
Three Ways to Grow Designs:
A Comparison of Embryogenies for an Evolutionary Design Problem

Peter Bentley Sanjeev Kumar
Department of Computer Science, University College London

Gower Street, London WC1E 6BT, UK
P.Bentley@cs.ucl.ac.uk, S.Kumar@cs.ucl.ac.uk

Abstract

This paper explores the use of growth processes,
or embryogenies, to map genotypes to
phenotypes within evolutionary systems.
Following a summary of the significant features
of embryogenies, the three main types of
embryogenies in Evolutionary Computation are
then identified and explained: external, explicit
and implicit. An experimental comparison
between these three different embryogenies and
an evolutionary algorithm with no embryogeny
is performed. The problem set to the four
evolutionary systems is to evolve tessellating
tiles. In order to assess the scalability of the
embryogenies, the problem is increased in
difficulty by enlarging the size of tiles to be
evolved. The results are surprising, with the
implicit embryogeny outperforming all other
techniques by showing no significant increase in
the size of the genotypes or decrease in accuracy
of evolution as the scale of the problem is
increased.

1 INTRODUCTION
The use of computers to evolve solutions to problems has
seen a dramatic increase in popularity and success over
the last decade. This is especially true for design
problems, with designs of great variety now being
evolved by computers (Bentley, 1999). However, as more
difficult design problems are set, the complexity of the
corresponding solutions is increasing. Unless great care is
taken in the representation of the solutions, this increase
in complexity can cause significant problems for
evolution, with phenomena such as disruption of
inheritance and premature convergence to local minima
often preventing the generation of fit solutions altogether.

Yet natural evolution is no stranger to complexity. Life is
clearly the most complex of all designs to have evolved,
making our very best evolved designs look absurd in their
simplicity. How does nature overcome the problems of
evolving such intricate solutions?

The answer lies in the evolved embryogeny of living
creatures. Unlike most evolutionary algorithms in
computer science, nature does not use a one-to-one
mapping from genotypes to phenotypes. Multicellular
organisms are, of course, grown using the instructions
provided in their genetic material. Living creatures grow
as a result of a carefully choreographed dance of genes,
amino acids, proteins, cells, chemical signals, electrical
signals and movements. The unimaginable convolutions
of interaction between all parts of the growing creature
permit a small amount of information to generate
immensely more complex forms. Because it implicitly
encompasses concepts such as compression, iteration,
recursion, adaptation and memory, a natural embryogeny
is an inherently scalable process. Once evolved in nature,
this growth process opened up the door to the evolution of
every creature from fruit fly to blue whale.

Evolutionary computationists are now beginning to
explore the new possibilities that embryogenies can
provide. This paper first explains the concepts behind
embryogenies, and then explores the three main types of
embryogeny in use today, by comparing an
implementation of each with an evolutionary algorithm
which uses no growth process. A simple design problem
is used to investigate the scalability of each of the types of
embryogeny, with some unexpected and significant
results.

2 EMBRYOGENY EXPLAINED
An embryogeny is the process of growth that defines how
a genotype is mapped onto a phenotype. (It should be
noted that the correct term is embryogeny, which refers to
the process, rather than the oft-misused term embryology,
which refers to the science of studying embryos and
embryogenies.) Out of the four main types of evolutionary
algorithm (EA) - the genetic algorithm (GA), evolutionary
programming (EP), evolutionary strategies (ES), and
genetic programming (GP) - only the GA treats genotypes
separately from phenotypes, and so only the GA has made
use of a mapping stage from the beginning of its
development. Nevertheless, a mapping stage from

genotypes (evolved parameter values) to phenotypes
(solutions to problems) can be introduced into any of the
evolutionary algorithms without difficulty.

Although a simple one-to-one mapping from genes to
parameters could be regarded as an elementary form of
embryogeny, this does not, strictly speaking, incorporate
any of the ‘growth’ processes or polygeny with which
embryogenies are associated. In other words, an
embryogeny is a special kind of mapping process. It has
the following features:

• Indirect correspondence between alleles and
phenotypic effects. The genotype is now regarded a
set of ‘growing instructions’ – a recipe which defines
how the phenotype will develop.

