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Continuing the presentation of a theory of growth models for filamentous
organisms, the treatment is extended to cases where inputs are received
by each cell from both directions along the filament, and the change of
state and the output of a cell is determined by its present state and the
two inputs it receives. Further symbolism is introduced to take care of
branching filaments as well. Two entirely different models are constructed
for a particular branching organism, resembling one of the red algae.
These models are compared with reference to the number of states
employed, and the presence or absence of instructions for unequal
divisions and for inductive relationships among the cells. The importance
of a morphogenetic control theory concerning these relationships is
emphasized.

1. Introduction

The theory constructed in the preceding paper (Lindenmayer, 1968) could
cope only with simple filaments, linear arrays of cells, with outputs by the
cells transmitted only in one direction along the filament. Although there
are developmental situations in which this simple theory can be useful, e.g.
when a hormone-like auxin travels in an organ in one direction only, as
auxin is known to behave in shoots of vascular plants, but in many more
cases it is desirable to be able to carry out computations on the basis of
two-directional input-output relationships. Such cases include not only fila-
mentous organs, but also ring structures.

Ever since Turing (1952) proposed his famous morphogenetic models for
shoot apices based on peaks and troughs of concentrations of morphogenetic
substances which react with each other and diffuse around a ring, many
developmental biologists have expressed interest in these kinds of explanatory
hypotheses (e.g. Wardlaw, 1953), but no further use has been made of
them. One of the reasons for this may be the mathematical complexity of
dealing with simultaneous first- and second-order differential equations, as
in Turing’s approach. The advantage of the theory proposed in the present
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papers is that only finite mathematics is used, and consequently it lends itself
more readily to combinatorial manipulations, such as programming for
digital computers, and the theoretical framework can be kept at a rudimentary
level. At the same time results are obtainable which could be just as meaning-
ful for morphogenetic considerations as those based on differential equations.

The present paper explores a theory for the growth of filaments under
two-sided inputs, and extends it to branching filaments. The mathematical
theory of sequential machines is being used throughout, as outlined in the
previous paper. As a demonstration, individual models are constructed for
a particular branching filamentous organism. The problem of equivalence
among models yielding the same growth pattern is then introduced.

2. Theory B: Simple Filaments with Two-sided Inputs

The formal assumptions in this theory are partly identical to those in
theory A of the previous paper, and these will be referred to by their original
number. The assumptions which need to be modified will have a “B” prefix
with the number that the corresponding assumption has in theory A. The
first such modified statement replaces (A6), to read:

(B6) The 9, 7 and 7 functions are to be non-empty mappings from
SxSx S into S, with the restriction that the sequences inserted
into the second and third places of the arguments of the functions
must be of the same G-length.

The next-state and output functions have three variables in their arguments,
the first for the present state, the second for the input from the left, and the
third for the input from the right. Thus we have expressions like

dp,q,r)=s or Ap,q,r)=1 or I(p, q,1r)=w,
in each of which the restriction placed on the functions requires that
9(@) = g().
We are postulating two different output functions, 7 for the right output,

and 4 for the left output of a sequence under its inputs. The following
diagram shows these relationships.

/ J4 \
left input = ¢ = right input
output = </f(p, q,71) —}T(p, g, r) = right output

L[ o(p. g, 1) \
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The rules for concatenated input sequences are analogous to those in
theory A.

