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Some Context

I 2000’s: impressive practical advances in automatic program
verification E.g.

I SLAM: Protocol properties of procedure calls in device drivers, e.g.
any call to ReleaseSpinLock is preceded by a call to
AquireSpinLock

I ASTRÉE: no run-time errors in Airbus code

I The Missing Link
I ASTRÉE assumes: no dynamic pointer allocation
I SLAM assumes: memory safety
I Wither automatic heap verification? (for substantial programs)

I Many important programs make serious use of heap: Linux, Apache,
TCP/IP, IOS... but heap verification is hard.

I In some (distant?) future: automatically crash-proof Apache,
OpenSSL...

I a possible motivation, not the motivation for separation logic
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Part I

Fluency, Examples

Sources

I O’Hearn-Reynolds-Yang, CSL’01: Local reasoning about programs
that alter data structures

I Reynolds, LICS’02: Separation Logic: A logic for shared mutable data
structure.

I Hoarefest’00 paper of Reynolds, POPL’01 paper of Ishtiaq-O’Hearn,
BSL’99 paper of O’Hearn-Pym, MI’72 paper of Burstall
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Separation Logic
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Heaplets (heap portions) as possible worlds (i.e., a kind of
modal logic)

I Add to Classical Logic:
I emp : “the heaplet is empty”
I x 7→ y : “the heaplet has exactly one cell x , holding y”
I A ∗ B : “the heaplet can be divided so A is true of one partition and B

of the other”.

I Add inductive definitions , and other more exotic things (“magic
wand”, “septraction” ) as well.

I Standard model: RAM model

heap : N ⇀f Z

and lots of variations (records, permissions, ownership... more later).
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A Substructural Logic

A 6` A∗A

10 7→ 3 6` 10 7→ 3 ∗ 10 7→ 3

A∗B 6` A

10 7→ 3 ∗ 42 7→ 5 6` 10 7→ 3
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An inconsistency: trying to be two places at once

 

10|->3 * 10|->3

10 10
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In-place Reasoning

{(x 7→ –) ∗ P} [x ]:= 7 {(x 7→ 7) ∗ P}
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In-place Reasoning

{(x 7→ –) ∗ P} [x ]:= 7 {(x 7→ 7) ∗ P}

{true} [x ]:= 7 {??}

{P ∗ (x 7→ –) } dispose(x) {P}

{true} dispose(x) {??}
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In-place Reasoning

{(x 7→ –) ∗ P} [x ]:= 7 {(x 7→ 7) ∗ P}

{true} [x ]:= 7 {??}

{P ∗ (x 7→ –) } dispose(x) {P}

{true} dispose(x) {??}

{P} x = cons(a, b) {P ∗ (x 7→ a, b)} (x 6∈ free(P))
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Linked Lists
List segments (list(E ) is shorthand for lseg(E , nil) )

lseg(E ,F ) ⇐⇒ if E = F then emp

else ∃y .E 7→tl : y ∗ lseg(y ,F )

lseg(x , y) ∗ lseg(y , x)

x

y
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lseg(E ,F ) ⇐⇒ if E = F then emp

else ∃y .E 7→tl : y ∗ lseg(y ,F )

Entailment lseg(x , t) ∗ t 7→[tl : y ] ∗ list(y) ` list(x)

x t y
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Linked Lists
List segments (list(E ) is shorthand for lseg(E , nil) )

lseg(E ,F ) ⇐⇒ if E = F then emp

else ∃y .E 7→tl : y ∗ lseg(y ,F )

Non-Entailment lseg(x , t) ∗ t 7→nil ∗ list(y) 6` list(x)

x t y
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In-place reasoning and Inductive Definitions

Example Inductive Definition:

tree(E ) ⇐⇒ if E=nil then emp

else ∃x , y . (E 7→l : x , r : y) ∗ tree(x) ∗ tree(y)

Example Proof:

{tree(p) ∧ p 6= nil}

i := p→ l ; j := p→ r ;

dispose(p);

