

Swarm Intelligence and Ant Colony Optimisation

EXTRA READING:

Swarm Intelligence by Eberhart et al, Morgan Kaufmann.

Swarm Intelligence, From Natural to Artificial Systems by Bonabeau, Dorigo, Theraulaz, Oxford University Press.

Papers:

A Simplified Recombinant PSO

Ant colonies for the traveling salesman problem

Swarm Intelligence

- Swarms of insects, flocks of birds, schools of fish, and herds of wildebeest all have something in common.
- They all move in groups, and the behaviour of the groups is special.

- Somehow, the individuals in the group seem to act in unison.
- They turn together, they flow around obstacles, they move as one.
- Their coordination is so good that it seems as though some centralised controller dictates all movement.
- But this is an illusion. The "cleverness" of their movement is an emergent property of simple rules followed by every individual in the group.
- In other words, the coordination happens as a side effect of *local control* by each individual, not as a result of global control of the whole group.

• It does not take many rules to cause realistic flocking or swarming behaviour.

- In 1987 Reynolds developed one of the first simulations of a flock by using just three rules of movement for each individual in the flock:
- Rule 1 Collision avoidance

• Avoid hitting any of your companions.

Flocking Rules of Movement

Rule 2 Velocity matching

• Move at the same speed as your companions.

Rule 3 Attraction to group centre

• Try to move towards the centre of the group.

Flocking Rules of Movement

- When implemented in a computer, the result was a very realistic flocking behaviour.
- Reynolds went on to create special effects for movies such as *The Lion King*. (He was responsible for the very realistic movement of the wildebeest in the "stampede sequence".)

UCL

- This is not the only example of swarm intelligence. More recently, Kennedy and Eberhart created their version, which they called *particle swarm optimisation*.
- Again, the movement of individuals (now called *particles*) happens according to a set of local rules applied to each particle. These were almost the same as Reynold's rules except for addition of new rule:
- Attraction to a 'roost' or 'target'

• Try to move towards a specific location in space.

- The reason why they added this rule was because they had realised that a flock or swarm might be capable of solving problems.
- If you recall, an evolutionary algorithm can be regarded as a search algorithm:
- Every member of the population has a specific location in the search space, and every location defines a corresponding solution to a problem.
- We select fitter members of the population (those occupying better positions in the search space) to be parents.
- The children resemble their parents, and so occupy similar, good positions in the space.
- Over a few generations, evolution makes populations converge onto good areas of the search space by searching in parallel.

- Kennedy and Eberhart realised that a swarm might do the same thing.
- If the space that a swarm flew about in, represented a problem space, then every location in the space would define a solution to the problem, just like before.
- So a swarm with many particles would be sampling many possible solutions at once, like a population of an evolutionary algorithm.
- Instead of evolving using crossover and mutation to find new locations, the particles would swarm around in the space, following their rules of movement.

- They added their new rule (attraction to a target) to encourage the swarm to find the solution to a problem.
- By being attracted to a target, the swarm was being attracted to better solutions.
- Using a fitness function to measure how good each solution is, the swarm could "smell" good places to be in the space.
- And because particles like to follow each other, and stay close to each other, if one finds a good solution, the others quickly follow, swarming and exploring all of the nearby solutions.
- Let's look at the particle swarm rules in more detail.

- **1** Particle Swarm dynamics
- $\Delta v(t) = F(x(t-1), \Delta v(t-1), p_b, p_g)$
- The particle acceleration can be a function F of:
- the particle position x(t)
- the previous acceleration value $\Delta v(t-1)$
- the particles' best position (p_b)
- the local neighbourhood's best position (p_g), where 'best' is evaluated with respect to some cost function

• and anything else you think might be useful...

2 Particle Swarm velocity update

- $v(t) = v(t-1) + \Delta v(t-1)$
- Velocity at time t is velocity at time t-1 plus the acceleration value.

UCL

3 Particle Swarm max velocity

- $v(t + \varepsilon) = v(t) + \theta (|(v(t) / v_{max})| 1) (v_{max} v(t))$
- This provides a nonlinear damping force which is applied instantaneously and has the effect of limiting the velocity magnitude to the cut-off v_{max}.

- θ is the step function defined by $\theta(a) = 0$ for a < 0, $\theta(a) = 1$ otherwise.
- It is used to control unbounded oscillations of the swarm around the target solution. (Other functions may be used.)

4 Particle Swarm position update

- x(t) = x(t-1) + v(t).
- Particle position at time t is position at time t-1 plus the velocity value.

UCL

- These simple rules cause the particles in the swarm to find good solutions quickly, swarm around them, and settle on the best.
- To see this, look at the plot of a swarm finding a stationary target (the straight line at 60).

• The centre of the swarm over time is plotted, and shows how the particles oscillate around the target, but soon converge onto it.

