
Swarm Intelligence and Ant Colony
Optimisation

EXTRA READING:
Swarm Intelligence by Eberhart et al, Morgan Kaufmann.
Swarm Intelligence, From Natural to Artificial Systems by Bonabeau, Dorigo,
Theraulaz, Oxford University Press.
Papers:
A Simplified Recombinant PSO
Ant colonies for the traveling salesman problem

•  Swarms of insects, flocks of birds, schools of fish, and herds of
wildebeest all have something in common.

•  They all move in groups, and the behaviour of the groups is special.
•  Somehow, the individuals in the group seem to act in unison.
•  They turn together, they flow around obstacles, they move as one.

•  Their coordination is so good that it seems as though some centralised
controller dictates all movement.

•  But this is an illusion. The “cleverness” of their movement is an
emergent property of simple rules followed by every individual in the
group.

•  In other words, the coordination happens as a side effect of local
control by each individual, not as a result of global control of the whole
group.

Swarm Intelligence

•  It does not take many rules to cause realistic flocking or swarming
behaviour.

•  In 1987 Reynolds developed one of the first simulations of a flock by
using just three rules of movement for each individual in the flock:

•  Rule 1 Collision avoidance

•  Avoid hitting any of your companions.

Flocking Rules of Movement

•  Rule 2 Velocity matching

•  Move at the same speed as your companions.

•  Rule 3 Attraction to group centre

•  Try to move towards the centre of the group.

Flocking Rules of Movement

•  When implemented in a computer, the result was a very realistic
flocking behaviour.

•  Reynolds went on to create special effects for movies such as The
Lion King. (He was responsible for the very realistic movement of the
wildebeest in the “stampede sequence”.)

Flocking Rules of Movement

•  This is not the only example of swarm intelligence. More recently,
Kennedy and Eberhart created their version, which they called particle
swarm optimisation.

•  Again, the movement of individuals (now called particles) happens
according to a set of local rules applied to each particle. These were
almost the same as Reynold’s rules except for addition of new rule:

•  Attraction to a ‘roost’ or ‘target’

•  Try to move towards a specific location in space.

PSO Rules of Movement

•  The reason why they added this rule was because they had realised
that a flock or swarm might be capable of solving problems.

•  If you recall, an evolutionary algorithm can be regarded as a search
algorithm:

•  Every member of the population has a specific location in the search
space, and every location defines a corresponding solution to a
problem.

•  We select fitter members of the population (those occupying better
positions in the search space) to be parents.

•  The children resemble their parents, and so occupy similar, good
positions in the space.

•  Over a few generations, evolution makes populations converge onto
good areas of the search space by searching in parallel.

PSO

•  Kennedy and Eberhart realised that a swarm might do the same thing.

•  If the space that a swarm flew about in, represented a problem space,
then every location in the space would define a solution to the
problem, just like before.

•  So a swarm with many particles would be sampling many possible
solutions at once, like a population of an evolutionary algorithm.

•  Instead of evolving using crossover and mutation to find new locations,
the particles would swarm around in the space, following their rules of
movement.

PSO

•  They added their new rule (attraction to a target) to encourage the
swarm to find the solution to a problem.

•  By being attracted to a target, the swarm was being attracted to better
solutions.

•  Using a fitness function to measure how good each solution is, the
swarm could “smell” good places to be in the space.

•  And because particles like to follow each other, and stay close to each
other, if one finds a good solution, the others quickly follow, swarming
and exploring all of the nearby solutions.

•  Let’s look at the particle swarm rules in more detail.

PSO

1 Particle Swarm dynamics

•  Δv(t) = F (x(t-1), Δv(t-1), pb, pg)

•  The particle acceleration can be a function F of:
•  the particle position x(t)
•  the previous acceleration value Δv(t-1)
•  the particles’ best position (pb)
•  the local neighbourhood’s best position (pg), where ‘best’ is evaluated

with respect to some cost function
•  and anything else you think might be useful…

PSO RULES OF MOVEMENT

2 Particle Swarm velocity update

•  v(t) = v(t-1) + Δv(t-1)

•  Velocity at time t is velocity at time t-1 plus the acceleration value.

PSO RULES OF MOVEMENT

3 Particle Swarm max velocity

•  v(t + ε) = v(t) + θ (| (v(t) / vmax) | - 1) (vmax – v(t))

•  This provides a nonlinear damping force which is applied
instantaneously and has the effect of limiting the velocity magnitude to
the cut-off vmax.

•  θ is the step function defined by θ(a) = 0 for a < 0, θ(a) = 1 otherwise.
•  It is used to control unbounded oscillations of the swarm around the

target solution. (Other functions may be used.)

PSO RULES OF MOVEMENT

4 Particle Swarm position update

•  x(t) = x(t-1) + v(t) .

•  Particle position at time t is position at time t-1 plus the velocity value.

PSO RULES OF MOVEMENT

•  These simple rules cause the particles in the swarm to find good
solutions quickly, swarm around them, and settle on the best.

