
Original Article

Novel visualisation and analysis of natural
and complex systems using systemic
computation

Erwan Le Martelota,∗ and
Peter J. Bentleyb

aElectrical and Engineering Department,
University College London, Torrington Place,
London WC1E 7JE, UK.
E-mail: e.le_martelot@ucl.ac.uk
bComputer Science Department, University
College London, Gower Street, London WC1E
6BT, UK.
E-mail:p.bentley@cs.ucl.ac.uk

∗Corresponding author.

Received: 28 January 2010
Revised: 24 June 2010
Accepted: 28 June 2010

Abstract The study, analysis and understanding of natural processes are
difficult tasks considering the complex nature of such processes. In this
respect, the visual analysis of such systems can be of great help in the under-
standing of their behaviour. The increasing power of modern computers
enables novel possible uses of computer graphics for such tasks. Previous
work introduced systemic computation, a new model of computation and
corresponding computer architecture aiming at enabling a clear formalism
of natural and complex systems and providing tools for their analysis. Here,
we present an online visualisation of dynamic systems based on this novel
paradigm. The observation is done at a high level of abstraction, focussing on
information flow, interactions and emergent behaviour, and enabling the iden-
tification of similarities and differences between models of complex systems.
This visualisation framework is then applied to two biological networks: a
bistable gene network and a MAPK signalling cascade.
Information Visualization (2011) 10, 1--31. doi:10.1057/ivs.2010.8;
published online 16 September 2010

Keywords: systemic computation; natural computation; biological systems; complex
systems; dynamic visualisation

Introduction

Following and understanding the phases and states that natural and
complex systems or processes go through over time can be a difficult
task. For instance, the analysis of time course in gene regulation requires
tools to identify patterns of interest in DNA sequences.1 In addition,
emerging patterns or behaviours2 can be observed in biological or bio-
inspired networks such as gene and protein regulatory networks,3 immune
systems,4 molluscs shells5 or cellular automata6 and neural networks,2 but
the steps and building blocks7 leading to this emergence remain hidden
in the final result. One way to help us understand the information flow,
interactions and emergent behaviour in such models is by using computer
graphics and visualising it using a non-ambiguous mapping between a
computational system and a graphical output.

Previous work introduced systemic computation (SC),8 a new model
of computation and corresponding computer architecture based on a
systemics world-view and supplemented by the incorporation of natural
characteristics. This article bio-inspired paradigm aims at enabling a
clear formalism of natural systems and such formalism can provide the
grounding for a non-ambiguous graphical representation. This article intro-
duces a novel use of computer graphics for the understanding of natural
and complex systems as an online visualisation of dynamic systems based
upon SC. The underlying formalism of SC enables a visualisation focussing
on interactions and structure, thus guaranteeing a comparison at a high

© SAGE Publications, 2011. 1473-8716 Information Visualization Vol. 10, 1, 1–31

Le Martelot and Bentley

level of abstraction between models resembling their
original natural system rather than a computer program.
A single model might progress towards various possible
distinct states, all with a similar memory usage, yet their
meaning can be literally different, which only a high level
of abstraction analysis could reveal (for example, two
similar neural networks trained to recognise two different
objects process the information differently even though
using memory in the same way as their structure is the
same). Similarly, two models can seem to be very different
and so could be their memory usage, yet their behaviour
could present some strong similarities that again can
only be observed at a high abstraction level analysis (for
example, a neural network and an immune system could
perform a similar data processing even though their
structure and thus memory usage is different). Biological
systems may resemble each other but behave differently
whereas some other systems might look different but
behave in a similar way. Docertain chemical interactions
resemble each other in the way they interact? Do certain
neural structures resemble each other in the way their
structures change over time?

This work describes and illustrates how a systemic
computation model can be visualised and analysed in
terms of information flow, interaction, organisation and
emergent behaviour in order to achieve such analysis and
help answer such questions in the future. The following
section locates the place of SC visualisation by providing
a background to the area of visualisation in general and
within bioinformatics. The section after provides an
overview of systemic computation. We then present the
visualisation framework, followed by concrete case studies
of biological networks showing how gene and protein
regulation can be simulated, observed and visually anal-
ysed over time. It is then followed by other interesting
visualisation examples. The final section discusses and
concludes on the potential of this novel visualisation for
the study of natural and complex systems.

Background

Many visualisation techniques have been developed over
the past 20 years to help understand systems or organise
large amounts of data.

The field of bioinformatics for instance is commonly
facing complex biological problems with large quantities
of data such as genome analysis. To help users browsing
through the data, visualisation software involving hierar-
chical clustering have been developed to aid in the anal-
ysis of genomic data.9 Frameworks such as GVis10 permits
to interactively analyse genomic data of organisms in
order to study phylogeny hierarchies. Pathway tools11

such as, KEGG pathways,12 ExPASy13 can be found and
aim at representing knowledge that can then be analysed
and potentially visualised. In addition, popular bioinfor-
matics tools such as Cytoscape14 provide a platform for

the visualisation of molecular interaction networks and
biological pathways. The software supports various data
formats enabling the visualisation of networks available
from external sources. Visualised data can be positioned,
labelled, decorated and commented. The software also
allows users to enrich its features by the addition of plug-
ins. While such tools enable a representation and an anal-
ysis of the complex structure linking the various entities,
along with the knowledge associated to them, it does not
provide a simulation of how such models actually behave.
It represents knowledge andprovides tools and methods
to exploit it. The aim of the systemic computing visu-
alisation is to provide an online visualisation of models
that represents the simulation of these models over time.
It thus enables an analysis of the interactions between
entities and their evolution through time, hence of the
models’ actual dynamic behaviour. Such simulations can
indeed inform users about the model and results may then
be included within models such as Cytoscape’s. Another
aim of the SC visualisation is to remain mainly software
controlled rather than user controlled in order to enable
a generic representation of models and interactions that
can lead to comparisons between models of various
natures (hence allowing the comparison of models that
can be thought as being significantly different but that
can be revealed more similar than expected).

Beyond bioinformatics, valuable visualisation tech-
niques have been explored to deal with complex systems
or large data sets. State transitions in graphs were visu-
alised to help users understand computer systems repre-
sented as transition systems. Tools such as FSMView,15

StateVis16 or Bar tree17 have been developed to study the
structure and transitions within large transition graph
systems. Attractor states in complex systems were visu-
alised in Gröller18 using Advanced Visual Systems, a
general-purpose visualisation system based on a data-
flow model. Löffelmann et al19 later investigated two
different methods of visualisation of dynamical systems
near critical points such as linear dynamical systems or
Lorenz system. These two papers investigated critical
states of mathematical systems, providing insights about
their flow dynamics. The modelling of a two-user system
with shared resource and visualisation of the ongoing
process for each user in order to understand the way the
system works was performed in Viste and Skartveit.20 This
resource-sharing problem, seemingly simple, is a non-
linear complex system that may be difficult to control.
This work discusses how visualising this system can help
users tounderstand its working principle. Software struc-
tures were visualised in Hendley and Drew21 within a
3D world using repulsive or attractive forces between
objects, providing an example of program structure repre-
sentation in a 3D space using force-based data layout.
The world wide web (WWW) was visualised in Wood et
al22 also using force-based layout in order to provide the
user with information about the structure, the organ-
isation and the content of the space being explored.
Benford et al23 also presented visualisations of the WWW

2

Novel visualisation and analysis of natural and complex systems

structure, browsing history, searches, presence and activ-
ities of multiple users in 3D. These two papers highlight
the potential of 3D spaces and force-based algorithms
for data structure layout and representation with a large
amount of data. The use of motion within visualisation
was investigated in Bartram.24 This work focussed on
the exploration of new display dimensions to support
the user in information visualisation and explains that
motion holds promise as a perceptually rich and efficient
display dimension. Tree structures were visualised in
Robertson et al,25 highlighting the potential of 3D spaces
and interactive animation for the human perceptual
system.

