
CRASH-PROOF SYSTEMIC COMPUTING: A DEMONSTRATION OF
NATIVE FAULT-TOLERANCE AND SELF-MAINTENANCE

Erwan Le Martelot
Engineering Department

University College London
Torrington Place, London WC1E 7JE

email: e.le martelot@ucl.ac.uk

Peter J. Bentley
Computer Science Department

University College London
Malet Place, London WC1E 6BT

email: p.bentley@cs.ucl.ac.uk

R. Beau Lotto
Institute of Ophthalmology
University College London

11-43 Bath Street, London EC1V 9EL
email: lotto@ucl.ac.uk

ABSTRACT
Reliability in computer or engineering systems is undoubt-
edly a key requirement in the development process. Safety
within critical control systems, and reliable data transfers,
require tolerance to unexpected and unwanted phenom-
ena. In biology, new cells can replace damaged cells [1],
DNA is able to repair and replicate with error control [1].
These processes are essential to maintain the overall or-
ganism. Biology has often been a successful inspiration
in computation (artificial neural networks, genetic algo-
rithms, ant colony optimisation, etc) although conventional
computation differs widely from natural computation. In
this respect, [2] introduced systemic computation (SC), a
model of interacting systems with natural characteristics
and suggested a new computer architecture. Following this
work, [3] introduced a systemic computer as a virtual ma-
chine running on conventional computers. In this paper we
show, using a genetic algorithm implementation running on
this platform, how crash-proof programs following the SC
paradigm have native fault-tolerance and easily integrated
self-maintenance.

KEY WORDS
Distributed and parallel computing and systems, systemic
computation, fault-tolerance, self-maintenance, crash-
proof, software reliability.

1 Introduction

With the increasing performance, potential and complexity
in machines and software, it has become increasingly dif-
ficult to ensure reliability in systems. Software regularly
crashes, top of the line robots break down on the wrong
kind of ground, power distribution networks fail under un-
foreseen circumstances [4]. Yet, there are many approaches
to limit potential failures.

In nature, old and potentially damaged cells are con-
stantly being replaced and DNA repaired [1]. The lifespan
of cells is shorter than the life of an organism, so fault-
tolerance and self-maintenance are essential for the sur-
vival of the organism. The failure of some components
does not destroy the overall organism; cell death is an im-
portant part of staying alive.

To ensure durability, fault tolerance therefore must be

as mandatory in a system as its ability to solve a given prob-
lem. The latter could actually hardly be trusted or even
possible without the former.

Conventional computers are examples of non fault-
tolerant systems where the smallest error in code, corrup-
tion in memory, or interference with electronics can cause
terminal failures [5].

For best reliability, computational systems could mir-
ror biological systems. Recent work at the interface be-
tween computer science and biology introduced systemic
computation (SC) [2], a new model of computation and
corresponding computer architecture based on a systemics
world-view and supplemented by the incorporation of nat-
ural characteristics. This work was followed by the intro-
duction of a complete platform for this paradigm [3].

In this paper, we show, using a genetic algorithm
(GA) implementation on this platform, that SC programs
have the native property of fault-tolerance and can be eas-
ily modified to become self-maintaining. We compare sev-
eral variations of the program, involving various faults and
self-maintenance configurations, demonstrating that soft-
ware can repair itself and survive even severe damage.

2 Background

Systemic computation is not the only model of computa-
tion to emerge from studies of biology. The potential of
biology had been discussed in the late 1940s by Von Neu-
mann who dedicated some of his final work to automata
and self-replicating machines [6]. Cellular automata have
proven themselves to be a valuable approach to emergent,
distributed computation [7]. Generalisations such as con-
strained generating procedures and collision-based com-
puting provide new ways to design and analyse emergent
computational phenomena [8][9]. Bio-inspired grammars
and algorithms introduced notions of homeostasis (for ex-
ample in artificial immune systems), fault-tolerance (as
seen in embryonic hardware) and parallel stochastic learn-
ing, (for example in swarm intelligence and genetic algo-
rithms) [2].