- Additionally, swarms are constantly moving and do not converge genetically like individuals in an evolutionary algorithm.
- •
- So, should the target (i.e., problem) be continuously changing, the swarm is able to constantly move and find a good solution in real time.

• The following plot shows this happening: note the way the swarm centre is always close to the moving target.

Today the standard PSO inertia weighted formalism usually resembles:

IW:
$$v_{id}^{t+1} = wv_{id}^t + \frac{\phi}{2}u_1(p_{id} - x_{id}^t) + \frac{\phi}{2}u_2(p_{nd} - x_{id}^t)$$

- where *d* labels components of the position and velocity vectors,
 d = 1, 2, ..., D,
- \vec{p}_i is the personal best position achieved by *i*,
- \vec{p}_n is the best position of informers in *i* 's social neighborhood, and
- $u_{1,2} \sim U(0,1)$.
- After velocity update, the particle position is adjusted:

$$x_{id}^{t+1} = v_{id}^{t+1} + x_{id}^{t}$$

• The former provides improved performance and has the more interesting social aspect. A recombinant position vector \vec{r} is defined by

 $r_{id} = \eta_d p_{ld} + (1 - \eta_d) p_{rd}$

- where $\eta_d = U\{0,1\}$ and
- p_{lr} are immediate left and right neighbors of *i* in a ring topology.
- While separate random numbers η_d are used for separate dimensions d, a single value is generated for each single dimension and used for both occurrences of η_d in that dimension. This places \vec{r}_i at a corner of the smallest *D*-dimensional box which has p_l and p_r at its corners.

• The plots shown previously are from an application tried out at UCL.

UC

- The swarm responded to real audio input (such as a singer or saxophone).
- The input was treated as a target, and the swarm moved in "music space" towards that target, with the location of every point defining a musical note.
- The result was a program that could improvise music with a musician in real time.

Boonserm Kaewkamnerdpong's swarming nanotech

00	🔀 Figure 5	
$\underline{F}ile \underline{E}dit \underline{V}iew \underline{I}nsert$	<u>T</u> ools <u>W</u> indow <u>H</u> elp	
🗅 🖻 🖬 🎒 🛛 🗞 🛛 🔍	ବ୍ 🥙 🔊 🐙 📘 📰	

UCL

000					X Figu	ire 7	
<u>F</u> ile	Edit	<u>V</u> iew	Insert	<u>T</u> ools	<u>W</u> indow	<u>H</u> elp	
	2	8	≽∣€	9	ے ھ	🔲 🗄	E

Navneet Bhalla's physical evolved self-assembly

[•]UCL

- Swarm intelligence, and indeed many of the phenomena we see in "intelligent" insect behaviour, arises because of the emergent effects of local rules.
- Termites build extraordinary structures, ants forage and have complex societies, bees make complex decisions about which food sources to use.
- It all seems as though there is one big brain somewhere, controlling everything.
- These phenomena occur because of *self-organisation*.

- Experts on insect behaviour have borrowed ideas from physics and chemistry to explain insect intelligence.
- According to these theories, complexity can arise spontaneously, if certain conditions are met. These are:
- Interaction
- Positive feedback
- Negative feedback
- Amplification of fluctuations

- Remember the simple movement rules of our swarm?
- They force **interaction** between the particles in the swarm.
- If one gets too close to another, they will both try to move apart.
- If one "smells" a good place to go, others will follow.
- The movement of each particle affects the movement of the others.

- Suppose a particle randomly happens to fly through the target a place it *really* wants to be.
- It will stay in that region and its companions will soon follow.
- Why?
- Because particles are attracted to each other, and so any nearby will be attracted to the first particle and the target as well, making a double attraction.
- So the lucky find or **fluctuation** will be **amplified** as the whole swarm soon moves over the target.

- The **positive feedback** happens in much the same way.
- The more particles there are in one place, the more "pull" will be exerted on other particles anywhere else.

A

- Any finally, negative feedback is caused by the 'max velocity' weighting.
- Also, if the velocity starts to get so high that a particle might fly off and never be seen again, the max velocity weighting will pull it back.
- This provides a brake for the positive feedback.

- Ants may not be very clever individually, but ant colonies can be
- An ant colony is capable of searching, making plans, and optimising routes to food.
- Ant colonies are so good at finding the shortest path from one location to another, that we have developed an algorithm based on their behaviour.
- Its name is Ant Colony Optimisation.

- Imagine the situation above.
- A river or hole separates the nest from a food source.
- There are two ways to cross: a short, direct path, or a longer, less efficient path.
- Thousands of ants need to make this journey every day. If even a few choose the longer path, they waste time and energy.
- So, what do the ants do?

- They take the shorter path.
- But how do they choose?
- A single ant is not intelligent enough to make this choice. How can a colony be cleverer?
- The answer has to do with pheromones, or smelly trails.