These methods all address particular problems and
highlight the potential of approaches such as force-based
layout engines in space or coloured animation. They
provide insights regarding the visualisation approaches to
consider for the development of a more generic approach
to complex systems visualisation aiming at unifying
all the complex systems within a single formalism. In
this respect Bosch et al26 introduced Rivet, a visualisa-
tion system for the study of modern computer systems.
This framework provides various visualisation tools
to visualise data, computer programs memory usage,
observe code execution on multiprocessors computer
and has a flexible architecture allowing users to define
their visualisations. However, this approach relies on a
conventional view of computation, as opposed to natural
computation. Memory and computer resource observa-
tion might tell us everything that happens at the hard-
ware level, yet the information explaining the states
complex systems like bio-inspired systems go through is
of a higher level of abstraction, involving interactions
between parts of a system leading to some emerging
behaviour.

Higher-level implementations of bio-inspired systems
along with a graphical representation was presented
in Phillips et al27 using the stochastic �-calculus. As
discussed in Le Martelot and Bently,28 the mathematical
nature of �-calculus makes the model implementation
non-intuitive, unnecessarily complicated, and therefore
difficult to approach for a non-specialist. In this respect,
a graphical notation for the stochastic �-calculus was
introduced to allow a clearer presentation of the models.
Yet this visualisation technique suffers the same issues
in expressing the interactions and transformations of
entities, resulting in an unclear model.

To provide a clear formalism for the modelling
of natural processes, systemic computation (SC) was
introduced in Bentley8 and unifies notions of natural
computation and electronic computation. Previous work
introduced a computer platform for SC29 and explored
various bio-inspired models implemented using SC and
their respective properties.28,30–32 Systemic computing
visualisation exploits some of the aforementioned ideas
and aims at providing a unified dynamic representation
of interactions and structural changes for natural and
complex processes. This article follows the introduction

of SC visualisation in Le Martelot and Bentley33 and
presents in detail three visualisation methods for SC using
two models of biological systems. The following section
provides an overview of SC.

Systemic computation

This section provides the major definitions and tools that
will enable a global understanding of systemic compu-
tation, necessary for the understanding of the work
presented in this article. First, systemic computation is
defined. Then calculus and graphical notations are intro-
duced to help describing the models presented here.
Finally, the systemic analysis that explains how to think
in SC is presented.

Definition

Looking at a biological brain, an ant colony, an immune
system, the growth of a plant or a crystal, nature is clearly
performing some kind of computation. We can state
that natural computation is stochastic, asynchronous,
parallel, homeostatic, continuous, robust, fault tolerant,
autonomous, open-ended, distributed, approximate,
embodied, has circular causality, and is complex.8 The
traditional von Neumann architecture however is deter-
ministic, synchronous, serial, heterostatic, batch, brittle,
fault intolerant, human-reliant, limited, centralised,
precise, isolated, uses linear causality and is simple. The
incompatibilities seem clear.

To address these issues, Bentley8 introduced Systemic
Computation, a new model of computation and corre-
sponding computer architecture based on a systemics
world-view and supplemented by the incorporation
of natural characteristics (listed above), as opposed to
conventional computation paradigms (for example,
procedural, object-oriented). SC stresses the importance
of structure and interaction, supplementing traditional
reductionist analysis with the recognition that circular
causality, embodiment in environments and emergence
of hierarchical organisations all play vital roles in natural
systems. Systemic computation makes the following
assertions:

• Everything is a system (building block of the systemic
world).

• Systems can be transformed but never destroyed or
created from nothing.

• Systems may comprise or share other nested systems.
• Systems interact, and interaction between systems may

cause transformation of those systems, where the nature
of that transformation is determined by a contextual
system.

• All systems can potentially act as context and affect the
interactions of other systems, and all systems can poten-
tially interact in some context.

3

Le Martelot and Bentley

Figure 1: (reproduced from Le Martelot et al29) (a) A system used primarily for data storage (showing its kernel and
schemata values). The kernel (in the circle) and the two schemata (at the end of the two arms) hold data. (b) A system acting
as a context (showing its kernel and schemata values). Its kernel defines the result of the interaction while its schemata define
allowable interacting systems. (c) Representation of an interacting context. The contextual system Sc matches two appropriate
systems S1 and S2 with its schemata and specifies the transformation resulting from their interaction as defined in its kernel.

• The transformation of systems is constrained by the
scope of systems, and systems may have partial member-
ship within the scope of a system.

• Computation is transformation.

Computation has always meant transformation in the
past, whether it is the transformation of position of beads
on an abacus, or of electrons in a CPU. But this simple
definition also allows us to call the sorting of pebbles on
a beach, or the transcription of protein, or the growth
of dendrites in the brain, valid forms of computation.
Such a definition is important, for it provides a common
language for biology and computer science, enabling
both to be understood in terms of computation.

Therefore, in systemic computation, everything is
a system (that is, systems are the building blocks of
any SC model), and computations arise from interac-
tions between systems. Two systems can interact in the
context of a third system. All systems can potentially
act as contexts to determine the effect of interacting
systems. Systems are defined and identifiable by a shape.
Context systems make use of these shapes to identify the
systems allowable for interaction. The shape of a context
system also describes the nature of the interaction it
defines.8

In a digital environment, one convenient way to repre-
sent and define a system (that is, its shape) is as a binary
string. Each system (that is, here string) is divided into
three parts: two schemata and one kernel. These three
parts can be used to hold anything (data, typing, and
so on) in binary as shown in Figure 1(a). The primary
purpose of the kernel is to define an interaction result
and also optionally to hold data. (Data is held as infor-
mation coded in binary similarly to variables in conven-
tional programming languages like C or Java.) The two
schemata define which subject systems may interact in
this context as shown in Figure 1(b) and (c). The schemata
thus act as shape templates, looking for systems matching
their shape. The resultant transformation of two inter-
acting systems is dependent on the context in which
that interaction takes place. A same pair of systems inter-
acting in a different context would produce a different

transformation. How templates and matching is done
precisely is explained in Le Martelot et al.29

Thus, each system comprises three elements: two
schemata that define the allowable interacting systems
in the context of the current system, and a kernel that
defines the nature of the transformation two interacting
systems can undergo. This behaviour enables more real-
istic modelling of natural processes, where all behaviour
emerges through the interaction and transformation of
components in a given context. It incorporates the idea of
circular causality (for example, A may affect B and simul-
taneously B may affect A) instead of the linear causality
inherent in traditional computation.34 Such ideas are
vital for accurate computational models of biology and
yet currently are largely ignored.

Finally, systemic computation also exploits the concept
of scope. In all interacting systems in the natural world,
interactions have a limited range or scope, beyond which
two systems can no longer interact (for example, binding
forces of atoms, chemical gradients of proteins, physical
distance between physically interacting individuals). In
cellular automata this is defined by a fixed number of
neighbours for each cell. Here, the idea is made more flex-
ible and realistic by enabling the scope of interactions to
be defined and altered by another system. Thus a system
can also contain or be contained by other systems. Inter-
actions can only occur between systems within the same
scope. Therefore any interaction between two systems in
the context of a third implies that all three are contained
within at least one common super-system, where that
super-system may be one of the two interacting systems.
For full details see Bentley8 and Le Martelot et al.29

With its origins grounded into natural computation,
SC provides a method to model nature-inspired systems
in a way that resembles their true nature. SC has been
used to model genetic algorithms, neural networks,
artificial immune systems and has demonstrated prop-
erties of flexibility, fault tolerance, self-repair and self-
organisation.29–32 The next section explains how SC can
be visualised dynamically to represent and follow the
flow of information in SC models. This is then followed
by a study of two biological networks.