{ tree(i) ∗ tree(j)}

21



In-place reasoning and Inductive Definitions

Example Inductive Definition:

tree(E ) ⇐⇒ if E=nil then emp

else ∃x , y . (E 7→l : x , r : y) ∗ tree(x) ∗ tree(y)

Example Proof:

{tree(p) ∧ p 6= nil}
{(p 7→l : x ′, r : y ′) ∗ tree(x ′) ∗ tree(y ′)}
i := p→ l ; j := p→ r ;

dispose(p);

{ tree(i) ∗ tree(j)}

21



In-place reasoning and Inductive Definitions

Example Inductive Definition:

tree(E ) ⇐⇒ if E=nil then emp

else ∃x , y . (E 7→l : x , r : y) ∗ tree(x) ∗ tree(y)

Example Proof:

{tree(p) ∧ p 6= nil}
{(p 7→l : x ′, r : y ′) ∗ tree(x ′) ∗ tree(y ′)}
i := p→ l ; j := p→ r ;
{(p 7→l : i , r : j) ∗ tree(i) ∗ tree(j)}
dispose(p);

{ tree(i) ∗ tree(j)}

21
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{(p 7→l : x ′, r : y ′) ∗ tree(x ′) ∗ tree(y ′)}
i := p→ l ; j := p→ r ;
{(p 7→l : i , r : j) ∗ tree(i) ∗ tree(j)}
dispose(p);
{emp ∗ tree(i) ∗ tree(j)}
{ tree(i) ∗ tree(j)}
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Extended In-place Reasoning

I Spec
{tree(p)} DispTree(p) {emp}

I Rest of proof of evident recursive procedure

{tree(i)∗tree(j)}
DispTree(i);
{emp ∗ tree(j)}
DispTree(j);

{P}C{Q}
{P∗R}C{Q∗R} Frame Rule
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Back in the day...(before Sep Logic)

I procedure DispTree(p)
local i , j ;
if p 6=nil then

i = p�l ; j := p�r ;
DispTree(i);
DispTree(j);
dispose(p)
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Back in the day...(before Sep Logic)

II procedure DispTree(p)
local i , j ;
if p 6=nil then

i = p�l ; j := p�r ;
DispTree(i);
DispTree(j);
dispose(p)

I An Unhappy Attempt to Specify

{tree(p) ∧ reach(p, n)}
DispTree(p)
{¬allocated(n)}
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Back in the day...(before Sep Logic)

I procedure DispTree(p)
local i , j ;
if p 6=nil then

i = p�l ; j := p�r ;
DispTree(i);
DispTree(j);
dispose(p)

I An Unfortunate Fix

{tree(p) ∧ reach(p, n)
∧¬reach(p,m) ∧ allocated(m) ∧m.f = m′ ∧ ¬allocated(q)}
DispTree(p)
{¬allocated(n)
∧¬reach(p,m) ∧ allocated(m) ∧m.f = m′ ∧ ¬allocated(q)}
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Back in the day...(before Sep Logic)

I An unhappy proof
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Extended In-place Reasoning

I Spec
{tree(p)} DispTree(p) {emp}

I Rest of proof of evident recursive procedure

{tree(i)∗tree(j)}
DispTree(i);
{emp ∗ tree(j)}
DispTree(j);
{emp}

{P}C{Q}
{P∗R}C{Q∗R} Frame Rule
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Main Points

I ∗ lets you do in-place reasoning

I ∗ interacts well with inductive definitions

I powerful way to avoid writing frame axioms

I Pre/post specs tied to footprint (describe “local surgeries”)
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A Bit of Concurrency

{P1}C1{Q1} {P2}C2{Q2}
{P1 ∗ P2}C1 ‖ C2{Q1 ∗ Q2}

Prog ::= x :=E | x := [E ] | [E ]:=F

| x := cons(E1, . . . .,En) | dispose(E )

| skip | C ;C | if B then C else C

| while B do C

| C ‖ C

27



A Bit of Concurrency

{P1}C1{Q1} {P2}C2{Q2}
{P1 ∗ P2}C1 ‖ C2{Q1 ∗ Q2}

We can’t prove racy programs like

{10 7→ –}
[10]:= 42 ‖ [10]:= 6

{??}
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{P1}C1{Q1} {P2}C2{Q2}
{P1 ∗ P2}C1 ‖ C2{Q1 ∗ Q2}