•  To see this, look at the plot of a swarm finding a stationary target (the
straight line at 60).

•  The centre of the swarm over time is plotted, and shows how the
particles oscillate around the target, but soon converge onto it.

PSO RULES OF MOVEMENT

•  Additionally, swarms are constantly moving and do not converge
genetically like individuals in an evolutionary algorithm.

• 
•  So, should the target (i.e., problem) be continuously changing, the

swarm is able to constantly move and find a good solution in real time.
• 
•  The following plot shows this happening: note the way the swarm

centre is always close to the moving target.

PSO RULES OF MOVEMENT

•  Today the standard PSO inertia weighted formalism usually
resembles:

•  where d labels components of the position and velocity vectors,
 d = 1, 2, …, D,

•  is the personal best position achieved by i,
•  is the best position of informers in i ’s social neighborhood, and
•  u1,2 ∼ U(0,1).

•  After velocity update, the particle position is adjusted:

PSO RULES OF MOVEMENT

€

 p i

€

 p n

€

xid
t+1 = vid

t+1 + xid
t

•  Peña et al. introduced a recombinant version of PSO by replacing
either the personal best or the neighbourhood best position by the
recombinant position.

•  The former provides improved performance and has the more
interesting social aspect. A recombinant position vector is defined by

•  where ηd = U{0,1} and
•  are immediate left and right neighbors of i in a ring topology.
•  While separate random numbers ηd are used for separate dimensions

d, a single value is generated for each single dimension and used for
both occurrences of ηd in that dimension. This places at a corner of
the smallest D-dimensional box which has pl and pr at its corners.

PSO RULES OF MOVEMENT

€

 r

€

 p l ,r

€

 r i

•  The plots shown previously are from an application tried out at UCL.

•  The swarm responded to real audio input (such as a singer or
saxophone).

•  The input was treated as a target, and the swarm moved in “music
space” towards that target, with the location of every point defining a
musical note.

•  The result was a program that could improvise music with a musician
in real time.

PSO RULES OF MOVEMENT

Tim Blackwell’s Swarm Music

Boonserm Kaewkamnerdpong’s swarming nanotech

Navneet Bhalla’s physical evolved self-assembly

•  Swarm intelligence, and indeed many of the phenomena we see in
“intelligent” insect behaviour, arises because of the emergent effects of
local rules.

•  Termites build extraordinary structures, ants forage and have complex
societies, bees make complex decisions about which food sources to
use.

•  It all seems as though there is one big brain somewhere, controlling
everything.

•  These phenomena occur because of self-organisation.

Self Organisation

•  Experts on insect behaviour have borrowed ideas from physics and
chemistry to explain insect intelligence.

•  According to these theories, complexity can arise spontaneously, if
certain conditions are met. These are:

•  Interaction
•  Positive feedback
•  Negative feedback
•  Amplification of fluctuations

Self Organisation

•  To see how this explains swarm intelligence, let’s go through each in
turn.

•  Remember the simple movement rules of our swarm?

•  They force interaction between the particles in the swarm.

•  If one gets too close to another, they will both try to move apart.

•  If one “smells” a good place to go, others will follow.

•  The movement of each particle affects the movement of the others.

Self Organisation

•  Suppose a particle randomly happens to fly through the target – a
place it really wants to be.

•  It will stay in that region and its companions will soon follow.

•  Why?

•  Because particles are attracted to each other, and so any nearby will
be attracted to the first particle and the target as well, making a double
attraction.

•  So the lucky find or fluctuation will be amplified as the whole swarm
soon moves over the target.

Self Organisation

•  The positive feedback happens in much the same way.

•  The more particles there are in one place, the more “pull” will be
exerted on other particles anywhere else.

•  Any finally, negative feedback is caused by the ‘max velocity’
weighting.

•  Also, if the velocity starts to get so high that a particle might fly off and
never be seen again, the max velocity weighting will pull it back.

•  This provides a brake for the positive feedback.

Self Organisation

•  Ants may not be very clever individually, but ant colonies can be

•  An ant colony is capable of searching, making plans, and optimising
routes to food.

•  Ant colonies are so good at finding the shortest path from one location
to another, that we have developed an algorithm based on their
behaviour.

•  Its name is Ant Colony Optimisation.

ANT COLONY OPTIMISATION

•  Imagine the situation above.
•  A river or hole separates the nest from a food source.
•  There are two ways to cross: a short, direct path, or a longer, less

efficient path.
•  Thousands of ants need to make this journey every day. If even a few

choose the longer path, they waste time and energy.
•  So, what do the ants do?

ANT COLONY OPTIMISATION

•  They take the shorter path.
•  But how do they choose?
•  A single ant is not intelligent enough to make this choice. How can a

colony be cleverer?
•  The answer has to do with pheromones, or smelly trails.

ANT COLONY OPTIMISATION

•  Every ant leaves behind a smelly trail.
•  In the time it takes one ant to cross

 using the longer route, the other ant
 has almost returned on the shorter
 route, still laying pheromone as it
 walks.