4

Novel visualisation and analysis of natural and complex systems

Table 1: Systemic calculus notation

Expression Signification

system A system called system.
system [x1, . . . , xn] system contains variables x1 to xn.
system (sub1 · · · subn) system contains sub systems sub1 to subn.
(system1 · · · systemn) Systems system1 to systemn share a same unnamed scope.
(system1()system2) Systems system1 and system2 are in the scope of one another (ie system1 contains system2 and

system2 contains system1).
system1 }- context -{ system2 Systems system1 and system2 interact in the context system context.
system1(system2) }}- context Systems system1 and system2, with system2 being also contained within system1, interact in

the context system context.
(system1()system2) }}- context Overlapping systems system1 and system2 interact in the context system context located out of

both system1 and system2.
interaction → result interaction is a triplet comprising two interacting systems and a context of interaction. result is

the interaction result showing the organisation of the systems. In result the context of
interaction can be discarded assuming it remained unchanged. Both interaction and result
expressions can include variable notations, as well as generic notations. result can beseveral
stochastic outcomes separated by |.
eg s1}-inject-{s2 → s1(s2)|s2(s1)

Calculus notation

A calculus notation for SC was developed28,35 and the
relevant definitions to this work are given in Table 1.
Systems are represented by labels (that is, names), as well
as the attribute variables (where data can be held). The
schemata are represented using the textual notation }-
or -{. The scope notation uses parenthesis and the trans-
formation from one expression to another is denoted
using the symbol →. Note that for any interaction to be
valid, the two interacting systems and the context system
must share a common scope, not necessarily shown in a
calculus expression when unnamed.

Graphical notation

To help understand and represent better SC models, this
article introduces a graphical notation for SC (inspired
from the notation initially given in Bentley8). The graph-
ical notation represents systems, hierarchies, interactions
and their resulting scope changes and transformations.
Figure 2 provides the graphical notations along with
the corresponding calculus notations. A context system
is displayed with its schemata. A non-context system is
displayed without schemata. (Note that any system can
potentially act as a context, and therefore a system not
acting as a context in an interaction may act as a context
in another one.) An interaction between two systems
within a context where the system are transformed can
be indicated using dashed arrows going from the orig-
inal system to the resulting system and passing by the
context to indicate that the transformation results from
an interaction in that context. The insertion and ejection
of a system into and from a system is shown in a similar
way. Figure 3 provides graphical representations for the
most common scope situations that can be encountered,
along with the corresponding calculus notations.

Figure 2: Graph notations for interactions and corre-
sponding calculus notations: (a) shows a context system
where schemata are drawn; (b) shows a non-context system,
without schemata; (c) shows an interaction and its result
where System1 and System2 got transformed into System′

1
and System′

2.

The graph notation does not need to show the vari-
ables or attributes systems may hold (that is, data). This
is done using the calculus notation presented above. The
concept of the graphical notation is to represent with
colour and/or labels the various kinds of systems. Any
major data that might affect the role of a given system
should rather be represented using two similar colours
or labels (for example, assuming Figure 2(c) changes an
attribute in System1, it then becomes System′

1 instead of
having textual data aside). Note also that the arrows nota-
tion is given to enable the drawing of both an interaction
and its result within one drawing, but successive graph

5

Le Martelot and Bentley

Figure 3: Graph notations for locality and corresponding
calculus notations: (a) represents two overlapping scopes
System1 and System2; (b) represents two overlapping scopes
System1 and System2 sharing the system System3; (c) repre-
sents System1 twice at various locations (for clarity or to
represent systems placed in more than two non-overlapping
scopes), the two graphical instances being linked by a
dashed curve (with long dashes, in red in the coloured
version).

representations can also be given to illustrate the states of
transformation.

Note that the sharing of a system between scope does
not necessarily imply that the scopes are overlapping.
However if considering neighbourhoods (for example, in
the real world as well as in a cellular automata) sharing
systems, it is sensible to also represent the scopes as over-
lapping (even if the model implementation is not compu-
tationally impacted by such additional information and
does not need it coded).

Systemic analysis

SC is an alternative model of computation that was
designed to improve fidelity and clarity in the modelling
of natural processes. It was therefore necessary to develop
a method of analysis that helps users to develop nature-
inspired models that resemble their original natural
process enough in order to display the features of interest.
To address this, the systemic analysis,29,35 was developed.

Before any new program can be written, it is neces-
sary to perform this systemic analysis in order to identify
and interpret appropriate systems and their organisation.
The systemic analysis provides a method for analysing
and expressing a given problem or natural system more
formally in SC. When performed carefully, such analysis

can itself be revealing about the nature of a problem being
tackled and the corresponding solution. A systemic anal-
ysis is thus the method by which any natural or artificial
process is expressed in the language of systemic compu-
tation. The steps are in order:

1. Identify the systems: determine the level of abstraction to
be used, by identifying which entities will be explicitly
modelled as individual systems.

2. Analysis of interactions: determine which system inter-
acts with which other system in which context system.

3. Analysis of structure: determine the order and struc-
ture (scopes) of the emergent program (which systems
are inside which other systems) and the values stored
within systems.

These steps will be illustrated below with each model
developed in this article.

Visualising SC models

Systemic computation provides a distributed and parallel
approach where components interact and can be intri-
cately entwined with the other components. SC models
contrast significantly with traditional models as the
outcome of an SC model results from an emergent process
rather than a deterministic predefined algorithm. For full
details about programming and modelling in SC (see Le
Martelot et al29 and Le Martelot35). Thus, visualising a
line of code is here irrelevant as computation is trans-
formation, and transformation is the result of interac-
tion. The SC visualisation must thus reveal the interplay
between components and their environment, rather than
a low-level memory usage observation.

This section introduces the visualisations developed
for SC models and illustrates them using a sample model
before studying more complex natural systems. This toy
model offers a simplified fire chemistry applied to fire
spreading. This simple network of chemical reactions
enables easy-to-understand illustration cases the reader
can come back to when seeking a visual explanation for
what a visualisation tool offers.

The visualiser was built on top of the SC platform
presented in Le Martelot et al.29 A model is therefore visu-
alised as it runs (online visualisation); the user can record
all interactions and go back in time or replay a previ-
ously recorded execution. A frame rate can be applied to
control the speed of the execution if going too fast for
the user’s needs.

Sample model: A simple fire-spreading model

To help introduce and illustrate the visualisation tools
presented here, a toy model of a familiar chemical reac-
tion is used: fire. This model was chosen for it allows to

6

Novel visualisation and analysis of natural and complex systems

illustrate simply and clearly the notions of scope, inter-
action and transformation within the visualisation
framework.