We can’t prove racy programs like

{10 7→ –}
[10]:= 42 ‖ [10]:= 6

{??}

We cannot send 10 to both processes in their preconditions, since

(10 7→ –) ∗ (10 7→ –)

is false. But...
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A Bit of Concurrency

{P1}C1{Q1} {P2}C2{Q2}
{P1 ∗ P2}C1 ‖ C2{Q1 ∗ Q2}

Preconditions can pick out race-free start-states, when they exist:

{x 7→ 3} {y 7→ 3}
[x ]:= 4 ‖ [y ]:= 5
{x 7→ 4} {y 7→ 5}

27



A Bit of Concurrency

{P1}C1{Q1} {P2}C2{Q2}
{P1 ∗ P2}C1 ‖ C2{Q1 ∗ Q2}

Preconditions can pick out race-free start-states, when they exist:

{x 7→ 3 ∗ y 7→ 3}
{x 7→ 3} {y 7→ 3}
[x ]:= 4 ‖ [y ]:= 5
{x 7→ 4} {y 7→ 5}

{x 7→ 4 ∗ y 7→ 5}

That ‘proof figure” is an annotation form for

{x 7→ 3} [x ]:= 4 {x 7→ 4} {y 7→ 3} [y ]:= 5 {y 7→ 5}

{x 7→ 3 ∗ y 7→ 3} [x ]:= 4 ‖ [y ]:= 5 {x 7→ 4 ∗ y 7→ 5}
27



Racy programs and phantom blocks

I Brookes’s theorem: proven programs are race free

I To deal with racy programs, need to be explicit about granularity:

(with phantom do [10]:= 3) ‖ (with phantom do [10]:= 42)
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Example: Parallel Mergesort

{array(a, i , j)}
procedure ms(a, i , j)
newvar m:= (i + j)/2;
if i < j then(

ms(a, i ,m) ‖ ms(a,m + 1, j)
)
;

merge(a, i ,m + 1, j);
{sorted(a, i , j)}

I

29



Example: Parallel Mergesort

{array(a, i , j)}
procedure ms(a, i , j)
newvar m:= (i + j)/2;
if i < j then(

ms(a, i ,m) ‖ ms(a,m + 1, j)
)
;

merge(a, i ,m + 1, j);
{sorted(a, i , j)}

I Can’t prove with disjoint concurrency rule

{P}C{Q} {P ′}C ′{Q ′}
{P ∧ P ′}C ‖ C ′{Q ∧ Q ′}

where C does not modify any variables free in P ′,C ′,Q ′, and
conversely. Because: Hoare logic treats an assignment to an array
component as an assignment to the whole array.
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Example: Parallel Mergesort

{array(a, i , j)}
procedure ms(a, i , j)
newvar m:= (i + j)/2;
if i < j then(

ms(a, i ,m) ‖ ms(a,m + 1, j)
)
;

merge(a, i ,m + 1, j);
{sorted(a, i , j)}

I To prove with invariants+preservation, you track many irrelevant
interleavings

I and... state complex recursion hypothesis
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Example: Parallel Mergesort

{array(a, i , j)}
procedure ms(a, i , j)
newvar m:= (i + j)/2;
if i < j then(

ms(a, i ,m) ‖ ms(a,m + 1, j)
)
;

merge(a, i ,m + 1, j);
{sorted(a, i , j)}

I To prove with rely/guarantee, you complicate the spec (not just the
reasoning)

I Rely: no one else touches my segment
I Guarantee: I only touch my own segment (frame axiom)

29



In Separation Logic1

I We just use the given pre/post spec.