New architectures are also popular, whether dis-
tributed computing (or multiprocessing), computer cluster-
ing and grid computing and even ubiquitous computing
and speckled computing [10]. Thus, computation is in-



creasingly becoming more parallel, decentralised and dis-
tributed. However, while hugely complex computational
systems will be soon feasible, their organisation and man-
agement is still the subject of research. Ubiquitous com-
puting may enable computation anywhere, and bio-inspired
models may enable improved capabilities such as reliability
and fault-tolerance, but there has been no coherent architec-
ture that combines both technologies. Indeed, these tech-
nologies appear incompatible - the computational overhead
of most bio-inspired methods is prohibitive for the limited
capabilities of ubiquitous devices.

To unify notions of biological computation and elec-
tronic computation, [2] introduced SC as a suggestion of
necessary features for a computer architecture compatible
with current processors, yet designed to provide native sup-
port for common characteristics of biological processes.

If biology has become very popular in modern com-
putation, fault-tolerant programming is still generally han-
dled in a manner fundamentally different from the methods
used in nature.

N-version programming (NVP) [11], or multi-version
programming, is a software engineering process that was
introduced to incorporate fault-tolerance. Various func-
tionally equivalent programs are generated from the same
specifications and compared by the NVP framework. The
method thus introduces functional redundancy in order to
improve software reliability. However it does not guarantee
that the alternative programs are not facing the same issues.
It can also make mistakes when, in case of errors, deciding
which program version is providing the right answer. Fi-
nally, the development and cost overheads are important
(several programs for one specification).

Another technique that faces the same issues is known
as Recovery blocks [12], which provides alternative code
blocks for code that fails to work properly.

SC provides an alternative approach. With SC, organ-
isms and software programs now share a common defini-
tion of computation. We show how this paradigm leads to
native fault-tolerance and straightforward self-maintaining
programs.

3 Overview of Systemic Computation

As introduced in [2], SC is a new model of computation
and corresponding computer architecture based on a sys-
temics world-view and supplemented by the incorporation
of natural characteristics. This approach stresses the im-
portance of structure and interaction, supplementing tradi-
tional reductionist analysis with the recognition that circu-
lar causality, embodiment in environments and emergence
of hierarchical organisations all play vital roles in natural
systems. Systemic computation makes the following asser-
tions:
- Everything is a system.
- Systems can be transformed but never destroyed.
- Systems may comprise or share other nested systems.
- Systems interact, and interaction between systems may

cause transformation of those systems, where the nature of
that transformation is determined by a contextual system.
- All systems can potentially act as context and affect the
interactions of other systems, and all systems can poten-
tially interact in some context.
- The transformation of systems is constrained by the scope
of systems, and systems may have partial membership
within the scope of a system.
- Computation is transformation.

In systemic computation, everything is a system,
and computations arise from interactions between systems.
Two systems can interact in the context of a third system.
All systems can potentially act as contexts to determine the
effect of interacting systems. One convenient way to rep-
resent and define a system is as a binary string. Each string
is divided into three parts: two schemata and one kernel.
These three parts can be used to hold anything (data, typ-
ing, etc.) in binary as shown in Figure 1.

Figure 1. A system used primarily for data storage. The
kernel (in the circle) and the two schemata (at the end of
the two arms) hold data.

The primary purpose of the kernel is to define an in-
teraction result (and also optionally to hold data). The two
schemata define which subject systems may interact in this
context as shown in Figure 2.

Figure 2. Left: A system acting as a context. Its kernel
defines the result of the interaction while its schemata de-
fine allowable interacting systems. Right: An interacting
context. The contextual system Sc matches two appropri-
ate systems S1 and S2 with its schemata and specifies the
transformation resulting from their interaction as defined in
its kernel.

A system can also contain or be contained by other
systems. This enables the notion of scope. Interactions can
only occur between systems within the same scope. There-
fore any interaction between two systems in the context of
a third implies that all three are contained within at least
one common super-system, where that super-system may
be one of the two interacting systems.