When modelling with SC it is necessary to perform a
systemic analysis, as defined above, in order to identify
and interpret appropriate systems and their organisation.
The first stage is to identify the low-level systems (that
is, determine the level of abstraction to be used). Fire is a
combustion, hence some fuel is required. Combustion is
a type of oxidation reaction, it therefore requires oxygen.
Oxidation is an exothermic reaction, which means it
releases heat energy. In addition, for fire to exist the
temperature must be high enough to cause combustion. A
simple model can therefore take fuel (for example, wood,
petrol) and oxidant (for example, oxygen) as reactants,
combusting in a heat context, and producing heat and
exhaust as a result of the combustion. This interaction is
shown below using the SC calculus notation:

Fuel }- Heat-{ Oxidant → Exhaust Heat

Some fuel and oxidant interact in a heat context trans-
forming the fuel and oxidant into exhaust and heat. The
heat context is not cited in the right term of the reaction
as in SC the context remains unchanged during an inter-
action.

The distribution of the fuel and oxidants in various
geographical places can be done using neighbourhood
scopes, sharing some fuel and oxidant, therefore making
fire propagation from one area to another possible.
Finally, the fire has to be initiated in an area by an initial
heat system (for example, match, lightning). The model
should thus show the fire spreading across the various
areas in contact with one another starting from the fire
ignition. The whole fire model is part of a global envi-
ronment (for example, atmosphere, ecosystem, universe)
commonly represented in SC by a universe system. The
structure and principle of the model are summarised in
Figure 4 using the SC graph notation. The dashed arrows
indicating systems transformation are merging to empha-
sise that the interaction of fuel and oxidant results in
heat and exhaust as a product of both reactants.

The complete states sequence is given below using the
calculus notation:

Initial Neighbourhood1 (Heat Fuel Oxidant Neighbourhood2)
Neighbourhood2 (Neighbourhood1 Fuel Oxidant Fuel Oxidant Neighbourhood3)
Neighbourhood3 (Neighbourhood2 Fuel Oxidant Fuel Oxidant)

Step 1 Neighbourhood1 (Heat Heat Exhaust Neighbourhood2)
Neighbourhood2 (Neighbourhood1 Heat Exhaust Fuel Oxidant Neighbourhood3)
Neighbourhood3 (Neighbourhood2 Fuel Oxidant Fuel Oxidant)

Step 2 Neighbourhood1 (Heat Heat Exhaust Neighbourhood2)
Neighbourhood2 (Neighbourhood1 Heat Exhaust Heat Exhaust Neighbourhood3)
Neighbourhood3 (Neighbourhood2 Heat Exhaust Fuel Oxidant)

Step 3 Neighbourhood1 (Heat Heat Exhaust Neighbourhood2)
Neighbourhood2 (Neighbourhood1 Heat Exhaust Heat Exhaust Neighbourhood3)
Neighbourhood3 (Neighbourhood2 Heat Exhaust Heat Exhaust)

Graphic representation of models

An SC model is a set of systems in which some can act as
context of interaction between other systems and some
can act as scope for other systems. Scope expresses the
notion of hierarchy: a system S1 within another system
S2 is in the scope of system S2. The graphical representa-
tion must therefore show systems, the hierarchy linking
them (that is which systems are contained within other
systems), the interactions between them and the changes
that occur.

The visualisation framework provides three representa-
tions of a model: a 2D graph, a 3D explorer and a 3D infor-
mational structure. A global colour scheme is controlled by
the user to give each system type (template of schemata
and kernel) a different colour. Figure 4 shows the colour
per system used in the fire-spreading model. Also at any
time, the internal binary state of a system (schemata and
kernel as held in memory) can be visualised in order for
instance to check a counter (for example, age, amount)
or a flag (for example, initialised/non-initialised) variable.
However this system data access is not part of the visu-
alisation process but part of the systemic computer as
any significant change in internal representation (system’s
data) should be reflected in the visualisation as a change
in system’s type (therefore colour).

2D graph
This first view of the visualiser is a standard 2D graph
representing the hierarchy of systems and their types only.
The graph is updated over time to display systems in
their current state or hierarchical changes, both of which
may change due to interactions. Figure 5 shows the fire-
spreading model undergoing interactions and transforma-
tions. The fire progression through neighbourhoods can
be observed between the two states.

3D explorer
The second view is a 3D graph working like a systems
explorer: the user can explore the graph in depth by
zooming onto a particular area of a map to see more
details. Each view is planar and the use of 3D enables going
deeper in the structure to see more details (similar to a

7

Le Martelot and Bentley

Figure 4: Structure and behaviour of a simple fire-spreading model. The whole model is part of a universe encompassing
neighbourhoods (here three was chosen for clarity), sharing fuel and oxidants. The left neighbourhood has an initial heat.
The schemata show the interactions happening and the dashed arrows represent the transformation of systems through
interactions.

Figure 5: 2D graph view of the fire-spreading model (a) at an early stage and (b) at a later stage. Each coloured box is a
system. The arrows between them indicate the scopes, going from the parent node to the contained node.

fractal explorer). Each system is represented as a sphere.
Each sphere can contain the subsystems’ spheres and so
on as shown in Figure 6. Each deeper level can be explored
by zooming into a subsystem. This visualisation method
thus provides a local view per scope rather than a global
view over the whole model (even though the whole model

can be seen from the universe view). Note that the top half
of the spheres containing subsystems is hidden to allow
the camera to see inside.

This view no longer uses arrows to represent hierar-
chies as in the 2D graph but represents the subsystems
physically within their parent systems (that is, within

8

Novel visualisation and analysis of natural and complex systems

Figure 6: Explorer view of the fire-spreading model showing (b) the top view (universe) and (c) zooming from the universe
into the neighbourhood containing the fire ignition (in dark grey, or red in the coloured version).

the sphere representing their parent system). It allows
the visualisation to focus on the interactions happening
within each scope. This concept of physical space however
leads to a limitation: systems can have several parent
systems. In the fire-spreading model, in order to spread
the fire across consecutive neighbourhoods some fuel and
oxidant was shared between neighbourhoods, making
these systems belong to several parent systems. Figure 4
used overlapping space to represent this sharing of
systems; however, when systems belong to many parent
systems, themselves having constraints of location due
to other systems, and so on, it becomes at some point
impossible in 2D or 3D view to solve the physical location
constraints imposed by the hierarchy. In an abstract space,
adding dimensions could solve the problem but in visu-
alisation the amount of dimensions is limited. Another
physical space limitation that no dimensional space can
solve is the recursivity in hierarchy (for example, a system
S1 inside a system S2 itself inside S1). (Recursivity cases
will be discussed further below.)

The chosen solution was to consider each scope as a
dimension and each view is dedicated to a scope dimen-
sion. Therefore each scope has its own physical systems
representing the corresponding abstract systems within
this scope only. Each system is thus represented with
as many graphical instances (spheres) as it has scopes.
The full representation in the 3D explorer of a computa-
tional system is thus the combination of all its scope-wise
instances.

The graphical layout of the systems is handled by a
form of force-based layout algorithm.36 The principle
here is, within each scope, to push each system away from
each other up to a certain distance (margin) while main-
taining the systems physically contained within their

scopes (hence constrained in spatial locations). The size
of the systems is determined depending on the amount
of systems in each scope. Both margin and systems size
can be adjusted by the user by applying a global scaling
factor to all systems. Interactions between systems are
represented by temporary forces that attract the inter-
acting systems towards their context of interaction. Note
that the SC behaviour does not rely on spacial location
but only on scopes. Systems are placed in this way to
improve clarity of visualisation.

The most global view is the view from the universe,
directly or indirectly containing the whole model. In the
fire-spreading model, within the universe are the four
neighbourhoods, themselves containing the combustible
or combusted material as shown in Figure 7. In this
model, some systems are represented several times, once
in each scope they belong to. Some neighbourhoods
indeed share fuel and oxidant, which thus have several
graphical instances. In Figure 7(b) the right neighbour-
hood has the initial heat, or match (red system). Then in
Figure 7(c) one pair of fuel–oxidant (green and yellow)
has been burnt (red and brown) but a burnt pair (red and
brown) also appears in the top neighbourhood. These two
pairs are the same but they are represented in their two
respective scopes. Figures 7(d) and (e) show progression
of the fire until everything has burnt (that is, no more
fuel and oxidant).