(B7a) &(p, uxw, vxz) = &(8(p, u, v), w, z)
(B7b) A(p, uxw, v+z) = A(p, u, v) * A(&(p, u, v), w, 2)

Ap, usw, vxz) = A(p, u, v) * A((p, u, v), w, z)
for all p, u, v, w, z in S such that g(u) = g(v) and g(w) = g(2).
Unfortunately, the rules for concatenated state sequences cannot be given

in analogous manner to (A7c) and (A7d). The problem is centered on the
fact that if we try to provide a completely specified substitution for an
expression like 8(p*g, u, v) we immediately discover that we are sucked into
an infinite regress. This is because we would have to write something like
the following

o(p*q,u,v) = 8(p,u, A(q, A(p, A, . . .)),v)) »&(q, Ap, u, (g, A(p, . . .)), 1)),
where the “...” stands for an infinitely long expression of alternating left
and right outputs. Yet, it is perfectly clear that computations with two-sided
inputs can be carried out, or programmed for a computer, if it is done line-
by-line. The difficulty lies only in trying to find general expressions for input
and output sequences of any length. Thus, we shall avoid the above predica-
ment by stating substitution rules only for unit-length inputs and outputs.

(B7¢) For all p, u and vin G, and rand sin S,
S(swper, u, v) = 5(s. u, p) » 8(p, Als, u, p), A(r, p. v)) * 5(r, p, v),
(B7d) A(sxp#r,u, v) = A(r, p, v),

A(s*pxr, u, v) = A(s, u, p).
The rules for empty sequences are similar to their counterparts in
theory A.

(B8a) (e, p, q) = A(p. e, &) = A(p, e, €) = ¢,

(B8b) (p, e, ) = ile, p, q) = A(e, 4, p) = p,
for all p and g in S such that g(p) = g(q).

As it turns out, the statements in this theory, that would correspond to
(A9), are derivable from (B7d) and (B8b), thus we list them as parts of our
first theorem in theory B.

(TB1) If p, u and v are in G, and r and s are in S, then

A(sxp, u, v) = A(p*r, u, v) = p.
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Proof is by substituting e for » or s in (B7d). The significance of this
theorem is that the right output of a non-empty sequence is the right-most
component of that sequence, and its left output is its left-most component.
Of course, if this is not the desired arrangement then the above assumptions
need to be changed. A similar theorem can be obtained for state sequences,
also by substituting e for r or s in (B7c).

(TB2) If p, u and v are in G, and r and s are in S, then
d(sxp, u, v) = (s, u, p) * &(p, A(s, u, p), v) and

6(pxr, u, v) = 6(p, u, A(r, p, v)) * &(r, p, v).

The assumptions (B6), (B7a-d) and (B8a-b) are the only ones necessary
to complete theory B, in addition to statements (Al) to (AS), and (A10)
to (A13), except for a definition corresponding to (Allb) which can be
readily added:

-

(Bl1b) Generating—;l and 7 functions are A and 1 functions with
arguments restricted to members of G.

Then, by (TB1), we have the statement that l(p, u, v) = )(p, u, v) =

for all p, u and v in G. Thus generating 7 and 1 functions must be mappings
from Gx Gx G into G.

An interesting question is how theory A is related to theory B. First of
all it can be noted that the transition from statements in one to those in the
other may be accomplished by adopting the following transformation rule:

(AB1) We can assert in theory A that d(p, q) = s and A(p, q) =t if and
only if we can assert in theory B that (p,q,7) =s and

z(p, g, r) = t for every r such that g(r) = g(g).

It is the case then that every statement in theory A is derivable in theory B.
In particular, it can be shown that (A7c), which was that

d(q#*p, r) = 8(q, r) * 8(p, i(q, ), for all p, g and rin S,
is derivable from the transformed version of (B7c), namely that
S(s*pxr,u) = 8(s,u) * 5(p, A(s,u))» (r, p), forall pand u in G,and sand rin S.

Similarly, (A7d) and (A9) are derivable from the transformed version of
(B7d), provided that the other assumptions of theory A are available,
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The reverse relationship, however, does not hold, i.e. not all statements
in B can be derived from those in A. Clearly, theory B is a richer system in
which many patterns can be expressed which cannot in theory A.

As an example for statements in theory B, a theorem is presented for the
development of banded patterns under two-sided inputs.

(TB3) If A(p,r,q) =r for every ¢ such that g(g) = g(r), and if
&p,r,r)=p" and if m % 0 and n % 0, then &(p, ", r") = p™.