4 Motivation

SC programming differs subtly from conventional logic,
procedural or object-oriented programming both in its def-
inition and in its goals [3]. A procedural program contains
a sequence of instructions to process whereas an SC pro-
gram needs, by definition, to define and declare a list of



agents (the systems), in an initial state. The program exe-
cution begins by creating these systems in their initial state
and then continues by letting them behave indefinitely and
stochastically. The outcome of the program is created from
an emergent process rather than a deterministic predefined
algorithm.

Programming with SC has various benefits when re-
garding fault-tolerance:
- The parallelism of SC means that a failed interaction does
not prevent any further interactions from happening,
- A program relies on many independent systems and the
failure of one of them cannot destroy the whole program.
Like cells in biology, one system collapsing or making mis-
takes can be compensated by other systems working cor-
rectly,
- SC does not permit memory corruption, and even if indi-
vidual systems contained fatal errors (e.g. divide by zero)
the whole program would not halt; every SC program is al-
ready in an infinite, never-ending loop so it cannot crash in
the conventional sense,
- Having multiple instances of similar systems not only pro-
vides redundancy, it also makes it easy to introduce a self-
maintenance process which allows similar systems to fix
each other, including the self-maintenance systems them-
selves.

We illustrate these ideas with a concrete program: an
implementation of a genetic algorithm (GA) on the SC plat-
form [3]. GAs are a type of bio-inspired search technique
used to search for solutions to large or noisy problems. This
technique is directly inspired from evolutionary biology in-
volving concepts like genetic inheritance, gene mutation,
natural selection and chromosome crossover.

While any program could be used for the demonstra-
tion of fault-tolerance and self-repair, we chose a GA as its
natural parallelism simplifies the implementation in SC.

5 An SC implementation of a GA

When programming with SC it is necessary to perform a
systemic analysis in order to identify and interpret appro-
priate systems and their organisation [3].

The first stage is to identify the low-level systems
(i.e. determine the level of abstraction to be used). The
use of a genetic algorithm implies we need a population
of solutions, so a collection of systems, with each sys-
tem corresponding to one solution, seems appropriate. (A
lower-level abstraction might use one system for every
gene within each solution, but for the purposes of this in-
vestigation, this would add unnecessary complexity.)

The identification of appropriate low-level systems is
aided by an analysis of interactions. In a genetic algorithm,
solutions interact in two ways: they compete for selection
as parents, and once chosen as parents, pairs produce new
offspring. The use of contextual systems (which determine
the effects of solution interaction) for the genetic opera-
tions therefore seems highly appropriate, as shown in Fig-
ure 3.

The operators select the less fit solution and can:
- either replace it with an offspring of the two solutions
created by a two-points crossover,
- or apply it a mutation rate of 0.01 bitwise probability.

Figure 3. A genetic operator acts as a context for two inter-
acting solutions.

Once the systems and interactions are understood, it
is necessary to determine the order and structure of the
emergent program. For this we need to determine scopes
(which systems are inside which other systems) and the
values stored within systems. In a genetic algorithm, the
population is usually initialised with random values, be-
fore any other kind of interaction can take place. This im-
plies a two-stage computation: first all solutions must be
initialised, then they are permitted to interact and evolve.
One way to achieve this is to use super-systems as compu-
tation spaces, and initialiser systems. If all solutions begin
outside the computation spaces, then the initialiser acts as
context for interactions between the solutions outside the
spaces, initially empty, and the spaces, resulting in initial-
ising solutions and pushing them inside a space ready for
evolution, see Figure 4.

Figure 4. Left: The “Initialiser” acts as context for interac-
tions between non-initialised solutions (located outside any
computation space) and a computation space. Right: The
result of the interaction, as defined by the Initialiser, is an
initialised solution inside a computation space where it can
then interact with other solutions in the context of operators
(not shown).

One approach in SC modelling, is to implement the
input/output layer of a program using a “Universe”, a sys-
tem which encloses everything within the program. It can
only interact with the user through the computer as illus-
trated in Figure 5. The universe is thus the interface be-
tween the program and the user and it is where we will
read the output of our GA program.