Informational 3D structure
The previous visualisation enabled an online represen-
tation per scope that enables an exploration of the
hierarchy. However, the per scope view ruled out the
uniqueness of systems representation (systems being

9

Le Martelot and Bentley

Figure 7: 3D explorer view of the fire-spreading model: (a) provides the colour scheme; (b) shows the model in its initial
state, (c) at an early state, (d) at a later state and (e) in its final state (that is, no more to burn).

represented once per scope). The aim of this new
visualisation is therefore to provide a representation
where the systemic structure of models is maintained
(that is, one system for all its scopes). This final visualisa-
tion is a global representation of the model in its current
state through an abstract structure floating in a 3D space.

The layout is also handled by a force-based layout
algorithm36 that constantly pushes systems away from
each other using Coulomb’s law.37 Subsystems are
connected by spring-like links to their super systems,
keeping them within distance of the super systems using
Hooke’s law.38 As a result, systems sharing a same scope
tend to remain close to each other, as can be seen on
Figures 8(b). Again, the spatial position is used for visual-
isation alone—it has no affect on the SC behaviour and
absolute spatial location does not represent any infor-
mation (relative location does represent information,
however).

An anchor, usually a root system (for example,
universe), is grounded at the centre of the space making
the whole model centred and keeps, by its structure,
systems within distance of the space centre (without that,
systems would drift away indefinitely).

Interactions between systems create a temporary spring-
like connection going from each interacting system to the
context, as can be seen on Figures 8(c)–(e). As long as these
links remain they attract (also using Hooke’s law38) linked
systems towards each other. The lifetime of the links can
be changed. Links get more and more transparent as they
age until they disappear. Once they disappear, there is no
longer an attraction force between the systems until a new
link is created by a new interaction.

The changes of systems over time can be recorded
and presented similarly to a tree ring view. The colour
at the centre is the current state, and the rings around
are the successive past states of the system. Figures 8(d)

10

Novel visualisation and analysis of natural and complex systems

Figure 8: Structure view of the fire-spreading model at various stages: (b) shows all systems at initial stage. All other figures
hide the universe, the neighbourhoods and their hierarchy links. Early stage is shown in (c); (d) displays a later stage with
the past states of the systems shown using a tree ring view; (e) provides a zoom of the central part of the previous figure;
(f) and (g) show the envelope during computation and at the final stage (no more computation can happen as everything
combusted).

and (e) display the changes of types in systems, showing
the initial states of fuel and oxidant as well as their new
state of heat and exhaust. Within each system the larger
a coloured ring the longer the system remained in the
corresponding state. The successive rings also indicate
the order in which changes occurred. If the initial state
ring of a system is larger than another system’s then it
means that the former remained in its initial state longer
and thus its transformation occurred later.

In addition, an average abstract shape of the model is
provided as an envelope of this model. The envelope shows
all the interactions that happened over time (during a
given time window or the whole run). Each possible inter-
action is represented as a 3D bendy pipe going from one
interacting system to the other and passing in its centre
by the context. The width of a pipe (linking two systems
through the context) depends on the amount of times an
interaction occurred within the recording window. This
envelope therefore gives an overview, an average, of all
the interactions and transformations a model underwent.
Figures 8(f) and (g) show the envelope of the fire-spreading
model at two stages in time.

Finally, the time since the last involvement in any inter-
action can be recorded for each system so that systems
not involved in any recent computation can be hidden
(time occlusion), revealing only the relevant systems.
Systems that recently interacted are opaque and they
become increasingly transparent over time if they do not
interact. This selection of systems changes over time as
systems that have not interacted for a long time might
interact again at some other time in the execution. This is
illustrated in Figure 9 showing a fire (of a larger size than
previous examples to highlight the effect of time) after
total combustion with in 9(a) everything displayed and
in 9(b) progressively hiding systems and their hierarchies
if they do not interact any more over time. (Note that
although it might be a bit hard to see the exact difference
in time locations between systems on Figure 9(b), the
visualiser enables to zoom in, to change the time window
the user wants to look at, and provides a significantly
higher screen resolution.)

To navigate in the structure’s space, the camera can be
moved and rotated in any direction to enable a user to
find the best view.

11

Le Martelot and Bentley

Figure 9: Large-scale fire (10 neighbourhoods) after total combustion using 3D structure views: (a) shows the structure
of the whole model with all systems and hierarchy; (b) shows the same state but with systems involvement in interactions
over time displayed with transparency. It can be observed that the fire ignition is almost transparent whereas the last
neighbourhoods are opaque.

First case study: A bistable gene network

In order to demonstrate the utility of the visualisation
framework introduced here this section uses a form of gene
regulatory network called a bistable gene network that was
first visualised in Le Martelot and Bentley.33 The network
used here has also been used in Phillips et al27 in an
approach for visualising stochastic �-calculus models. The
aim is then to show that visualising such model using SC
provides all the material for the analysis of the model’s
behaviour over time, whether step by step or overall.

First the model is presented. Then the systemic analysis
is performed to create the SC model. The following section
analyses the model’s behaviour and compares it with the
stochastic �-calculus model’s. Finally, the SC visualisation
and its analysis are presented.

Model presentation

A bistable gene network is a form of gene regulatory
network (GRN). A GRN is a collection of DNA segments
(genes) in a cell interacting with each other indirectly
through the proteins they produce. These regulations
govern the rates at which genes create proteins. A bistable
gene network is a GRN with two distinct possible states.
The bistable gene network model used here was presented
in39 and is summarised in Figure 10.

In this case study, the network has two genes a and b
that can, respectively, produce proteins A and B at a given
rate. In physics a rate would be an amount of proteins
produced per second, in this computer model the rate is
the probability of production per systemic interaction. In
the network, gene b can be repressed (or inhibited) by
protein A and then produces B at a much slower rate than

Figure 10: Bistable gene network obtained by an evolu-
tionary procedure in silico in François and Hakim.39 Genes
a and b can, respectively, produce proteins A and B at a
given rate. Gene b can be repressed by protein A and then
produces proteins B at a much slower rate. Proteins A and B
can irreversibly bind to form a complex that cannot inhibit
any gene and eventually degrades. Two scenarios are thus
possible: either proteins A will initially inhibit gene b and
proteins A will be abundant, constantly repressing gene b;
or gene b generates a large amount of B, systematically
binding to proteins A, bringing proteins A to a low level and
preventing a constant repression of gene b by proteins A.

if not inhibited. In addition, proteins A and B can irre-
versibly bind to form a complex that cannot inhibit any
gene. This complex then eventually degrades. From these
rules, two scenarios are possible: either proteins A initially
inhibit gene b and proteins A are abundant, constantly
repressing gene b; or gene b generates a large amount of
proteins B, systematically binding to proteins A, bringing
proteins A to a low level and preventing a constant repres-
sion of gene b by proteins A.

The rates that were used are the ones used in Phillips
et al.27 They are the same as in François and Hakim39

12

Novel visualisation and analysis of natural and complex systems

Table 2: Bistable gene network’s reactions rates used in
François and Hakim39 except for the second and fourth
that were modified in Phillips et al.27 The symbol ‘:’means
bound; A:B thus means a protein A is bound to a protein B.