- Every ant leaves behind a smelly trail.
- In the time it takes one ant to cross using the longer route, the other ant has almost returned on the shorter route, still laying pheromone as it walks.
- So there is more pheromone on the shorter path than on the longer one.
 The pheromone attracts other ants, which also lay down pheromone.
- Very quickly, the amount of pheromone is so strong on the shorter path, that all the ants take this route.
- Indirect communication by modifying your environment is called stigmergy.
- This is another example of self-organisation. Can you work out why?

UCL

- Ant colonies are good at finding shortest paths.
- This is exactly the ability we need in order to solve Travelling Salesman Problems (TSPs).
- A TSP involves finding the shortest tour of cities, where every city is visited.

LICI

- It is the same class of problem as routing in networks.
- For three or four cities, this problem is easy. But for fifteen or twenty, or more, the problem is very difficult.
- Marco Dorigo created a new algorithm based on the behaviour of ants to solve TSPs.

 The algorithm is simple: first the ants explore, by choosing different tours of the cities. The better tours have pheromone levels increased, and the process repeats.

 An artificial ant k in city r chooses the city s to move to, amongst those that do not belong to its working memory M_k by applying the following probabilistic formula:

$$s = \begin{cases} \arg \max_{u \notin M_k} \left\{ \begin{bmatrix} \tau(r, u) \end{bmatrix} \cdot \begin{bmatrix} \eta(r, u) \end{bmatrix}^{\beta} \right\} & \text{if } q \le q_0 \\ S & \text{otherwise} \end{cases}$$

where:

 $\tau(r,u)$ is the amount of pheromone trail on edge (r,u) $\eta(r,u)$ is the heuristic function: $\frac{1}{dist(r,u)}$

 β is a constant defining relative importance of pheromone trail and closeness q is a random number between 0 and 1 q_0 is a threshold constant between 0 and 1

• *S* is a random variable selected according to the following probability distribution, which favours shorter edges that have a higher level of pheromone trail:

UCL

$$p_{k}(r,s) = \begin{cases} \frac{\left[\tau\left(r,s\right)\right] \cdot \left[\eta\left(r,s\right)\right]^{\beta}}{\sum_{\substack{u \notin M_{k} \\ 0}} \left[\tau\left(r,s\right)\right] \cdot \left[\eta\left(r,s\right)\right]^{\beta}} & \text{if } s \notin M_{k} \end{cases}$$
 otherwise

where:

 $p_k(r,s)$ is the probability with which ant k chooses to move from city r to city s

• Pheromone trails on the edges between cities are changed *locally* and *globally.*

- Global updating rewards edges belonging to shorter tours of cities.
- Once artificial ants have all completed their tours, the ant that has travelled the shortest distance deposits additional pheromone on each edge it visited
- The amount of pheromone $\Delta \varphi(r,s)$ deposited on each visited edge (r,s) by the best ant is inversely proportional to the length of the tour: the shorter the tour, the greater the amount of pheromone deposited on the edges.
- This manner of depositing pheromone is intended to emulate the actions of many ants as they explore and increase the levels of pheromone on shorter paths.

• The global trail updating formula is:

$$\varphi(r,s) \leftarrow (1-\alpha) \cdot \varphi(r,s) + \alpha \cdot \Delta \varphi(r,s)$$

where

 $\Delta \varphi(r,s)$ is $\frac{1}{shortest \ tour}$

- α is a constant defining the relative importance of the shortest tour distance and the existing pheromone level.
- Note that global trail updating is very similar to a reinforcement learning scheme in which better solutions get a higher reinforcement.

- In addition to global trail updating, local trail updating is used.
- To avoid a very strong edge being chosen by all of the ants: every time an edge is chosen by an ant, its pheromone is updated by the local trail updating formula:

$$\tau(r,s) \leftarrow (1-\alpha) \cdot \tau(r,s) + \alpha \cdot \tau_0$$

where τ_0 is a system parameter

This is also intended to model trail evaporation.

- So when an ant chooses its tour, it will either:
- exploit the experience accumulated by the ant colony in the form of pheromone trails (with probability q_0), or

A

- explore randomly with a bias towards short and high pheromone trail edges not already visited
- The result is an algorithm capable of searching in parallel and finding solutions to TSP problems very successfully.
- The inventors showed that this algorithm can find perfect solutions to 100city TSPs, where algorithms such as evolutionary programming, genetic algorithms and simulated annealing struggle.

Questions?

Kumar, S. and Bentley, P. J. (Contributing Eds.) (2003) On Growth, Form and Computers. Academic Press, London.

Peter J. Bentley (2002). *Digital Biology. How nature is transforming our technology and our lives.* Simon & Schuster (USA Hardback). ISBN: 0743204476

Bentley, P. J. and Corne, D. W. (Contributing Eds.) (2001) *Creative Evolutionary Systems.* Morgan Kaufmann Publishers Inc., San Francisco, CA.

Bentley, P. J. (Contributing Editor) (1999). *Evolutionary Design by Computers.* Morgan Kaufmann Publishers Inc., San Francisco, CA.