This theorem is closely analogous to (TA13) in the preceding paper, and
its proof follows essentially along the same lines.

The next theorem, on the other hand, has no counterpart in theory A.
We introduce it by way of a concrete example. Figure 1 shows the computer
expansion of the sequence 111 under left and right input sequences consisting
of I’s. The generating J function is presented in the form of two matrices,
the first for present state 0, and the other for present state 1. The left inputs
are in the vertical column on the left, and the right inputs are in the horizontal
row on top, the rest of the matrix showing the next states for each triple
combination of present state, left input and right input. The generating
set G = {0, 1}.

Present Right input Present Right input
state 0 0 1 state 1 0 1
Left 0 0 1 Left 1 | 1#1 | 1%l
input 1 1 1 input 1 0 0

In Fig. 1 the left-most and right-most symbols in each row represent the
environmental inputs, which are arbitrarily set rather than computed. The
left column of the computed sequences can be seen to consist of alternating
P’s and 0’s, and no divisions take place in this column. Thus we can take
this column and consider it to be the left environmental input sequence.
Then we notice that in the column to its right there is a regularly repeated
sequence of 1001 sequences. This is an indication that we are dealing with
a repetition of certain patterns in every fourth row, as we have seen this to
happen in Figs 3 and 4 of the previous paper. We make a new plot of Fig. 1,
therefore, showing only every fourth row, with the inputs from row to row
consisting of 1010 on the left and of 1111 on the right. This is shown in Fig, 2.

A certain kind of constant apical pattern is evident in Fig. 2. This, how-
ever, is unlike those in Figs 1 and 4 of the preceding paper, in that the
apical pattern is only partially repeating because of influences from the right
input encroaching on it. No expression similar to (TA10) is available for
this behavior, but some other regularities can be pointed out.
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24 10111001011110011100000111111100100111001111000011110011111111001011100010

000111101110011
25 11110011111110001111001000111000000111111110011110001001110001111000000011

1111100101111001110001110011111
26 10001111000000101110001111101110010000111000000011110001011111110010111000

1000001110000001111111000111100101110011110001
27 11011100010000111111001011100001110011111001110010000011100010111111000000

11111110010111100011100100001110000001011100011111110011110001011
28 10111001011110011100000111111100100111001111000011110011111000111001011111

10000010000111000000111111100010111001111100111001000011111100101110000001111000
101111111

29 11110011111110001111001000111000000111111110011110001001110001111000010111
00111111100000100011110011100100001110000001011111100111100001111001111100111000

001111111001000011100010111111000001
30 10001111000000101110001111101110010000111000000011110001011111110010111000

10011111100111100000010001111011100011110011111001110010000111111000001111000100
1110001111000011110010001110000001111100111001011111100000100011

Fic. 1
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Left
Row input Right input
1 1010 11 1111
5 1100
9 11001111]
13 110011111110 00/00
17 1100111111100011110010{1110011
21 11001111111000111100100011100000011111j00111001011111100
25 11001111111000111100100011100000011111 111001111000100111000
11110000[00011111110010111100111000111001111
29 11001111111000111100100011100000011111 111001111000100111000
111100001011100. ..
FiG. 2

It is possible to show for this particular ¢ function that for all sequences r,
if the G-length of r is 4, then A(11, 1010, r) = 1001, which was the regularly
repeated sequence in the second computed column of Fig. 1. That this is
so can be shown most easily by an incomplete calculation under an unknown
right input of length 4:

111 ry
0|00 r,
110 r;
0(1.. | ry
11..

Beside the fact that the first column has 1001 in its first four places, we also
obtained the fact that there is an s such that &(11, 1010, r) = 11xs, for
any r of length 4.

A theorem can now be formulated, asserting that whenever we have a p
such as 11, a ¢ such as 1010 and a ¢ such as 1001 behaving as they do in the
above example, any n repetition of ¢ as the left input to p will result in a
left output sequence of n-times repeated ¢, under any right input sequence
whatever; and the next-state sequence, under these conditions will always

begin with p.