Reactions Rates

a → a+ A 0.20
A → ∅ 0.002
b → b + B 0.37
B → ∅ 0.002
A+ B → A : B 0.72
A : B → ∅ 0.53
b + A → b : A 0.19
b : A → b + A 0.42
b : A → b : A+ B 0.027

except for the degrading rates of unbound proteins A
and B. Table 2 provides all the reaction rates.

Systemic analysis

As mentioned earlier, a systemic analysis is necessary to
identify and interpret the appropriate systems and their
organisation. The first stage is to identify the low-level
systems (that is, determine the level of abstraction to be
used). This model involves genes and proteins so the level
of abstraction should be the one of proteins and genes.

A possible approach is to take a system for each gene
a and b. For the proteins it is less clear as this model
involves amounts of proteins. In such case, two ways
of modelling can be considered: modelling each protein
with a dedicated system, or modelling all proteins with
a single system that holds a protein quantity variable. In
this model, what is to be observed are the two possible
states of the network: A is abundant or B is abundant.
These states are because of the inhibited or not state of
gene b, and to the creation of protein complexes making
proteins A unable to bind to gene b. To record the history
of proteins A and B interactions, one protein system with
a quantity variable is well suited: its amount of interac-
tion with a gene or other proteins system would reflect
the quantity held (no interaction if no protein) and would
reveal the network’s behaviour. If there are many inter-
actions between proteins systems A and B then proteins
A and B are present in large amounts, and thus gene b is
not inhibited. Alternatively, if interaction between gene
b and proteins B is weak, then gene b is inhibited, and
interaction between gene a and proteins A should be
significantly more important than between gene b and
proteins B. In addition, having many protein systems
would add some complexity to the analysis (many more
systems to observe), which is here not necessary.

Genes regulation turns the information on genes into
gene products (here proteins). DNA chunks (here genes)
can be transcribed into a messenger RNA chunk carrying
a message for the protein-synthesising machinery of
the cell. This process can be approximated by using an

RNA context that makes interact a gene system and its
corresponding proteins system to potentially increase
the amount of proteins. The RNA chunk involved in
the production of proteins A and B being different, the
contexts of interactions between gene a and proteins A,
and gene b and proteins B can therefore, respectively, be
RNA A and RNA B.

Proteins degrade (proteolysis), therefore proteases
(enzymes that conducts proteolysis) have to be part of
the model. A proteases system modelling all proteases
present in the cell is appropriate (as opposed to many
proteases systems) as proteases quantity is not involved
in this model. Proteins degrade as a result of chemical
interactions within a physical space, therefore an approx-
imation can consider the local energy involved in the
process as being context of interaction between proteins
and proteases. Local energy is then also involved in the
binding of proteins A and B. Finally, corepressor and
inducer can be the contexts respectively binding and
unbinding proteins A to gene b.

The interactions are summarised in Table 3 and illus-
trated in Figure 11.

Model behaviour

To allow comparison and ensure the model behaves like a
bistable switch similarly to the stochastic �-calculus model
by Phillips et al27 the model was run starting with no
protein and recorded the evolution of proteins over time.
Thirty runs were performed and showed that the network
always falls in one or the other of the two states. Figure 12
shows the evolution of protein quantities along two repre-
sentative runs in each simulation (SC and the Stochastic
Pi-Machine SPiM1) for the two possible states the network
can fall in. These results are similar to the ones presented
in Phillips et al27 and show that the network presents the
same stable states.

Visualisations

The abstract structure is designed to display the various
interactions and transformations that occurred over time
in a model. This case study focusses on the envelope,
expected to be particularly relevant as the amount of
interactions between systems will appear on it, thus
revealing the state and behaviour of the model. Also the
universe, not playing a computational role in the model,
is hidden from visualisations to only display the relevant
systems. Figure 13 provides in (a) the colour scheme and
then explains the model at various stages of progression,
first over early steps and highlighting in the end the two
possible behaviours.

Figure 13(b) shows the network in its initial state. No
interaction happened yet and systems are located around

1 http://research.microsoft.com/en-us/projects/spim.

13

Le Martelot and Bentley

Table 3: Bistable gene network interactions. q is the quantity of proteins. qbA and qbB are, respectively, the bound
proteins of type A and B. � represents a quantity variation during an interaction. The notation (S1()S2) indicates that a
system S1 is in the scope of another system S2 and reciprocally. inhibit is a flag indicating the state of inhibition of gene b.

Interactions Results

Gene_a }- RNA_A -{ Proteins_A[q] → Gene_a Proteins_A[q + �q]
Proteins_A[q,qb] }- Energy_A -{ Proteases → Proteins_A[q − �q,qb − �qb]Proteases
Gene_b }- RNA_B -{ Proteins_B[q] → Gene_b Proteins_B[q + �q]
Proteins_B[q,qb] }- Energy_B -{ Proteases → Proteins_B[q − �q,qb − �qb] Proteases
Proteins_A[q,qbA] }- Energy_AB -{ Proteins_B[q,qbB] → (Proteins_A[q − �q,qbA + �q]()Proteins_B[q−

�q,qbB + �q]), if qbA >0 and qbB >0
(Proteins_A[qbA]()Proteins_B[qbB]) }}- Energy_AB → Proteins_A Proteins_B, if qbA = 0 or qbB = 0
Proteins_A[q] }- Corepressor -{ Gene_b[!inhibit] → (Proteins_A[q-1] () Gene_b[inhibit])
(Proteins_A[q] () Gene_b[inhibit]) }}- Inducer → Proteins_A[q+1] Gene_b[!inhibit]

Figure 11: Interactions and structure of a bistable gene network model. (a)–(d) show the potential structural changes.
(e), reproduced from Le Martelot and Bentley,33 shows the overall interaction patterns: proteins are created from genes
in the context of RNA, proteins can bind to form a complex using local energy, they can also degrade using local energy.
Proteins A can inhibit gene b using a corepressor and an inducer can unbind proteins A from gene b.

14

Novel visualisation and analysis of natural and complex systems

Figure 12: Evolution of the amount of proteins over time in the two possible states of the switch: (a) and (b), and (c)
and (d) respectively show the evolution if proteins A and B are highly transcribed for the SC model and for the stochastic
�-calculus model.

the universe (not shown here but would be located at the
centre).

Figure 13(c) shows the envelope after a couple of inter-
actions. It reveals that proteins A and B were produced
(genes a and b, respectively, produced proteins A and B
in the respective contexts RNA_A and RNA_B). Proteins
B appear to have been produced more (more interactions
between gene b and proteins B in the context of RNA_B)
as the visualisation shows more interaction between
gene b (sea blue) and proteins B (light blue) in the context
of RNA_B (dark blue) than between gene a (green) and
proteins A (light green) in the context of RNA_A (dark
green) (the pipe between the gene and the proteins
systems passing through the RNA system, representing
the amount of interaction, is larger in the former than in
the latter).

Figure 13(d) shows that some proteins A and B are
bound together. An interaction between both proteins in
the context of energy (fuchsia) occurred and a hierarchy
link between proteins A and B systems appeared (proteins

A and B systems are in the scope of each other). There
is also a similar production state of proteins A and B as
the visualisation reveals a similar amount of interaction
between genes and proteins of both type (pipes equally
large).

Figure 13(e) shows the first degradation of proteins
for proteins B as an interaction between proteins B and
proteases (red) appeared.