• Polygeny. Phenotypic traits are produced by multiple
genes acting in combination.

An embryogeny can provide the following benefits
(Bentley, 1999):

• Reduction of search space. Embryogeny permits
highly compact genotypes to define phenotypes. This
compression (often recursive, hierarchical and
multifunctional) results in genotypes with fewer
parameters than their corresponding phenotypes,
causing a reduction in the dimensionality of the
search space, and hence a smaller search space for the
EA.

• Better enumeration of search space. Mapping
permits two very differently organised spaces to
coexist, i.e. a search space designed to be easily
searched can allow the EA to locate corresponding
solutions within a hard-to-search solution space.

• More complex solutions in solution space. By using
‘growing instructions’ within genotypes to define
how phenotypes should be generated, a genotype can
define highly complex phenotypes.

• Repetition. Properly designed embryogenies can
improve the ability of evolution to generate solutions
with repeating structures such as symmetry,
segmentation, and subroutines.

• Adaptation. It is possible to 'grow' phenotypes from
genotypes adaptively, allowing constraints to be
satisfied (Yu & Bentley, 1998), improvement to
variable conditions, and correction of malfunctions in
designs (Sipper, 1997).

Embryogenies also suffer from some drawbacks (Bentley,
1999):

• Can be hard to design. All types of embryogeny
require careful design, and to date, only those
researchers capable of performing this difficult art
have demonstrated successful results.

• Can be hard to evolve. If care is not taken,
embryogenies can introduce problems for

evolutionary algorithms. Bloat, pleiotropy and
disruption of child solutions is possible, resulting in
the need for carefully designed genetic operators.

In nature, embryogenies are defined by the interactions
between genes, their phenotypic effects and the
environment in which the embryo develops. In EAs, we
can define embryogenies in three main ways: externally,
explicitly, and implicitly (Bentley, 1999).

2.1 EXTERNAL (NON-EVOLVED)
EMBRYOGENIES

Embryogenies are, in a very real sense, complex designs
in their own right. Most embryogenies are hand-designed
and are defined globally and externally to genotypes. For
example, Evolutionary Art systems often use
embryogenies defined by fixed, non-evolveable structures
which specify how phenotypes should be constructed
using the genes in the genotypes (Bentley, 1998). The
advantage with such external embryogenies is that the
user retains more control of the final evolved forms, and
can potentially improve the quality of evolved designs by
careful embryogeny design. In addition, this type of
embryogeny produces the fewest harmful effects for
evolution, and requires no specialised genetic operators.
The disadvantage of this approach is that these
embryogenies are not evolved, so they remain static and
unchanging during the evolution of genotypes. This does
not necessarily imply that the evolved designs will be any
less fit, but it does mean that the designer of the
embryogeny must take care to ensure that this complex
mapping process will always perform the desired
function.

William Latham’s evolved art (Todd & Latham, 1992)
provides an excellent example of an external embryogeny
in use. Latham hand-designs embryogenies comprising
tori, 'ribs' and other shapes and how they are placed and
duplicated. For example, a simple embryogeny might be:

{ Spiral (radius, curliness, depth)

 Rotate&Duplicate (angle, duplicates) }

with the values radius, curliness, depth, angle, duplicates
being evolved in the separate genotypes, to generate
different forms. Alternatively, Bentley’s generic
evolutionary design system (Bentley and Wakefield,
1997) illustrates an adaptive external embryogeny
process. Designs evolving in the system have various
constraints satisfied by mapping illegal genotypes to legal
phenotypes. In addition, the external embryogeny applies
high-level functions such as reflection, to allow
symmetrical designs to be generated.

2.2 EXPLICIT (EVOLVED) EMBRYOGENIES
If each step of an embryogeny is explicitly specified in a
data structure, the embryogeny resembles a computer
program. Designs are 'grown' by following the

instructions in this program, and these instructions may
contain conditional statements, iteration, and even
subroutines.

