 x=malloc(sizeof(list-item));

4 x—tail = 0; x—0
5 merge(x,y);

6 return(x); }

Abductive Inference: x — 0 7 F list(x) * list(y)

Given Summary/spec: {list(x) x list(y)} merge(x, y){list(x)}

R DN
e

Abduction Example: Inferring a pre/post pair

1 void p(list-item *y) { emp

2 list-item *x;

3 x=malloc(sizeof(list-item));

4 x—tail =0; x—0
5 merge(x,y);

6 return(x); }

Abductive Inference: x — 0 x list(y) F list(x) * list(y)

Given Summary/spec: {list(x) x list(y) } merge(x, y){list(x)}

R DN
e

Abduction Example: Inferring a pre/post pair

1 void p(list-item *y) { emp list(y)
2 list-item *x;

3 x=malloc(sizeof(list-item));

4 x—tail = 0; x+—0

5 merge(x,y);

6 return(x); }

Abductive Inference: x — 0 x list(y) F list(x) * list(y)

Given Summary/spec: {list(x) x list(y) } merge(x, y){list(x)}

R DN
e

Abduction Example: Inferring a pre/post pair

1 void p(list-item *y) { emp list(y)
2 list-item *x;

3 x=malloc(sizeof(list-item));

4 x—tail = 0; x+—0

5 merge(x,y); list(x)

6 return(x); }

Abductive Inference: x — 0 x list(y) F list(x) * list(y)

Given Summary/spec: {list(x) x list(y) } merge(x, y){list(x)}

R DN
e

Abduction Example: Inferring a pre/post pair

1 void p(list-item *y) { emp list(y)
2 list-item *x;

3 x=malloc(sizeof(list-item));

4 x—tail = 0; x+—0

5 merge(x,y); list(x)

6 return(x); } list(ret)

Abductive Inference: x — 0 x list(y) F list(x) * list(y)

Given Summary/spec: {list(x) x list(y) } merge(x, y){list(x)}

I e
)

Abduction Example: Inferring a pre/post pair

1 void p(list-item *y) { emp list(y) (Inferred Pre)

2 list-item *x;

3 x=malloc(sizeof(list-item));

4 x—tail = 0; x—0

5 merge(x,y); list(x)

6 return(x); } list(ret) (Inferred Post)

Abductive Inference: x — 0 x list(y) F list(x) * list(y)

Given Summary/spec: {list(x) x list(y)} merge(x, y){list(x)}

R DN
e

Proof Theory Summary

» Despite undecidability results for even propositional logics, when used
in the right way, substructural proof theory can be “quite” effective

SN

65

Proof Theory Summary

» Despite undecidability results for even propositional logics, when used
in the right way, substructural proof theory can be “quite” effective

» Interesting inference questions beyond entailment:

» Frame inference
AFBx?

which lets you use small specs, and
> Anti-frame inference (or, abduction),

Ax?7+B

which can help in finding the small specs

65