{array(a, i ,m) ∗ array(a,m + 1, j)}
{array(a, i ,m)} {array(a,m + 1, j)}
ms(a, i ,m) ‖ ms(a,m + 1, j)
{sorted(a, i ,m)} {sorted(a,m + 1, j)}

{sorted(a, i ,m) ∗ sorted(a,m + 1, j)}

I Concurrency proof rule:

{P1}C1{Q1} {P2}C2{Q2}
{P1 ∗ P2}C1 ‖ C2{Q1 ∗ Q2}

1a[i ] is sugar for [a + i ] in RAM model
30



Part II

Model Theory

Sources:

I Papers of Calcagno, O’Hearn, Pym, Yang

31



General and Particular Models

I Generally. A partial commutative monoid (H , ◦, e)

◦ : H × H ⇀ H , e ∈ H

I Particularly. RAM model (lots of others possible)
I H = N ⇀f Z
I ◦ = union of functions with disjoint domain, undefined when

overlapping domains
I e = empty partial function

I An order h1 v h3

I General: ∃h2. h1 ◦ h2 = h3

I Particular: h1 ⊆ h3

32
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Algebraic Structure

I We can lift ◦ : H × H ⇀ H to ∗ : P(H)× P(H) → P(H)

h ∈ A ∗ B iff ∃hA, hB . h = hA ◦ hB and

hA ∈ A and hB ∈ B

I emp = {e}.
I “I have a heap, and it is empty” (not the empty set of heaps)
I (P(H), ∗, emp) is a total commutative monoid

I P(H) is (in the subset order) both
I A Boolean Algebra, and
I A Residuated Monoid

A ∗ B ⊆ C ⇔ A ⊆ B −−∗ C

I cf. Boolean BI logic (O’Hearn, Pym)
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Models of Programs

I Program = while programs with

[e]:= e ′ x := [e] x := new(e1, . . . ., en) dispose(x)

I We represent a program as a transition system

I Each program Prog determines a set of (finite, nonempty) traces

h1 · · · hn

possibly terminated with a special state

h1 · · · hnError

I These transition systems/traces have special structure

34
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x y x y x y

[x]=y ; [y]= x

35



 

  

x y x y x y
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x y x y

Error

[x]=y ; [y]= x
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Footprint Theorem

1. Recall order on states h v h′ .

2. Extend pointwise to traces, t v t ′

h1 v h′
1

...
...

hn v h′
n

3. Notes: requires traces of same length; Error v only itself.

4. Footprint Theorem If t is a trace of program Prog , then there is a
smallest tf v t where tf is a trace of Prog
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The “smallness” of the tree assertion

I

tree(E ) ⇐⇒ if E=nil then emp

else ∃x , y . (E 7→l : x , r : y) ∗ tree(x) ∗ tree(y)

I
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The “smallness” of the tree assertion
I

tree(E ) ⇐⇒ if E=nil then emp

else ∃x , y . (E 7→l : x , r : y) ∗ tree(x) ∗ tree(y)

I and even false of

E
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Small Specs (only talk about footprint)

I We saw

{tree(p)} DispTree(p) {emp}

I and we could have given

{E 7→ –} [E ] = b {E 7→ b}

{emp} x = new(y , z) {x 7→ y , z }

{E 7→ −} dispose(E ) {emp}
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Frame Theorem
I Frame Theorem: If t is a trace of program Prog and t v t ′ then t ′

is a trace of Prog

I
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I
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Frame Theorem

I Frame Theorem: If t is a successful (non-error) trace of program
Prog and t v t ′ then t ′ is a trace of Prog

I

 

  

x y x y x y

[x]=y ; [y]= x
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Frame Theorem

I Frame Theorem: If t is a successful (non-error) trace of program
Prog and t v t ′ then t ′ is a trace of Prog (Wrong Theorem!)

I

 

  

x y x y x y

[x]=y ; [y]= x
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Recall the Order

1. Order on states h v h′ .

2. Extend pointwise to traces, t v t ′

h1 v h′
1

...
...

hn v h′
n
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Frame Theorem

I If t = h1 · · · hn , define t ◦ h = (h1◦h) · · · (hn◦h)

I Frame Theorem: If t is a successful (non-error) trace of program
Prog and t ◦ h is defined, then then t ◦ h is a trace of Prog

I

 

  

x y x y x y

[x]=y ; [y]= x
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Recall the ???