To transfer data from the program to the user we thus
need another system able to provide a relevant output. It
can be done by introducing a “solution transfer” system
comparing the solution within a solution system with the
solution currently displayed to the user within the universe.



Figure 5. User interaction with the program through the
universe in the context of the computer.

If the solution system contains a fitter solution then this
solution replaces the one currently being output. To guar-
antee that the universe and solutions can interact within a
solution transfer context, the solution systems as well as the
solution-transfers are located within the universe. There-
fore, when solutions are pushed in a computation space by
the initialisers, they also remain within the universe. Fig-
ure 6 shows the global organisation of our GA (with few
systems for readability).

Finally, we need to give our GA an aim. In order
to observe its progression in a visually convenient way,
here the objective is simply to evolve a string of bits that
matches a target pattern - a bit string of 256 ’1’s. (Any
other fitness function could have been used instead.)

Figure 6. GA program with 1 computation space, 1 ini-
tialiser, 1 solution-transfer, 2 operators and 4 solutions (3
initialised and 1 non-initialised). We can see: at the top
an initialisation (the solution will then become also part
of the computation space); within the computation space
two solutions are interacting within the context of a genetic
operator; at the bottom left a solution transfer between a
solution and the universe. Note that the representation of
solution systems between the universe and a computation
space means that the solution systems are part of both.

6 Fault-tolerance: Experiments & Results

6.1 Simulating faults

The aim of this first set of experiments is to study the fault-
tolerant behaviour of our program. To achieve this, faults
first have to be modelled.

Hardware or software faults can be simulated by ran-
domly altering a memory state (replacing its value with any
possible value) with a given rate. By this we provide un-
predictable random mistakes that can occur anywhere at
anytime in the program.

These faults should be modelled so that their “sys-
temic existence” (i.e. the fact that the systems involved in
their modelling exist) does not disrupt the inner organisa-
tion of the program. In other words, if we introduce the
fault simulation systems in the program with a null fault
probability, the program should behave perfectly normally
as if the fault systems were absent.

We can state that a fault is due to an unexpected phe-
nomenon which interacts with a component. Whether this
phenomenon is an increase of temperature leading to a
hardware failure or a programming mistake in memory ad-
dressing, the result is the alteration of the memory state in
the context of the laws of physics that made this physical
change possible. Any program system is therefore suscep-
tible to faults, whether software or hardware initiated.

In SC modelling, the above can be achieved by
putting any program system (i.e. system part of our initial
program) within a “phenomenon system” also containing
the “laws of physics”, as shown in Figure 7. The unex-
pected phenomenon can thus interact with a program sys-
tem within the context of the laws of physics (the same laws
of physics system is within the scope of all phenomena).

In the case of our program, a program system can
therefore be a computation space, a solution, an operator, a
solution transfer or an initialiser.

The user provides parameters to the universe and
reads what the program returns from it. Also, the phenom-
ena and the laws of physics are not part of the “tested pro-
gram”. Therefore we do not consider here the universe, the
laws of physics or the phenomena as fallible components.

Figure 7. Interaction between an external unexpected phe-
nomenon and a program system in the context of the laws
of physics and within the scope of the phenomenon (i.e.
the system is encompassed in the field of interaction of the
phenomenon).

6.2 Experiments

Previous work [5] showed that programs evolved using
fractal gene regulatory networks cope better with code
damage than human-designed or genetic programming
generated programs. In the following experiments, we fo-
cus on how human-designed programs for SC can natively
cope with code damage.

In the following, iterations, systems, contexts and
simple respectively refer to the number of iterations, sys-
tems, context systems and non-context systems.