Although it is possible to hand-design such ’programs’,
Genetic Programming allows us to evolve them.
Typically, the genotype and embryogeny are combined,
allowing the evolution of both simultaneously. Clearly,
this approach avoids the need to hand-design
embryogenies, and allows the emergence of adaptive
mapping from genotype to phenotype (i.e., different initial
conditions acting on conditional statements could trigger
the growth of different phenotypes). There are some
disadvantages, however. The creation of suitable
representations can be difficult. Successfully evolving
such representations can also be difficult (often
specialised genetic operators are required to ensure
disruption is minimised (Koza et al, 1999)).

Nevertheless, this type of embryogeny is used by many
researchers. Koza and his team have made an extensive
study of the evolution of analogue electronic circuits
using Cellular Encoding as their explicit embryogeny
(Koza et al, 1999). Coates (1997) evolves architectural
forms using a Lindenmayer system as his embryogeny.
Gero and Rosenman (1999) use a number of different
types of grammar-based explicit embryogenies for their
work on evolving architecture.

2.3 IMPLICIT (EVOLVED) EMBRYOGENIES
Natural evolution does not use externally defined
embryogenies, nor does it explicitly represent
embryogenies in our genes. Instead, natural evolution uses
highly indirect chains of interacting ’rules’ to generate
complex embryogenies, which result in the development
of living creatures. The flow of activation is not
completely predetermined and pre-programmed, it is
dynamic, parallel and adaptive.

To summarise in very simple terms, natural embryogenies
use chemicals surrounding each cell to activate or
suppress genes within the chromosomes of the cell,
triggering patterns of cellular growth. Cellular death,
differentiation, and the production of chemicals is also
triggered by genes. Living creatures are grown in wombs
or eggs with chemicals carefully placed to guide the early
development of the embryo. As embryos develop,
complex chains of gene activation occur, cells grow and
die to form the appropriate shapes, and cells are
differentiated to perform specialised functions. Even the
movement of the developing muscles of the embryo
affects the development and placement of cells (Slack,
1991).

Few researchers have explored the use of implicit
embryogenies for Evolutionary Design, and yet the
potential advantages of this approach are significant.
Because of the way in which genes can be activated and
suppressed many times during the development of

phenotypes, because the same genes can be used to
specify multiple functions, and because of the inherent
parallelism of gene activation, such implicit embryogenies
go far beyond today’s Genetic Programming. Through
emergence during evolution, these implicit embryogenies
incorporate all concepts of conditional iteration,
subroutines, and parallel processing which must be
manually introduced into explicit GP embryogenies.

Implicit embryogenies are types of constrained generating
procedures, which, as Holland describes, resemble neural
nets, game theory and classifier systems (Holland, 1998).
By evolving a set of simple rules which can then be
iteratively applied to each element of the growing
solution, many large-scale problems can be tackled. For
example, Taura and Nagasaka (1999) describe the use of
an implicit embryogeny to define patterns of cells on the
surface of a sphere, which are then used via a second,
external embryogeny to define the morphology of shapes.
Alternatively, Mitchell evolves CA-based systems
designed to perform computations (Mitchell et al, 1993),
that can be regarded as types of implicit embryogeny.
However, the best example of this type of approach is the
work of Hugo de Garis, who for some years has been
successfully evolving CA-based implicit embryogenies to
grow artificial neural nets on an immense scale (de Garis,
1994).

3 COMPARING EMBRYOGENIES
Having explained the three main types of embryogeny in
use today, the rest of the paper describes the first known
experimental comparison between these techniques for a
single problem. Four evolutionary systems were
employed: a GA with no embryogeny, a GA with an
external embryogeny, a GP system with explicit
embryogeny, and a GA with an implicit embryogeny. The
problem chosen was to evolve the morphology of a two-
dimensional tile, which tessellates with itself at each
corner.

3.1 EVOLVING TESSELLATING TILES
Although the four evolutionary systems used different
genotypes and embryogenies, all used the same phenotype
representation and the same fitness function to guide
evolution. As shown on the left of figs 1 and 2,
phenotypes (evolved tiles) were represented using a
simple 2D grid, with each element either filled or empty.
To calculate how well a phenotype tessellated with itself,
four copies were overlaid onto each corner of the tile, see
the right of figs. 1 and 2. For every empty element and for
every overlapping element in the central tile, the fitness
score was incremented by 1. To illustrate this, fig. 1
shows a tile which does not tessellate properly, and fig. 2
shows a perfectly tessellating tile.