{(x 7→ –) ∗ P} [x ]:= 7 {(x 7→ 7) ∗ P}

{true} [x ]:= 7 {??}

{P ∗ (x 7→ –) } dispose(x) {P}

{true} dispose(x) {??}
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Tight Specs for (nearly) Free3

I {A}Prog{B} holds iff ∀h ∈ A,
1. no error: ¬∃t. htError ∈Traces(Prog)
2. partial correctness: ∀t, h′. hth′ ∈Traces(Prog) ⇒ h′ ∈ B

I If we run Prog in h ◦ hfr where h ∈A, then hfr will not change.2

I This “will not change” property is a fact of the semantics of programs
and specs. It is independent of separation logic.

I It is true of many more models than the RAM

I We can just “exploit” this fact with the frame rule

{P}C{Q}
{P∗R}C{Q∗R} Frame Rule

2One more technical property concerning safety and footprints is needed to imply
this: any safe (doesn’t lead to error) state has a smallest safe state below it, and start
states of footprints are below (or equal) those.

3Error-avoiding used in Hoare-Wirth 1972, tightness observed in 2000
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Summary (Model Theoretic Properties)

1. Footprint Theorem If t is a trace of program Prog, then there is a
smallest tf v t where tf is a trace of Prog

2. Frame Theorem: If t is a successful (non-error) trace of program
Prog and t ◦ h is defined, then then t ◦ h is a trace of Prog
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Part III

Proof Theory

I Papers of Berdine, Calcagno, Distefano, Yang, O’Hearn
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A Special Format

A special form4

(B1 ∧ · · · ∧ Bn)∧(H1 ∗ · · · ∗ Hm)

where

H ::= E 7→ρ | tree(E ) | lseg(E ,E )
B ::= E=E | E 6=E

E ::= x | nil

ρ ::= f1 : E1, . . . , fn : En

B ::= E=E | E 6=E

and many other inductive predicates

4assertional if-then-else as well
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Entailments P ` Q (Berdine/Calcagno Proof Theory)

I A proof theory oriented around Abstraction and Subtraction .

I Sample Abstraction Rule

lseg(x , t) ∗ list(t) ` list(x)

I Subtraction Rule
Q1 ` Q2

Q1 ∗ S ` Q2 ∗ S

I Try to reduce an entailment to the axiom

B ∧ emp ` true ∧ emp
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Works great!

lseg(x , t) ∗ t 7→[tl : y ] ∗ list(y) ` list(x) Abstract (Roll)
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Works great!

lseg(x , t) ∗ list(t) ` list(x) Abstract (Inductive)
lseg(x , t) ∗ t 7→[tl : y ] ∗ list(y) ` list(x) Abstract (Roll)
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Works great!

list(x) ` list(x) Subtract
lseg(x , t) ∗ list(t) ` list(x) Abstract (Inductive)
lseg(x , t) ∗ t 7→[tl : y ] ∗ list(y) ` list(x) Abstract (Roll)
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Works great!

¨̂

emp ` emp Axiom!
list(x) ` list(x) Subtract
lseg(x , t) ∗ list(t) ` list(x) Abstract (Inductive)
lseg(x , t) ∗ t 7→[tl : y ] ∗ list(y) ` list(x) Abstract (Roll)
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Works great!

¨̂

emp ` emp Axiom!
list(x) ` list(x) Subtract
lseg(x , t) ∗ list(t) ` list(x) Abstract (Inductive)
lseg(x , t) ∗ t 7→[tl : y ] ∗ list(y) ` list(x) Abstract (Roll)

lseg(x , t) ∗ t 7→nil ∗ list(y) ` list(x) Abstract (Inductive)
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Works great!

¨̂

emp ` emp Axiom!
list(x) ` list(x) Subtract
lseg(x , t) ∗ list(t) ` list(x) Abstract (Inductive)
lseg(x , t) ∗ t 7→[tl : y ] ∗ list(y) ` list(x) Abstract (Roll)

list(x) ∗ list(y) ` list(x) Subtract
lseg(x , t) ∗ t 7→nil ∗ list(y) ` list(x) Abstract (Inductive)
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Works great!