Figure 13(f) shows an equal amount of proteins A
and B degraded, with similar amount of interactions
between proteases and proteins of both type. A higher
amount of protein B has been produced and gene b is still
not inhibited. This state already shows signs of advantage
proteins B are taking over proteins A as the production
rate of proteins B is higher than the production rate of
proteins A (see Table 2) and proteins A can be produced
faster than proteins B only if gene b is repressed.

Figure 13(g) shows that gene b got inhibited and then
released as interactions occurred between gene b and
proteins A in the context of corepressor (yellow) and

15

Le Martelot and Bentley

Figure 13: (reproduced from LeMartelot and Bentley33) Bistable gene network visualisation: (a) colour scheme; (b) network
in its initial state; (c) envelope after a few interactions, proteins A and B were produced with protein B produced more;
(d) some proteins A and B bound together; (e) some proteins B degraded; (f) equal amount of proteins A and B degraded,
higher amount of proteins B produced; (g) gene b got inhibited and then released; (h) protein B abundant state; (i) proteins
A abundant state.

16

Novel visualisation and analysis of natural and complex systems

inducer (orange). Proteins B appear still advantaged over
proteins A (higher production of proteins B): the switch
is most likely going to carry on that way and proteins B
would be abundant in the final stage.

Figure 13(h) shows the protein B abundant state, as
expected, and looking very similar to Figure 13(g). Both
proteins degraded, with slightly more proteins B that
degraded compared to proteins A. Gene b got little inhib-
ited (very few interactions between gene b and proteins A
in the context of corepressor and inducer as shown by the
thin pipes around the corepressor and inducer systems
compared to others). Proteins A and B bound a lot (many
interactions between them in an Energy_AB context) and
then degraded, but proteins B are more numerous, and
therefore some proteins B remained whereas proteins A
all disappeared.

Figure 13(i) shows the alternative final state where
proteins A are abundant. This state looks different from
Figure 13(h) where proteins B are abundant. The main
difference lies in the amount of interactions involving
the corepressor and the inducer systems. Interactions
between gene b and proteins A through, respectively, the
corepressor and the inducer occurred the most (bigger
pipes), revealing a constant repression and release of gene
b. In this respect, a hierarchy link between proteins A and
gene b can be spotted, showing that at the moment of the
snapshot gene b and proteins A are in the scope of each
other, which means here that they are bound to each
other. This repression of gene b led to a lower produc-
tion of proteins B (fewer interactions between gene b and
proteins B than between gene a and proteins A) and a
total degradation of proteins B by proteases (amount of

Figure 14: MAPK cascade: the activation of both MAPK and MAPKK requires the phosphorylation of two sites, MAPKKK
is activated by extracellular stimuli named here E1. MAPK-P, MAPK-PP and MAPKK-P, MAPKK-PP, respectively, denote singly
and doubly phosphorylated MAPK and MAPKK. MAPKKK* denotes activated MAPKKK. E2 denotes the enzyme deactivating
MAPKKK*. P'ase denotes phosphatase.

interaction between gene b and proteins B as important
as between proteins B and proteases).

Second Case Study: A MAPK Signalling Cascade

The bistable gene network was an example of a non-
predictable system with a behaviour nevertheless reason-
ably simple. The second case study is a significantly bigger
and more complicated system: a mitogen-activated protein
kinase (MAPK) cascade. This network has also been used
in Phillips et al27 and is reused for the same reasons as
mentioned in the previous case study.

First the model is presented. Then the systemic analysis
is performed to create the SC model. The following section
analyses the model behaviour and compares it with the
stochastic �-calculus model’s. Finally, the SC visualisation
and its analysis are presented.

Model presentation

The model presented here is an MAPK cascade, as
presented in Huang and Ferrell40 and summarised in
Figure 14.

A protein kinase is a kinase enzyme that modifies other
proteins by chemically adding phosphate groups to them
(phosphorylation). MAPKs are serine/threonine-specific
protein kinases that respond to extracellular stimuli
(mitogens) and regulate various cellular activities, such as
gene expression, mitosis, differentiation and cell survival/
apoptosis.41 Here, extracellular stimuli lead to the acti-
vation of an MAPK via a signalling cascade composed of

17

Le Martelot and Bentley

Table 4: Principle of phosphorylation and dephosphory-
lation in the MAPK cascade. Prot, K, P'ase and PO4, respec-
tively, stand for protein, kinase, phosphatase and phosphate.

Prot + K + PO4 ⇀↽ Prot.K + PO4 → Prot-PO4 + K
Prot-PO4 + P'ase ⇀↽ Prot-PO4.P'ase → Prot + P'ase + PO4

Table 5: List of reactions involved in the MAPK cascade.
Phosphates are only shown here when bound to a protein
(ie KKK*, KK-P, KK-PP, K-P and K-PP).

KKK + E1 ⇀↽ KKK.E1 → KKK∗ + E1
KKK∗ + E2 ⇀↽ KKK.E2 → KKK + E2
KK + KKK∗ ⇀↽ KK.KKK* → KK-P + KKK∗
KK-P + KK P'ase ⇀↽ KK-P.KK P'ase → KK + KK P'ase
KK-P + KKK∗ ⇀↽ KK-P.KKK∗ → KK-PP + KKK∗
KK-PP + KK P'ase ⇀↽ KK-PP.KK P'ase → KK-P + KK P'ase
K + KK-PP ⇀↽ K.KK-PP → K-P + KK-PP
K-P + K P'ase ⇀↽ K-P.K P'ase → K + K P'ase
K-P + KK-PP ⇀↽ K-P.KK-PP → K-PP + KK-PP
K-PP + K P'ase ⇀↽ K-PP.K P'ase → K-P + K P'ase

MAPK, MAPKK (mitogen-activated protein kinase kinase)
and MAPKKK (mitogen-activated protein kinase kinase
kinase). An MAPKKK is a kinase enzyme that phosphory-
lates an MAPKK, which itself phosphorylates an MAPK.
Reciprocally, phosphatase enzymes can remove a phos-
phate group from its substrate (dephosphorylation).

In this case study, each kinase (respectively phos-
phatase) first binds to a protein and then can either add
to (remove from) it a phosphate group or unbind, letting
the protein as it is. Table 4 summarises this principle with
generic reaction equations.

All possible reactions in this case study are listed in
Table 5. To simplify the notation, MAPKKK, MAPKK and
MAPK are from now on, respectively, referred to as KKK,
KK and K.

Each action can be performed at a given rate. As in
the previous case study, rates are here transcribed into
probabilities. In physics a rate would be an amount of
enzymes binding, phosphorylation or dephosphorylation
per second; in this computer model the rate is the prob-
ability for a reaction to happen per systemic interaction.
The rates that were used here are the one from the code
example in Phillips et al,27 in which all transitions have
a rate of 1.0.

Systemic analysis

As mentioned earlier, a systemic analysis is necessary to
identify and interpret the appropriate systems and their
organisation. This model involves enzymes (kinase and
phosphatase) as well as phosphate groups, and therefore
the level of abstraction should be the one of enzymes and
phosphate groups.