Figure 1: An example of an imperfectly tessellating 8x8
tile, with a fitness of 24

Figure 2: An example of a perfectly tessellating 8x8 tile,
with a fitness of 0

Clearly, a tessellating tile can be constructed without
search using a simple set of heuristics, but the purpose of
this problem was to allow the comparison of
embryogenies, and not to create the optimal tile-
generating software. The advantage of this problem is that
one aspect of its difficulty can be altered very simply. As
will be shown, by increasing the size of the phenotype
grid from 4x4, to 8x8, to 16x16 elements, the problem can
be scaled up. This permits the study of how the genotypes
and embryogenies change in efficiency (in terms of
memory and fitness), i.e., the scalability of each type of
embryogeny can be explored.

3.2 NO EMBRYOGENY
The first evolutionary system acted as the experimental
control in the subsequent tests. A simple GA with binary
strings as chromosomes, elitism and single-point
crossover was used. The GA used a one-to-one mapping
from genotype to phenotype, with each bit in the genotype
defining whether a corresponding element in the
phenotype grid was filled or not, see fig. 3.

0 0 1 0 1 0 1 1 1 0 0 0 0 1 0 1

Figure 3: An example genotype without embryogeny and
its corresponding 4x4 phenotype.

3.3 EXTERNAL EMBRYOGENY
The second evolutionary system again used a simple GA
with elitism and single-point crossover to manipulate
genotypes. However, instead of a direct bit-to-element
mapping, this system employed an external embryogeny.
Genotypes define the co-ordinates of a set of hand-
designed shapes in the phenotype grid, with each gene
pair corresponding to a predefined shape. Shapes were
permitted to overlap with each other and the edges of the
grid, see fig. 4.

1 2 3 4 5

6 7 8 9 10

001 000 001 010 010 011

Shape1 Shape2 Shape3

Figure 4: An example external embryogeny defined by a
set of evolved co-ordinates for predefined shapes (in the
binary genotype), and its corresponding 4x4 phenotype.

In total, ten different shapes, each composed of exactly
four cells, were used to construct tiles. It can be calculated
that tiles with fitnesses of zero always take up half the
number of elements in the phenotype grid. From this, an
appropriate number of shapes from the set of ten can be
calculated. In the experiments, 4x4 tiles were constructed
from three shapes, 8x8 tiles from ten, and 16x16 from 33
shapes (reusing the same ten shapes up to four times).

3.4 EXPLICIT EMBRYOGENY
The third evolutionary system used GP to evolve explicit
embryogenies in the form of program trees. Beginning at
a seed or zygote cell placed at the centre of the phenotype
grid, the embryogeny defines the direction of growth at
every point. Four functions were used: LEFT, RIGHT, UP
and DOWN, with each node in the tree allowed up to four
branches. Paths of growth were permitted to overlap. Fig.
5 shows an example genotype defining the explicit
embryogeny.

RIGHT

root

DOWN

DOWNDOWN UP

LEFT

RIGHT

RIGHT

Figure 5: An example explicit embryogeny defined by a
tree of nine nodes, and its corresponding 4x4 phenotype.

The GP system used steady-state selection and a
crossover designed to minimise disruption by crossing
parents at points of similarity in the two trees. Further
details of this system and crossover operator can be found
in (Mallinson & Bentley, 1999 and Bentley & Wakefield,
1996). As with all GP systems, bloat occurred, so an
additional fitness function penalised genotypes with more
nodes.

3.5 IMPLICIT EMBRYOGENY
The fourth and final evolutionary system used an
advanced GA to evolve implicit embryogenies. Each
genotype comprised a variable number of rules (usually
between four and eight). Each rule had a precondition and
an action. Each precondition had six fields: LEFT,
RIGHT, UP, DOWN, X, Y. A specific rule can take the
following values for each precondition field (where # is
don’t care, 0 is empty, 1 is filled, 0,1,2,3 are gradient
zones):

LEFT

0,1,#

RIGHT

0,1,#

UP

0,1,#

DOWN

0,1,#

X

0,1,2,3,#

Y

0,1,2,3,#

For a rule to be fired, values in at least four of the six
fields in the precondition must be matched. (This provides
the equivalent of disjunction for rule preconditions.) The
action of a rule can be: DIE, UPDATE, or grow LEFT,
RIGHT, UP or DOWN.