¨̂

emp ` emp Axiom!
list(x) ` list(x) Subtract
lseg(x , t) ∗ list(t) ` list(x) Abstract (Inductive)
lseg(x , t) ∗ t 7→[tl : y ] ∗ list(y) ` list(x) Abstract (Roll)

_̈

list(y) ` emp Junk: Not Axiom!
list(x) ∗ list(y) ` list(x) Subtract
lseg(x , t) ∗ t 7→nil ∗ list(y) ` list(x) Abstract (Inductive)
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List of abstraction rules for lseg

Rolling

emp → lseg(E ,E )

E1 6=E3 ∧ E1 7→[tl :E2, ρ] ∗ lseg(E2,E3) → lseg(E1,E3)

Induction Avoidance

lseg(E1,E2) ∗ lseg(E2, nil) → lseg(E1, nil)

lseg(E1,E2) ∗ E2 7→[t : nil] → lseg(E1, nil)

lseg(E1,E2) ∗ lseg(E2,E3) ∗ E3 7→[ρ] → lseg(E1,E3) ∗ E3 7→[ρ]

E3 6=E4 ∧ lseg(E1,E2) ∗ lseg(E2,E3) ∗ lseg(E3,E4)

→ lseg(E1,E3) ∗ lseg(E3,E4)
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Proof Procedure for Q1 ` Q2, Normalization Phase

I Substitute out all equalities

Q1[E/x ] ` Q2[E/x ]

x = E ∧ Q1 ` Q2

I Generate disequalities. E.g., using

x 7→[ρ] ∗ y 7→[ρ′] → x 6= y

I Remove empty lists and trees: lseg(x , x), tree(nil)

I Check antecedent for inconsistency, if so, return “valid”.
Inconcistencies: x 7→[ρ] ∗ x 7→[ρ′] nil 7→ − x 6= x · · ·

I Check pure consequences (easy inequational logic), if failed then
“invalid”
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Proof Procedure for Q1 ` Q2, Abstract/Subtract Phase

Trying to prove B1 ∧ H1 ` H2

I For each spatial predicate in H2, try to apply abstraction rules to
match it with things in H1.

I Then, apply subtraction rule.

Q1 ` Q2

Q1 ∗ S ` Q2 ∗ S

I If you are left with
B ∧ emp ` true ∧ emp

report “valid”, else “invalid”
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Perspective

I The BC procedure is cubic and complete on certain formulae

I In general it is incomplete, but BC have another (exponential)
procedure that is complete.

I It shows that you can do some very effective substructural theorem
proving

I Nguyen-Chin and Brotherston handle more inductive definitions.
Nguyen and Chin show how to call upon off-the-shelf provers (see
Chin’s CAV talk on Saturday)

I For embeddings in proof assistants, similar strategies can be used in
tactics (I think).. ConcCminor, ArmCam, L4.verified, TopsyTokyo...

I Abstract interpreters based on sep logic – Space Invader, SLAyer,
THOR, jStar, Xisa, VELOCITY – use special versions of the
abstraction rules to ensure convergence. See Yang’s and Magill’s CAV
talks on Saturday.
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Earlier Slide... Let’s think about automating

I Spec
{tree(p)} DispTree(p) {emp}

I Rest of proof of evident recursive procedure

{tree(i)∗tree(j)}
DispTree(i);
{emp ∗ tree(j)} {emp ∗ tree(j)}
DispTree(j);
{emp ∗ emp} {emp}

{P}C{Q}
{P∗R}C{Q∗R} Frame Rule
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Extensions of the entailment question I: Frame Inference

A ` B

A ∗ ?1AAAAA ` A ∗ ?2AAAAA
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Extensions of the entailment question I: Frame Inference

x 6= nil ∧ list(x) ` ∃x ′. x 7→ x ′ ∗ ?