(TB4) If, for every r such that g(r) = g(g), I(p, q,r) =t and
E![&(p, q, r) « p], then for every non-negative integer n and
every w such that g(w) = n.g(q), it is the case that
Ap,q", w) = 1" and El[5(p, 4", w) « p].

Proof is by mathematical induction and requires no lemmas.



DEVELOPMENTAL MODELS. II. BRANCHING FILAMENTS 307

That the type of right input influences the extent of self-replicating
left portions in these arrays is illustrated by a comparison of Fig. 3 with
Fig. 2. In Fig. 3 each new array is computed under a left input of 1010,

Left

Row input Right input

1 1010 11 0000

5 11

9 1110

13 1100010

17 11001]000111 10

21 11001 111111]1001 11100000010

25 11001 1111110001(01110011111110000010111000111110
29 11001 1111110001 1110010001111011100101111110001111001011100

1 111101 1100 10000111000000010
FiG. 3

as is the case in Fig. 2, but the right input in Fig. 3 consists of 0’s rather than
of I’s as in the other one. The self-replicating part is increasing at a much
slower rate in Fig. 3 than in Fig. 2 (its right boundary is indicated by the
stepwise line). It may be noticed that we have a set of successive self-replicating
sequences, each longer than the previous one:

8(110, 1010, r,) = 1100145,
8(11001, 1010, r,) = 110011111+s,

and so on. These sequences represent the minimum self-replicating left-hand
portion we can obtain under any right input sequences, provided that the
right input consists of repetitions of 1010.

3. Theory C: Branching Filaments

Branching filaments can be handled within the already available theoretical
framework with the addition of only one more formal concept. Left and
right brackets, [ ], will be used to delimit each branch, while the entire
organism is described by a single linear array as before. The state symbols
of each primary branch are enclosed in brackets and inserted into the array
after the basal cell in the main filament, and, similarly, the symbols of each
secondary branch are enclosed in brackets and inserted after its basal cell
on the primary branch, and so on. If there are more than two branches on
a basal cell, then their expressions simply follow consecutively after the state
symbol of the basal cell. Relative positions of the branches to each other and
to the main filament cannot be indicated in this system, in the sense that
left and right branches cannot be distinguished.
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Since with any desired number of branches we still have a single linear
array, we can use the same concatenation operator * and work with the
¢ and A functions, as before, provided that we specify rules for dealing with
the bracketed expressions. Such rules are presented now for two-sided
inputs, those for one-sided inputs are easily derivable from them. In some of
these rules a constant ¢ must be invoked in order to provide environmental
inputs at the tips of branches, for which the inputs would otherwise remain
unknown or would have to be specified by other conventions.

(C1) (g=[p], u, v) = (g, u, v) * [d(p, —}:(q, u, v), )]
(C2) &([plar, u, v) = [(p, u, *“)] * 5(r, u, v)

(©3)  Hgs[pl, u, v) = A(g, u, v)
(C4) A pl*r, u, v) = i(r, u, v)
(€5 Ags[p), u, v) = Xg, u, v)

(C6) A([pl*r, u, v) = A(r, u, v)
for all p, q, r, u, vin S, and some ¢ in G.

€7 [e]=e

By substituting e for ¢ or r in the above formulas we obtain:
(TCY) &([p], u, v) = [6(p, u, *@)]
(TC2) /’{([P], u,v) =u

(TC3) A([p], u, v) = v, for all p, u, v in 5.

Under the assumptions of theory C the basal cell of a primary branch
receives inputs only from its two neighbors along the main filament, not
from the adjacent cell on the branch, and similarly for all higher order
branches. This is evident from (C1), where ¢ may stand for the state of the
basal cell of branch [p]. If it would be desirable for biological reasons to let
the cells of the branches contribute to the input of the basal cells, in other
words, to let each basal cell receive inputs from each of its three or more
neighbors, then a somewhat more compiex theory has to be constructed in
which sets of inputs determine the next states and outputs.