Growth takes place in a phenotype grid, which as usual
can be 4x4, 8x8 or 16x16 elements. In order to permit
evolution of specialised rules that can provide detail in
specific areas of the phenotype, the grid has two
’gradients’ - one in the x direction, one in the y direction.
In a similar way to the gradients used to provide
positional information in eggs and wombs of nature
(Slack, 1991, Lawrence, 1995), the gradients divide the
grid into 16 zones, regardless of the number of elements
in the phenotype grid.

At iteration zero, a seed cell is placed in the centre of the
phenotype grid. Following the example of biological cell
growth, the rules are then applied for a fixed number of
iterations to each filled element in the current embryonic
phenotype grid. (This is unlike traditional cellular
automata, where rules are applied to empty or filled grid

elements.) Depending on whether the neighbouring
elements of the current element exist or not, and on the
strength of the two gradients at that point, the rules may
be activated, causing growth or cell death in the
phenotype. Rules are applied ‘in parallel’ so that the
results of applying the rules to each filled element only
take effect at the end of each iteration step. However, a
rule which performs the UPDATE action causes all
activated rules in the current iteration to be applied. By
prematurely placing cells in the phenotype grid in this
way, evolution can increase the number of rules applied in
each iteration and provide extra growth where needed.
This new type of rule action was added to the
embryogeny because during the development of the
system, the number of iterations was found to be overly
critical. Fig. 6 provides an example of the growth process.

LEFT RIGHT UP DOWN X Y

x-gradient

y-
gr

ad
ie

nt

RULE 0 0 0 # 0 # # down
RULE 1 # 0 0 0 # # right
RULE 2 0 1 0 0 1 3 left

PRECONDITION

iteration 0

0 1 2 3

0

1

2

3

0

1

2

3

0

1

2

3

0 1 2 3 0 1 2 3

iteration 2iteration 1

ACTION

Figure 6: Example of a three-rule implicit embryogeny
and its corresponding phenotype after two iterations.

A steady-state GA with a crossover designed to cope with
variable numbers of rules in the genotype was used.
Further details of this GA and its operators can be found
in (Bentley, 1999, ch. 18).

4 EXPERIMENTS

4.1 OBJECTIVES AND PARAMETERS
There were two main objectives of the experiments: to
investigate how the use of different embryogenies
affected efficiency of search and to investigate the
scalability of the different embryogenies for the
tessellating tile problem. To this end, three experiments
were performed for each of the four evolutionary systems
described above, with the size of the phenotype grid being
increased from 4x4 to 8x8 to 16x16 elements. At least
twenty runs of each system were performed for all
experiments. Population sizes in the systems were 100,
each system evolved for up to 100 generations.
Initialisation of genotypes was random. The explicit
embryogeny system was given random trees with depth
no larger than 3 for the first experiment, no larger than 4

for the second, and no larger than 5 for the third
experiment. The implicit embryogeny system was
initialised with between four and seven random rules per
genotype. The number of iterations for which rules were
applied in the implicit embryogeny was set at 3, 4 and 10
for the first second and third experiments, respectively.
(Parameters were chosen to minimise genotype sizes and
growth times.) Random crossover was used to generate all
offspring, mutation was employed with a probability of
approximately 0.001 per bit in each system.

4.2 RESULTS
Table 1 summarises the results from the experiments. For
the first experiment, where tiles of 4x4 elements were
evolved, all methods found perfect solutions, every run.
For the second experiment, where tiles of 8x8 elements
were evolved, only the evolutionary systems with no
embryogeny and implicit embryogeny found perfect
solutions every run. The explicit embryogeny still
obtained good fitnesses with a mean of 0.769, with the
external embryogeny fairing slightly worse with a mean
fitness of 2.4. For the third experiment, where tiles of

16x16 elements were evolved, only the GA using implicit
embryogeny was able to evolve perfect solutions every
run, in less than 100 generations. Indeed, this method
often found perfect solutions in fewer than ten
generations. Given more than 100 generations, the system
with no embryogeny was able to match this fitness
average. However the EAs with external and explicit
embryogenies were unable to find perfect solutions for
this problem, with the external substantially worse than
the explicit.