A ∗ ?1AAAAA ` A ∗ ?2AAAAA
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Extensions of the entailment question I: Frame Inference

x 6= nil ∧ list(x) ` ∃x ′. x 7→ x ′ ∗ list(x ′)

A ∗ ?1AAAAA ` A ∗ ?2AAAAA
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Extensions of the entailment question I: Frame Inference

A ` B ∗ ?

A ∗ ?1AAAAA ` A ∗ ?2AAAAA
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How to infer a frame

Convert a failed derivation

list(y) ` emp Junk: Not Axiom!
list(x) ∗ list(y) ` list(x) Subtract
lseg(x , t) ∗ t 7→nil ∗ list(y) ` list(x) Abstract (Inductive)

into a successful one

emp ` emp Axiom
list(y) ` list(y) Subtract
list(x) ∗ list(y) ` list(x) ∗ list(y) Subtract
lseg(x , t) ∗ t 7→nil ∗ list(y) ` list(x) ∗ list(y) Abstract (Inductive)
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How to infer a frame, more generally

I Problem: A ` B∗?
I Apply abstraction and subtraction to shrink your goal:

if you get to F ` emp then F is your frame axiom.

F ` emp ⇑
... ⇑

A ` B ⇑

I Sometimes you need to deal with multiple leaves at top (case analysis)
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Extensions of the entailment question II:

I

A ` B

A ∗ ?1 ` A ∗ ?2

I We call the ? here an “anti-frame”.5

5Calcagno, Distefano, O’Hearn, Yang, 2008 (forthcoming)
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Extensions of the entailment question II: Abduction

I

A ∗ ? ` B

A ∗ ?1 ` A ∗ ?2

I We call the ? here an “anti-frame”.5

5Calcagno, Distefano, O’Hearn, Yang, 2008 (forthcoming)
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Abduction Example: Inferring a pre/post pair

1 void p(list-item *y) {
2 list-item *x;
3 x=malloc(sizeof(list-item));
4 x→tail = 0;
5 merge(x,y);
6 return(x); }

Abductive Inference:

Given Summary/spec: {list(x) ∗ list(y)}merge(x , y){list(x)}
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Abduction Example: Inferring a pre/post pair

1 void p(list-item *y) { emp
2 list-item *x;
3 x=malloc(sizeof(list-item));
4 x→tail = 0;
5 merge(x,y);
6 return(x); }

Abductive Inference:

Given Summary/spec: {list(x) ∗ list(y)}merge(x , y){list(x)}
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Abduction Example: Inferring a pre/post pair

1 void p(list-item *y) { emp
2 list-item *x;
3 x=malloc(sizeof(list-item));
4 x→tail = 0; x 7→ 0
5 merge(x,y);
6 return(x); }

Abductive Inference:

Given Summary/spec: {list(x) ∗ list(y)}merge(x , y){list(x)}
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Abduction Example: Inferring a pre/post pair

1 void p(list-item *y) { emp
2 list-item *x;
3 x=malloc(sizeof(list-item));
4 x→tail = 0; x 7→ 0
5 merge(x,y);
6 return(x); }

Abductive Inference: x 7→ 0 ∗ ? ` list(x) ∗ list(y)

Given Summary/spec: {list(x) ∗ list(y)}merge(x , y){list(x)}
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4 x→tail = 0; x 7→ 0
5 merge(x,y); list(x)
6 return(x); } list(ret)
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Abduction Example: Inferring a pre/post pair

1 void p(list-item *y) { emp list(y) (Inferred Pre)
2 list-item *x;
3 x=malloc(sizeof(list-item));
4 x→tail = 0; x 7→ 0
5 merge(x,y); list(x)
6 return(x); } list(ret) (Inferred Post)

Abductive Inference: x 7→ 0 ∗ list(y) ` list(x) ∗ list(y)

Given Summary/spec: {list(x) ∗ list(y)}merge(x , y){list(x)}
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Proof Theory Summary

I Despite undecidability results for even propositional logics, when used
in the right way, substructural proof theory can be “quite” effective

I Interesting inference questions beyond entailment:
I Frame inference

A ` B ∗ ?

which lets you use small specs, and
I Anti-frame inference (or, abduction),

A ∗ ? ` B

which can help in finding the small specs
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