4. Models for a Branching Filamentous Organism

Two models are presented which were constructed to simulate the develop-
ment of a particular red alga, Callithamnion roseum Harvey. Detailed
developmental descriptions are available for this organism (Konrad-
Hawkins, 1964), certain aspects of which were followed in this exercise.
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We plan to produce a developmental pattern with the following features:
(a) the main filament should have at its base one to three cells which do not
bear branches; (b) each successive cell above these on the main filament
should bear one branch; (c) in all stages three or four cells below the tip of
the main filament should have no branches; (d) each primary or higher order
branch should repeat the pattern of the main filament. Certain important
details of the growth of C. roseum are purposely omitted from this
list of requirements. Most notably, while the position of the transverse walls
in the filaments appears to have a significance in determining the branch-
ing points, this aspect has been ignored in these models. Actually, more
complex models have been constructed which take wall characteristics into
account, but these will be reported on at a later time.

Two entirely different § functions are presented, both giving rise to
essentially the same growth pattern. The first model has a generating set of
nine symbols, the integers from 1 to 9, for the set of state sequences. The
next state is specified independently from the input received. In other words,
in the generating & matrix the same next-state sequence should be entered
under all nine inputs. This is shown in an abbreviated form in the following
table:

Present states

,123456789

Under any input

geG 2+¢3 2 2x4 245 6«5 7 8 9«[3] 9

This table could also be expressed by a series of statements such as:
{81, q)lq € G} = {2#3},
{62, 9)lg € G} = {2}, etc.

If we adopted the following transformation rule

8.(p) = q if and only if {3(p, r)ig(r) = n} = {q},
then only the following concatenation and branching rules were needed:

0,(p*q) = 6,(p)*5.(q)
3,(pD) = [6.(p)].

This is the case of no inputs passing in either direction in the filament, and
could be called “the theory of zero-sided inputs”. It is embedded in theory A,
just as theory A is embedded in theory B.

Making use of the above generating matrix, a sample calculation is
carried out for 15 lines in Fig. 4, with a diagrammatic representation of the
resulting organism shown in Fig. 5. Each cell in Fig. 5 has in it the symbol
for the state in which the cell is in at line 15 of the calculation. The branches
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Row
1 1’1
2 1,23
3 1224
4 112225
S 1122265
6 11222765
7 112228765
8 112229 [3]8765
9  112229[24191318765
10 1[2229 [225]9 {24]9 [3]18765
11 1[2229 [2265]19 [225]19 [24)9 [31 8765
12 112229 [22765]19 {2265]19 [225]19 [24]9 [3]18765
13 1222922876519 [22765]9 [2265]9 [225]9 [24]9 [3] 8765
14 1]2229[229 (31876519 (22876519 [22765]9 [2265]19 {225]9 [24]9 [3]18765
15 2229229 [24]9 {318765] 9 [229 [3] 8765}9 [228765]9 [22765]9 [226519 [225] 9 [24] 9 [3] 8765

FiG. 4

are drawn alternately to the left and to the right of the filament that bears
them; this is purely arbitrary as it has already been pointed out. It is clear
that if we start the computation with a single cell in state 1 then the model
fulfills the requirements stated at the beginning.

The second model has a generating set of only four members: G =
{0, 1, 2, 3}, and two-sided inputs are assumed (theory B), as well as branching
(theory C). The generating J function is given as three matrices; 0 is used
exclusively as an input symbol, thus no values are required for it in the

4 function. Thejl) and 1 generating functions are defined by (B11b), (TC2)
and (TC3).
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Right input

110 1 2 3 2| 0 2 3012 3

ol2 11 1 0l1+1 1 1 ol2 11 1

1221010 11 22 101 2 3 3

212 211 20151 1 3 201 2 3 3

301 2 3 3 316l 3 3 301 3 3 14

A computation, beginning with a cell in state 1 under constant environ-
mental inputs from both sides of 0’s, is shown in Fig. 6. If we would start
with a cell in state 2 or 3 instead, we would get the same results except for
the first few lines. Figure 7 shows the diagrammatic view of the organism
corresponding to line 28 of the calculation.