However, the most astonishing findings came from the
change in solution size for the three different tile sizes.
Not only did the implicit embryogeny outperform all
other approaches in terms of fitness, but this embryogeny
also showed no significant change in the evolved length
of genotypes for all three experiments. This is in stark
contrast to all other approaches which showed dramatic
increases in genotype sizes - particularly the explicit
embryogeny. It should also be noted that because the GA
using implicit embryogeny did not suffer from bloat, there
was no additional fitness criteria employed to reduce the
number of rules. The lowest number of implicit rules

Table 1: Results of experiments.

4X4 GRID 8X8 GRID 16X16 GRID
METHOD mean soln.

size
mean
fitness

mean soln.
size

mean
fitness

mean soln.
size

mean
fitness

No embryogeny 16 bits 0 64 bits 0 256 bits 4.1

External Embryogeny 3 shapes 0 10 shapes 2.4 33 shapes 180.2

Explicit Embryogeny 9.5 nodes 0 64.8 nodes 0.769 845.7 nodes 23.2

Implicit Embryogeny 5.28 rules 0 6.05 rules 0 6.18 rules 0

[A] No Embryogeny [B] External embryogeny

[C] Explicit embryogeny [D] Implicit Embryogeny

Figure 7: Examples of perfect tessellating tiles evolved using each embryogeny.

observed to generate perfect tessellating tiles in all
experiments was three.

Fig. 7 provides examples of perfect 8x8 tiles evolved by
each approach. The GA using no embryogeny generated
the most diverse set of ’tiles’, however most were
fragmented and full of holes. The GA using external
embryogeny also provided diverse solutions, most of
which were not very fragmented and contained few holes.
The GP system with explicit embryogeny produced tiles
which typically were all subtle variations of the ’central
diamond’ design. Although diversity was reduced, no tiles
were fragmented and all were without holes. The GA
using implicit embryogeny evolved designs that were
never fragmented or containing holes. However, for these
experiments, very little diversity of output was shown,
with the system always producing rectangles of one
orientation or another. Nevertheless, as is shown in the
next section, this lack of diversity is not inherent in the
representation, which, with the right rules, can define any
possible tile shape.

4.3 ANALYSIS OF RESULTS
The results of the experiments prompt a number of
questions that can be addressed. These include: why did
each approach favour different types of solution with
different diversities of output, why did the approaches
differ in their scalability, and how efficient was each
approach?

Beginning with the GA which had no embryogeny, the
occurrence of fragmented elements and holes is to be
expected, as is a high diversity of output, because each
element in the phenotype grid is filled independently of its
neighbouring elements. By using ’smoothing’ operators,
such holes can be reduced (Baron et al, 1999).
Unfortunately, this approach does suffer from reduced
performance as the phenotype grid is scaled up. Because
of the one-to-one mapping, the genotypes must increase in
size, and because of the increased searchspace and
perhaps because of disruption caused by the use of single-
point crossover instead of a two-dimensional crossover,
more generations are required in order to maintain good
fitness scores.

The GA which used an external embryogeny also
demonstrated variety of output, this time caused by the
variety of primitive shapes used to construct the tiles. This
embryogeny scales well in terms of the genotype size:
compared to the quadrupling of genotype sizes for the
first method, genotype sizes tripled (approximately) as the
problem was scaled up. (Clearly the exact number of
shapes needed is dependent on the size of primitive
shapes employed. If the primitive shapes were also scaled
up in size, the number of shapes would not need to
increase.) However, this approach fared badly in terms of
fitness. Perhaps because of the primitive shapes used, the

GA was simply unable to evolve fit solutions for larger
tile sizes.

Fig. 8 illustrates how the tile shown in fig. 7B was
constructed. As can be seen, the GA has found intricate
ways to fit and overlap each shape to form a perfectly
tessellating tile.