In all experiments, the solutions are 256 bits long.
The best solution’s fitness is thus 256. To fit solutions
within the systems we chose a kernel and schema length
of 256 characters. The total length of a system is thus



ls = 256× 3 = 768.
In the following experiments, all runs for a particular con-
figuration are repeated 10 times, and the presented results
are averaged over the 10 runs.
To measure the quantity of errors introduced in the pro-
grams we use the following:
• pc: character-wise fault probability,
• ps = 1− (1− pc)ls: system corruption probability,
• q = pc.ls.

iterations
contexts : quantity of corrupted bits over an

execution.
The ratio iterations

contexts is the number of times each fallible
context system can attempt an interaction. It depends on
each program configuration and we provide for each exper-
iment an average number that experiments showed to be
required for the program to finish.

Also, damages made to context systems have a
stronger impact, although as likely to happen as for any
other system. Indeed other systems can be scopes and hold
no or little data, or data systems usually using less crucial
characters than the contexts. It is therefore a useful mea-
sure to calculate the “quantities” qc and qs of damage re-
spectively made to fallible context and simple (non context)
systems:
• qc = q. contexts

systems : Number of context system bits cor-
rupted in one run,
• qs = q. simple

systems : Number of simple (non-context) system
bits corrupted in one run.

Experiment 1
Program setup with a minimalist configuration:
• 1 initialiser, • 25 solutions,
• 1 computation space, • 1 crossover operator,
• 1 solution transfer, • 1 mutation operator.

Here contexts = 4, systems = 30.
10 runs of the program were performed with no fault and 10
runs were performed with faults injected with pc = 0.0001
giving ps = 0.0739
We consider here iterations

contexts ≈ 3700. Thus, q(pc =
0.0001) = 284.16. We have an estimation of about 284 bits
damaged during the program execution, divided amongst
the different types of systems as: qc = q. 4

30 ≈ 38 and
qs = q. 2630 ≈ 246.
Figure 8 shows the program progression with and without
faults.

Experiment 2
The previous program was performing correctly for a

very short time due to the single instantiation of all the sys-
tems (except the “solution” systems since a GA by defini-
tion uses a population of solutions).
The second experiment thus used duplicated systems:
• 5 initialisers, • 25 solutions,
• 3 computation spaces, • 10 crossover operators,
• 10 solution transfers, • 10 mutation operators.

Here contexts = 35 and systems = 63.
Like in experiment 1, 10 runs of the program were per-
formed with no fault and 10 runs were performed with

Figure 8. Experiment 1: GA progression without and with
faults averaged over 10 runs using a minimalist system con-
figuration. With this first configuration we can see that our
GA stops evolving at a very early stage when its program
is corrupted by faults. However, it is noteworthy that when
injecting faults, the program does not crash; it merely stops
evolving properly. The systemic computer is crash-proof
as systems deterioration can only stop or corrupt individual
interactions, but as the whole program consists of systems
interacting in parallel, the other uncorrupted individual in-
teractions will continue as normal.

faults injected with the same probability.
We consider here iterations

contexts ≈ 400 (many more con-
texts compared to experiment 1, most of them relevant to
the solution computation, i.e. operators). Thus q(pc =
0.0001) = 30.72. We have an estimation of about 31
bits damaged during the program execution divided in:
qc = q. 3563 ≈ 17 and qs = q. 2863 ≈ 14. Figure 9 shows
the results of such configuration tested over 10 runs.

Figure 9. Experiment 2: GA progression without and with
faults averaged over 10 runs with a program configuration
using redundant systems.

We can now observe that the program performed well
in its task in spite of the faults. However, if the execution
had required to last longer (e.g. more difficult problem), or
if more faults were to occur, the program could stop work-
ing before reaching its goal like in experiment 1. This hy-
pothesis is verified in the following experiment.