Row
1 010
2 020
3 0110
4 01120
5 0|1110
6 01220
7 012110
8 0112220
9 0{123110
10 0i122220
11 0}1233110
12 0j1233220
13 0]12333110
14 01231113220
15 0/1223[2] 33110
16 0[1213[11]1[1]13220
17 0j1212[22]3 [2] 33110
18 O{1212[311]3[11]11{1]13220
19 011212[222]2(22]13[2]133110
20 0
21 0
2 0
23 0
24 0
25 0
26 0
27 0

1212331111 [311}3[1111 [1]3220
1212332231 (22212 (22} 3 [2] 33110
1212[33311]1 [2311]2[31113 [11]1 [1]3220
1212 [31 [11322]1 {2222]2 [222]2[2213 [2] 33110
121223 [2]3311]11 [23311]2 [3311]1 [311]3 [11]1 [1] 3220
1212[13 [11]1[1132211 [23322]2 (3322] 1 [222]2 [22]3[2] 33110
121212 {22]3 (21331171 [233311] 233311} 1 [231112 [311]13 [1111 [1]3220

121212 [31113 (1111 [11322]1 (231 [1]322] 2 [31 [1]322] 1 [2222]2 [222] 2 [22] 3 [2]1 33110

28 1212[12[222]2[22]3 [21331171[223 [2]3311]2{23[2]3311]1 [23311]2[3311]1 [311]3[11]

111322

FiG. 6

21
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Comparing the growth patterns of these two models, we find a structural
similarity between Figs 5 and 7. What we mean by this is that the origins
and lengths of the branches are approximately the same in the two pictures.
What this corresponds to in the original linear arrays from which these
pictures were drawn is the distribution of the brackets along the arrays.

Thus we have constructed two roughly similar growth models with respect
to the distribution of the branches, but certainly not with respect to distri-
bution of states along the filament. There is ‘‘branching equivalence”
between the two J,A-functions, but no equivalence between the functions in
the sense of Ginsburg (1962). In the latter sense, for each state in the first
model there is a state in the second one such that the outputs under all
inputs are identical for both states, and, similarly, for every state in the
second model there is a state in the first one such that the outputs under all
inputs are identical. This is certainly not the case for our models.

The most interesting aspect of the comparison of the two models is the
presence or absence in them of unequal divisions and of induction processes
among cells. This is discussed in the following section.

5. Discussion

The central problem in these papers is the relationship between the
controls of cell division and cell induction, and morphogenesis. Before
discussing what this theory tells us about this relationship, we have to make
a few comments about the division and induction processes we are concerned
with.

Cell division may be equal (equational) or unequal according to the
respective states of the mother and daughter cells. As mentioned before, by
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states we understand any physiological or morphological aspect of the cells
which have a significant influence on the life of the cell. “Differentiation’
is the usual term employed to designate a change in states. It has been
stated (by H. Holzer in a lecture at the 1966 AIBS meetings) that differentia-
tion is always accompanied by cell division. Holzer proposed that basically
four types of cell divisions may be distinguished:

X X X X
¥\ AN AN AN
x X y oy Xy v oz

The first two are equal divisions, the last two are unequal. The last three
give rise to differentiation. Whether or not Holzer’s thesis on the connection
of differentiation and division is correct, these concepts are worth further
exploration.