�

�

� �

��

�

�

�

�	

Figure 8: The construction of the tessellating tile using ten
primitive shapes (see figure 4).

The GP system using explicit embryogeny provided some
of the most ’traditional-looking’ tiles. Because, on
average, there was an equal probability to move in all four
directions from the central seed, variants of diamond
shaped tiles were most evident. It seems likely that by
moving the position of the seed, alternative shapes would
be grown. Unfortunately the scalability and efficiency of
this approach was poor. As the phenotype grid was
increased, the tree-sizes increased almost exponentially,
and the average fitnesses decreased.

Figure 9: The evolved embryogeny (top) and the
construction of its corresponding tile (bottom). Not all

duplicate paths have been shown.

By examining Fig. 9, it is clear that tiles are constructed
using repeated patterns of movement from the seed, so the
use of ADFs, ADLs and ADIs is likely to improve
performance (Koza et al, 1999). Whether such
enhancements to the GP system would overcome all
detrimental increases of genotype size for larger
phenotype grids is unknown.

The GA using implicit embryogeny showed the least
amount of diversity of output in the experiments.
However, as fig. 10 illustrates, the initially random tiles
are quite diverse. Upon investigation it became clear that
the lack of diversity of output was caused by a
combination of the number of iterations used and by the
positioning of the seed. It seems that from a centrally-
placed seed with many iterations, it is easier to evolve and
grow a rectangular tile than any other shape. When the
seed is moved or the number of iterations reduced, shapes
such as the ’central diamond’ (fig. 9) are evolved.

Figure 10: Three initially random tile designs, grown
using the implicit embryogeny.

The implicit embryogeny displayed remarkable efficiency
and scalability, able to evolve perfect solutions in ten
generations or less, nearly every time, for every tile size,
and without increasing the genotype size. It seems that by
increasing the number of iterations, the same number of
rules can grow perfect tiles of almost any size.

��	
����������������������
���
������
��
���
��
���
��

#U #D #L #R #XX #YY (unused) ACTION

����������� ����������	 ����������
 ����������� �����������
RULES ACTIVATED:
0145

RULES ACTIVATED:
014501240140124
012401240145012
401240124014501
240124012401450
124012401240145
14014

RULES ACTIVATED:
014501401240140
124012401240145
012401240124014
501240124012401
450124012401240
145012401240124
014514014014014

RULES ACTIVATED:
101401401240124
012401240124501
240124014501240
124012401450124
012401240145012
401240124014501
240124012401451
4014014014

Figure 11: The evolved embryogeny (top) and the growth
of the tile using these rules (bottom). Note the extensive
use of the update rule to amplify growth. Rules 3 and 6

are not used to grow the tile.

The implicit nature of this embryogeny appears to be its
main benefit. Rules are fired because of factors such as
neighbours and location of cells in the grid. Rules are
applied iteratively and in parallel. This means that
conditionals, implicit looping, recursion, and many other
advanced capabilities that must be manually added to
other embryogeny systems, naturally emerge in the
implicit embryogeny. In addition, because many rules
naturally cause the emergence of structured shapes, the
task of finding a functionally correct shape is made
substantially easier. Fig. 11 shows how a small set of
embryogeny rules are reused to grow the tile iteratively.
Note the use of the UPDATE rule to promote further
growth in each iteration.

5 CONCLUSIONS
Developmental biologists have long advocated the
benefits of embryogeny in nature. This paper has explored
the potential benefits of incorporating such a growth
process to evolutionary algorithms, and has identified that
researchers currently use three main types of embryogeny:
external, explicit, and implicit.

By performing the first known comparison of these three
embryogenies with a system without an embryogeny, this
work demonstrates that embryogenies can provide
significant benefits to evolutionary computation. The use
of an external embryogeny seems likely to permit the
easiest and today perhaps the most successful form of
adaptive mapping, e.g. for handling constraints. The use
of an explicit embryogeny seems to be a successful way
to evolve complex solutions. However, the experiments
provided an unexpected, but unequivocal winner. For the
tessellating tile design problem, the implicit embryogeny
provided startlingly good performance compared to all
other approaches. There was neither performance
degradation, nor significant increase in genotype size as
the problem was scaled up. The embryogeny also
permitted evolution of perfect solutions in no more than
one tenth of the generations needed by the best of the rest.