Experiment 3
We use the same systems configuration as in the previous

experiment but we rise the character-wise fault probability
to pc = 0.0005 giving ps = 0.3189.
This system fault probability is comparable to a simultane-
ous erroneous state of a third of the computer components.
q(pc = 0.0005) = 153.6
qc = q. 3563 ≈ q.56% ≈ 85 qs = q. 2863 ≈ q.44% ≈ 68

Figure 10 shows the obtained results. We can see that the



program, although using duplicated systems, stops evolv-
ing before reaching its goal. If we try to analyse the rea-
sons of this program failure we can guess that “solution
transfer” systems are the first not to fulfil their role any-
more. Initialisers are indeed only required at the beginning,
computation spaces are just encompassing systems so have
no context nor data holding role, and solutions and opera-
tors (crossover or mutation) are more numerous than solu-
tion transfers. Analysing the results, looking at the systems
memory state evolution through time, showed indeed that
each program failure is due in the first place to the corrup-
tion of all transfer systems. If solution transfers were more
numerous than operators for instance we could then expect
solution evolution to stop working first. As soon as one
program subtask (e.g. solution transfer, solution evolution,
etc) is not fulfilled any more, the program stops working.
In the case of our GA, the subtask in charge of transferring
solutions to the universe is not executed anymore once all
transfer systems are corrupted. Once such subtask is down,
it does not matter what the others can do as the program
requires all of them to work properly.

Figure 10. Experiment 3: GA progression without and with
faults averaged over 10 runs with a configuration using re-
dundant systems and facing a strong fault probability.

These experiments showed up to now that we always
have a graceful degradation (solutions are evolved nor-
mally until evolution fails because of damage, but the solu-
tions are not lost) but sooner or later the GA fails to work
properly. We can delay the program failure point by pro-
viding enough systems to survive for a while (e.g. as long
as we need the program to run, see experiment 2) but we
cannot prevent this failure if faults keep happening.

To slow down the degradation without adding too
many systems (or even avoid this failure point) the pro-
gram could be repaired. An elegant way to have a pro-
gram repaired would be an “on-line” self-maintenance of
the program. The program would repair itself. No external
intervention would then be required as the program would
show a homeostatic behaviour.

7 Self-Maintenance: Experiments & Results

7.1 Implementing self-maintenance

System definitions in our program can be instantiated
several times, and need to be in order to provide fault-

tolerance. Therefore interacting instances could try to fix
each other in a “self-maintenance” context, as shown in
Figure 11.

Figure 11. Two program systems interacting within a con-
text of self-maintenance.

Indeed, if the two systems are similar on their healthy
parts, then they can replace the damaged parts of each by
the ones of the other if these are healthy. The self-repair
ability of the program then arises from its conception in
independent and multiple times instantiated systems. For
this reason, the self-maintenance context systems should
also be instantiated several times. The more redundant the
information (the more duplicated systems) the more likely
systems are to be able to fix each other and the more likely
the function they play in the program is reliable.

7.2 Experiments

Experiment 4
In this experiment, we repeat over 10 runs the same setup

as experiment 3 but we inject 7 self-maintenance systems.
We now get contexts = 42 and systems = 70. The
amount of self-maintenance systems thus represents 10%
of the total amount of systems
We consider here iterations

contexts ≈ 535, thus q(pc = 0.0005) =
205.71. We have an estimation of about 205 bits damaged
during the program execution divided in:
qc = q. 4270 ≈ q.60% ≈ 123 qs = q. 2870 ≈ q.40% ≈ 82

Note that qc increased with respect to q as this configura-
tion involved additional fallible context systems for self-
maintenance. Figure 12 shows the program progression
without faults, with faults and then with faults and self-
maintenance.

Figure 12. Experiment 4: GA progression with no fault,
with faults and with faults and self-maintenance, all aver-
aged over 10 runs with configurations using redundant sys-
tems and facing a high fault probability.



We can observe that the program is working fine in
spite of the high amount of faults (e.g. very unreliable
hardware or very buggy software), and using a reasonable
amount of systems dedicated to faults reparation.

7.3 Discussion

It should be noted that the more contexts there are in an
SC program, the more iterations are required to make all
contexts create an interaction once. Therefore, if the “laws
of physics” system interacts once in a cycle, then the more
systems there are, the less likely each individual system
is to be damaged, but still the probability that something
happens within the whole system is the same. We can thus
say that faults happen depending on the usage of a system.
This bias is part of SC, just as any other paradigm can have
inner biases due to their properties.

However, to remove this bias in the experiments,
some dummy systems can be added to ensure that exper-
iments with different needs of systems still have the same
amount of systems (same amount of context systems and
same amount of non-context systems).