•  So there is more pheromone on the
 shorter path than on the longer one.
 The pheromone attracts other ants,
 which also lay down pheromone.

•  Very quickly, the amount of pheromone is so strong on the shorter
path, that all the ants take this route.

•  Indirect communication by modifying your environment is called
stigmergy.

•  This is another example of self-organisation. Can you work out why?

ANT COLONY OPTIMISATION

•  Ant colonies are good at finding shortest paths.

•  This is exactly the ability we need in order to solve Travelling
Salesman Problems (TSPs).

•  A TSP involves finding the shortest tour of cities, where every city is
visited.

•  It is the same class of problem as routing in networks.

•  For three or four cities, this problem is easy. But for fifteen or twenty,
or more, the problem is very difficult.

•  Marco Dorigo created a new algorithm based on the behaviour of ants
to solve TSPs.

ANT COLONY OPTIMISATION

•  The algorithm is simple: first the ants explore, by choosing different tours
of the cities. The better tours have pheromone levels increased, and the
process repeats.

•  An artificial ant k in city r chooses the city s to move to, amongst those that
do not belong to its working memory Mk by applying the following
probabilistic formula:

where:
 is the amount of pheromone trail on edge
 is the heuristic function:

β is a constant defining relative importance of pheromone trail and closeness
q is a random number between 0 and 1
q0 is a threshold constant between 0 and 1

ANT COLONY OPTIMISATION

€

s =
arg

u∉Mk

max τ r,u()[] ⋅ η r,u()[]β{ } if q ≤ q0

S otherwise

⎧
⎨
⎪

⎩ ⎪

€

τ r,u()

€

r,u()

€

η r, u()

€

1
dist r,u()

•  S is a random variable selected according to the following probability
distribution, which favours shorter edges that have a higher level of
pheromone trail:

where:
 is the probability with which ant k chooses to move from city r to city s

ANT COLONY OPTIMISATION

€

pk r, s() =

τ r, s()[] ⋅ η r, s()[]β

τ r, s()[] ⋅ η r, s()[]β
u∉Mk

∑
0

⎧

⎨
⎪ ⎪

⎩
⎪
⎪

 if s∉ Mk

 otherwise

€

pk r, s()

•  Pheromone trails on the edges between cities are changed locally and
globally.

•  Global updating rewards edges belonging to shorter tours of cities.

•  Once artificial ants have all completed their tours, the ant that has
travelled the shortest distance deposits additional pheromone on each
edge it visited

•  The amount of pheromone deposited on each visited edge
by the best ant is inversely proportional to the length of the tour: the
shorter the tour, the greater the amount of pheromone deposited on the
edges.

•  This manner of depositing pheromone is intended to emulate the actions
of many ants as they explore and increase the levels of pheromone on
shorter paths.

ANT COLONY OPTIMISATION

€

Δϕ r, s()

€

r, s()

•  The global trail updating formula is:

where
 is

α is a constant defining the relative importance of the shortest tour distance
and the existing pheromone level.

•  Note that global trail updating is very similar to a reinforcement learning
scheme in which better solutions get a higher reinforcement.

ANT COLONY OPTIMISATION

€

ϕ r, s()← 1 −α()⋅ ϕ r, s() +α ⋅ Δϕ r, s()

€

Δϕ r, s()

€

1
shortest tour

•  In addition to global trail updating, local trail updating is used.

•  To avoid a very strong edge being chosen by all of the ants: every time an
edge is chosen by an ant, its pheromone is updated by the local trail
updating formula:

 where is a system parameter

This is also intended to model trail evaporation.

ANT COLONY OPTIMISATION

€

τ r, s()← 1 −α()⋅ τ r, s() +α ⋅ τ 0

€

τ 0

•  So when an ant chooses its tour, it will either:

•  exploit the experience accumulated by the ant colony in the form of
pheromone trails (with probability q0), or

•  explore randomly with a bias towards short and high pheromone trail
edges not already visited

•  The result is an algorithm capable of searching in parallel and finding
solutions to TSP problems very successfully.

•  The inventors showed that this algorithm can find perfect solutions to 100-
city TSPs, where algorithms such as evolutionary programming, genetic
algorithms and simulated annealing struggle.

ANT COLONY OPTIMISATION

Questions?

Kumar, S. and Bentley, P. J. (Contributing Eds.) (2003) On Growth, Form and Computers. Academic Press, London.

Peter J. Bentley (2002). Digital Biology. How nature is transforming our technology and our lives. Simon &
Schuster (USA Hardback). ISBN: 0743204476

Bentley, P. J. and Corne, D. W. (Contributing Eds.) (2001) Creative Evolutionary Systems. Morgan Kaufmann
Publishers Inc., San Francisco, CA.

Bentley, P. J. (Contributing Editor) (1999). Evolutionary Design by Computers. Morgan Kaufmann Publishers Inc., San
Francisco, CA.