6 FURTHER WORK
Work is now in progress to examine whether the same
results can be achieved for other design problems. In
particular, the ability of the implicit embryogeny to
evolve complex shapes shall be investigated. By allowing
an EA to evolve the position of the seed and the number
of iterations, it is thought that the implicit embryogeny
will show greatly increased diversity of output.

Acknowledgements
Our thanks to the members of nUCLEAR for their useful
comments and discussions on this work. Thanks also to
the reviewers for their unexpected praise.

References

Baron, P. Tuson, A. and Fisher, R. (1999) A Voxel Based
Representation for Evolutionary Shape Optimisation. In Bentley,
P. J. (Guest Ed.) Special Issue on Evolutionary Design,
AIEDAM journal v13:3 (to appear).

Bentley, P. J. (Ed.) (1999). Evolutionary Design by Computers.
Morgan Kaufman Pub.

Bentley, P. J. (1998). Aspects of Evolutionary Design by
Computers. In Advances in Soft Computing - Engineering
Design and Manufacturing, Springer-Verlag, London.

Bentley, P. J. & Wakefield, J. P. (1997) Generic Evolutionary
Design. Chawdhry, P.K., Roy, R., & Pant, R.K. (eds) Soft
Computing in Engineering Design and Manufacturing. Springer
Verlag, Part 6, 289-298.

Bentley, P. J. & Wakefield, J. P. (1996). Hierarchical Crossover
in Genetic Algorithms. In Proceedings of the 1st On-line
Workshop on Soft Computing (WSC1), (pp. 37-42), Nagoya
University, Japan.

Coates, P., (1997) Using Genetic Programming and L-Systems
to explore 3D design worlds. CAADFutures’97, R. Junge (ed),
Kluwer Academic Publishers, Munich.

de Garis, H. (1994) An Artificial Brain. New Generation
Computing v12:2, Springer Verlag.

Gero, J. and Rosenman, M. (1999). Evolving Designs by
Generating Useful Complex Gene Structures. In Bentley, P. J.
(ed.) (1999). Evolutionary Design by Computers. Academic
Press Ltd., London.

Holland, J., H. (1998), Emergence: From Chaos to Order.
Oxford University Press, Oxford, UK.

Koza, John R., Bennett III, Forrest H, Andre, David, and Keane,
Martin A. (1999). Genetic Programming III. San Francisco,
CA: Morgan Kaufmann.

Lawrence, P. A. (1995). The Making of a Fly: The Genetics of
Animal Design. Blackwell Science Ltd, The Alden Press,
Oxford, UK.

Mallinson, H and Bentley, P. J.. (1999) Evolving Fuzzy Rules
for Pattern Classification. In International Conference on
Computational Intelligence for Modelling, Control and
Automation - CIMCA’99 (to appear).

Mitchell, M. Hraber, P. T. and Crutchfield, J. P. (1993)
Revisiting the edge of chaos: Evolving cellular automata to
perform computations. Complex Systems, 7:89-130.

Sipper, M. (1997) A Phylogenetic, Ontogenetic, and Epigenetic
View of Bio-Inspired Hardware Systems. IEEE Transactions On
Evolutionary Computation, Vol 1, No. 1, February 4, 1997.

Slack, J. M. (1991). From Egg to Embryo. Cambridge
University Press.

Taura, T. and Nagasaka, I. (1999) Adaptive-Growth-Type 3D
Representation for Configuration Design. In Bentley, P. J. (guest
ed.) Special Issue on Evolutionary Design, AIEDAM journal
v13:3 (to appear).

Todd, S. & Latham, W. (1992) Evolutionary Art and Computers.
Academic Press.

Yu, T. and Bentley, P. (1998). Methods to Evolve Legal
Phenotypes. In Proceedings of the Fifth Int. Conf. on Parallel
Problem Solving From Nature. Amsterdam, Sept 27-30, 1998,
pp. 280-282.