To confirm this, experiment 3 was conducted again
using 7 dummy context systems in order to have 42 context
and 28 non-context systems like in experiment 4. This way
the comparison between the two experiments was strictly
unbiased. The results showed that the program running
with faults performed on average only slightly better than
in the dummy-less version, confirming that the bias had
no significant impact on the overall outcome of the experi-
ment.

8 Conclusion

In this paper, we showed how bio-inspired programming
using SC can natively provide fault-tolerant behaviour and
easy self-maintenance to a program with minimal software
conception overhead: fault tolerance is achieved by du-
plicating system instances and self maintenance by intro-
ducing a new system using existing systems to repair each
other. The fault-tolerant self-maintaining GA used in the
last experiment showed that we have a crash-resistant com-
puter able to run fault-tolerant self-maintaining programs
in spite of a high probability of fault occurrence and allo-
cating only 10% of its resource to maintenance. Therefore,
compared to conventional software which crashes immedi-
ately, the SC programs are clearly much better.

The overall fault-tolerance is due to the massively dis-
tributed architecture and independent computations of the
systemic computer making it by definition crash proof, and
then to the multiple instantiations of all the systems in-
volved. Finally the self-maintenance systems making use
of healthy parts of systems to fix damaged parts of others
enabled a homeostatic behaviour.

With this method, fault detection and fault correction
are done automatically and are fully integrated into the core

of the program. In addition, the fault detection mechanism
is independent from the kind of systems being repaired and
could therefore be used as it is in any SC program.

Similar to a biological organism, this process is part
of the whole and just as any other constituent is a regular
and autonomous running task.

In the future, on a hardware systemic computer where
systems are physically parallel, software could in addition
manage the faults handling process without any real-time
overhead.

References

[1] J.E. Darnell, H.F. Lodish, D. Baltimore, Molecular
Cell Biology, (Scientific Amer Inc, USA, 1990).

[2] P.J. Bentley, Systemic computation, A Model of In-
teracting Systems with Natural Characteristics, Interna-
tional journal of parallel, emergent and distributed sys-
tems, 22, 2007, 103-121.

[3] E. Le Martelot, P.J. Bentley, and R.B. Lotto, A Sys-
temic Computation Platform for the Modelling and
Analysis of Processes with Natural Characteristics, Proc
of Genetic and Evolutionary Computation Conference
(GECCO’07), London, UK, 2007, 2809-2816.

[4] P.J. Bentley, Climbing Through Complexity Ceilings,
Invited presentation at Symposium on Distributed Form:
Network Practice, Berkeley, USA., 2004.

[5] P.J. Bentley, Investigations into Graceful Degradation
of Evolutionary Developmental Software, Journal of
Natural Computing, 4, 417-437.

[6] J. von Neumann, The theory of self-reproducing au-
tomata (Champaign, IL: Univ. of Illinois Press, 1966).

[7] S. Wolfram, A New Kind of Science (Champaign, IL:
Wolfram Media, Inc., 2002).

[8] J. H. Holland, Emergence. From Chaos to Order (Ox-
ford, UK: Oxford University Press, 1998).

[9] A. Adamatzky, Computing in Nonlinear Media and
Automata Collectives (Bristol, UK: Institute of Physics
Publishing, 2001).

[10] D.K. Arvind, K.J. Wong, Speckled Computing: Dis-
ruptive Technology for Networked Information Ap-
pliances, Proc. of the IEEE International Symposium
on Consumer Electronics (ISCE’04), Edinburgh, UK,
2004, 219-223.

[11] A. Avizienis, The N-Version Approach to Fault-
Tolerant Software, IEEE transactions on software en-
gineering, SE-11, 1985, 1491-1501.

[12] J.J. Horning, H.C. Lauer, P.M. Melliar-Smith, and B.
Randell, A Program Structure for Error Detection and
Recovery, Operating Systems, Proc of an International
Symposium, 16, Rocquencourt, France, 1974, 171-187.