Concerning induction processes, the following summary by Lang (1965)
is useful: “(There are) the following principal cases of contagious differen-
tiation: (1) the specific character of a differentiated cell or tissue is
perpetuated by cell division, giving rise to cell or tissue lineages carrying this
character; (2) the differentiating or differentiated cell or tissue induces
identical or very similar differentiation in its neighborhood; this is known as
homeogenetic induction; (3) a differentiated cell or tissue induces or modifies
differentiation of another type in adjacent cells or tissues, this is called
heterogenetic induction. ... It may be noted that one can also speak of
negative homeo- or heterogenetic induction, i.e. differentiation of a cell or
tissue may prevent differentiation of identical or of different cells and tissues
in the same or in another tissue. ... An example is the (development of)
stomatal pattern in dicot leaves.”

The theories proposed here are able to cope with all of the division and
induction cases mentioned. The first model in the previous section has several
unequal divisions in its ¢ matrix, belonging to one of the two types given
above, for instance

3 5
¥ N and ¥\
2 4 6 5

But this model has no inductive instructions. On the other hand, the second
model has many inductive instructions, but no unequal divisions. In fact, it
has division instructions of only the first type

1
¥ N
1 I
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Among the inductive instructions of the second model there are some
representing homeogenetic induction, like §(1, 2, 1) = 2 and 4(1, 3, 3) = 3,
and some heterogenetic induction, like 6(3,1,1) = 2 and 6(2,2,3) = 1.
Negative induction is difficult to define, because how does one know whether
a certain input prevented a change of state in a cell, or simply had no effect
on that cell. If negative induction should only mean that the present state
of a cell remains unchanged under an input from a cell in a similar or different
state, then there are many examples for this in the second model. Thus
4(1, 2, 2) = 1could be regarded as a case for negative heterogenetic induction,
and perhaps 4(3, 3, 2) = 3 a case for negative homeogenetic induction.

The two models were constructed by many trials with as few individual
states (members of the generating set) as possible. The first required nine states,
while the second only three states plus one environmental input. So, having
inductive instructions with two-sided inputs seems to be much more
economical of number of states. Other models, not included here, were con-
structed with inductive instructions and one-sided inputs, and they seemed
to require more individual states than the models with two-sided inputs,
but less than those without inputs (which is the same as having only one
individual input). An organism obviously has a choice of a very large
number of different sets of hereditary instructions to reliably produce a
certain structure which it needs for survival. Some of these instructions may
specify the occurrence of equal or unequal divisions, others that of induction
taking place with one or more sided inputs. Roughly speaking, the more
inductive processes are specified and with inputs coming from more sides,
the fewer states will be needed and fewer unequal divisions. Which of these
alternatives is less costly for the organism is difficult to tell, but there may
be an optimum number of states for a given developmental pattern, which
requires the smallest total of induction and unequal division instructions
taken together. Such optimization considerations may eventually lead us to
more realistic models.

In view of the large number of possible models which give rise to similar
morphogenetic patterns the most important problem is that of narrowing
down the set of possibilities. This can be ultimately done on the basis of
experimental evidence only. But a better theoretical understanding of equiva-
lence relationships among models of different types would help considerably
to sharpen the questions asked in the experiments.

While branching filaments, no matter how complicated, can be handled
as linear, one-dimensional arrays, the growth of a shoot apex can be
described only by a two-dimensional model, and the growth of a gastrula
probably by one which is at least three-dimensional. The theoretical frame-
work to cope with more than one-dimensional structures is not available yet.
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Simplified approaches to morphogenesis in the shoot apex are, however,
possible on the basis of one-dimensional models of rings (as in Turing’s
model, 1952) or of contact parastichies (as invoked by Plantefol, 1948).
Primitive apices with tetrahedral apical cells can also be approached on this
basis, since the tetrahedral cell and the sister cells of previous tetrahedral
cells can be considered a filament. Further studies are planned on these and
related subjects.

This work was supported partly by grant GM 12547 from the National Institutes
of Health, U.S. Public Health Service. The assistance of Mr Peter Fries with
computer programming and valuable suggestions is gratefully acknowledged.
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