A possible and straightforward approach is to use one
system per protein (kinase or phosphatase) or phosphate

group. The model should then contain as many phosphate
groups as necessary to enable the reactions from Table 5 to
occur without shortage of phosphate groups (this poten-
tial situation is not part of this study). Considering that
kinases can bind to one (for KKK) or two (for KK and K)
phosphates, then the amount of phosphate systems neces-
sary is given by equation (1) in which |X| is the cardinal
number of the given set X and Phosphates, KKKs, KKs
and Ks are, respectively, the set of systems representing
phosphate groups, KKK, KK and K.

|Phosphates| = |KKKs| + 2 × (|KKs| + |Ks|) (1)

The interactions in phosphorylation and dephosphoryla-
tion are happening between a kinase (phosphorylated or
not depending on the reaction) and a phosphate group
provided that the right activated kinase is present (a kinase
is activated once it is phosphorylated enough to be a reac-
tant, as determined by the rules from Table 5). Activated
kinase systems can thus appropriately be considered as
contexts of interaction between a kinase system and a
phosphate system. During phosphorylation, a phosphate
group is bound to a non-activated kinase; therefore, phos-
phate and kinase systems bound to each other should
have a relationship that reflects this connection. One way
to achieve that is to set the kinase and the phosphate
systems within the scope of each other. Eventually, the
kinase might get activated (simply phosphorylated KKK
or doubly phosphorylated KK). Reciprocally, dephospho-
rylation unbinds phosphate systems from kinase systems
and deactivates activated kinase systems.

However, looking at Tables 4 and 5 it can be observed
that the activated kinase (or the phosphatase) first
approaches a kinase it can phosphorylate (or dephospho-
rylate) but may eventually not create any reaction. The
interactions between kinase or phosphatase systems and
phosphate systems must therefore take this into account.
As we chose all reaction rates to be equal to 1.0, each
interaction thus has a probability of 0.5 to create a change
in the phosphorylation state of the interacting kinase (for
example probability of 0.5 that a phosphate is bound to
or unbound from a kinase and probability of 0.5 that no
change occurs). The SC interactions are summarised in
Table 6 .

To ensure that the context systems select the appro-
priate kinase and phosphates (the ones bound to each
other in the case of dephosphorylation), in the same
manner as physical location would indicate which system
is bound to which other system, the notion of scope
can be used to encapsulate in an abstract space phos-
phate and kinase systems that can interact together.
Figure 15 illustrates the area scope distribution and
Figure 16 summarises the whole model organisation.

A visualisation of a small MAPK cascade is provided
for illustration in Figure 17. It shows an MAPK model
involving two KKKs and five KKs and Ks in its initial state
using the 3D explorer and the 3D abstract structure.

18

Novel visualisation and analysis of natural and complex systems

Table 6: MAPK cascade interactions. The notation (S1()S2) indicates that a system S1 is in the scope of another system S2
and reciprocally. The notation | in the results indicates several possible outcomes (here two outcomes with a probability
of 0.5 each). The states of activation of kinases are indicated with flags (using the same as in Table 5) in addition to the
scope relationship they potentially share with phosphate systems.

Interactions Results

KKK }− E1 −{ Phosphate → (KKK[*] () Phosphate) | KKK Phosphate
(KKK[*] () Phosphate) }}− E2 → KKK Phosphate | (KKK[*] () Phosphate)
KK }− KKK[*] −{ Phosphate → (KK[P] () Phosphate) | KK Phosphate
(KK[P] () Phosphate) }}− KK P’ase → KK Phosphate | (KK[P] () Phosphate)
KK[P] }− KKK[*] −{ Phosphate → (KK[PP] () Phosphate) | KK[P] Phosphate
(KK[PP] () Phosphate) }}− KK P’ase → KK[P] Phosphate | (KK[PP] () Phosphate)
K }−KK[PP] −{ Phosphate → (K[P] () Phosphate) | K Phosphate
(K[P] () Phosphate) }}− K P’ase → K Phosphate | (K[P] () Phosphate)
K[P] }− KK[PP] −{ Phosphate → (K[PP] () Phosphate) | K[P] Phosphate
(K[PP] () Phosphate) }}− K P’ase → K[P] Phosphate | (K[PP] () Phosphate)

Figure 15: Distribution in scope areas of kinase and phos-
phates. Kinase systems are shared between areas where they
can be activated/deactivated and areas where they can acti-
vate other kinase systems. Here two areas are shown, one
with a KKK and the other one with a KK that can be activated
in two steps by KKK provided KKK was previously activated
by E1.

Model behaviour

For this study, the model is initialised with a configura-
tion comparable to the one from Phillips et al27: 10 KKKs,
100 KKs, 100 Ks, one Enzyme1, one Enzyme2, one KK-
Phosphatase and one K-Phosphatase systems. The amount
of phosphate groups is deducted from equation (1): 410
phosphate systems. The amount of abstract local space
areas is given by the amount of kinases (one area per kinase
system): 210 area systems. All these systems are located
within one universe system.

To ensure the model behaves like the MAPK cascade
stochastic �-calculus model by Phillips et al,27 the model
was run with the same initial conditions: all proteins in
a non-phosphorylated initial state (left side of the reac-
tions in Table 5). The evolution over time of the amount
of each activated kinase (simply phosphorylated KKK,

double phosphorylated KK and K) in the system was
recorded. Thirty runs were performed. Figure 18 shows
the evolution of activated kinase quantities in the SC
model and in the stochastic �-calculus model (results
presented in Phillips et al27). For the SC model the results
are averaged over the 30 runs. The figure shows that the
SC model, like the one from Phillips et al,27 behaves as
described in Huang and Ferrell:40 the signal response is
increasingly getting steeper as the cascade is traversed.

In addition, Figure 18(a) shows that in the SC model the
amount of activated KKK systems averages around five.
Considering that there are 10 KKK systems and that the
probability of KKK to be phosphorylated or dephosphory-
lated is 0.5, we can write equation (2) (where KKK* stands
for activated KKK and t is a discrete time).

|KKK∗st+1|=|KKK∗st |+(|KKKst | × 0.5)−(|KKK∗st |×0.5)
(2)

At initialisation there are 10 non-activated KKKs and no
activated KKK. Iterating the equation over t then settles
both values on 5.

Visualisations

In this section, the visual analysis performed on the MAPK
cascade model enables to discover a non-obvious pattern
that would be hard to discover any other way.

As shown experimentally in Figure 18, the MAPK
cascade functions as an amplifier where the amount of
phosphorylated kinases at a level in the cascade increases
faster than the amount of phosphorylated kinases at
its previous level. To understand and visualise how this
happens the informational structure of the cascade can
be visualised with its envelope to show what systems are
interacting with which other systems and responsible for
which changes.

Moreover, considering that kinases keep changing
their state (non-phosphorylated, simply phosphorylated,
doubly phosphorylated), the tree ring view showing the
states over time of the systems is relevant to look at.

19

Le Martelot and Bentley

Figure 16: Structure of an MAPK cascade model. Kinase systems can be activated by phosphorylation in presence of the
right activated kinase. Activated kinases can activate non-activated kinase of a different kind (KKK activates KK which activates
K) thus creating the cascade. The black dashed arrows represent the transformation of systems over computation. The longer-
dashed lines (in red in the coloured version) indicate systems that can potentially be the very same system but are represented
twice or more in several places for drawing clarity.

Figure 19 shows an example of the three kinases in their
activated state. The displayed states reveal through the
changes in coloured rings that while the presented KK in
Figure 19(c) went here successively from non-activated
to simply phosphorylated and doubly phosphorylated,
both KKK and K oscillated between phosphorylated states
(including activated states) in the past before reaching
their current activated state.

To focus on the kinases systems and their interactions
only, the universe and the area systems are discarded from
this set of visualisations. Figures 20–22 provide visualisa-
tions snapshots over time of a single run of the MAPK
model.

Figure 20 shows three early stages, after respectively
10, 25 and 50 interactions, and displays the changes in
systems states and the envelope. Only systems involved
in at least one computation are shown, the remaining
systems being hidden for clarity.

Figure 20(a) (after 10 interactions) shows the interac-
tions that occurred since the very beginning of computa-
tion. Three KKKs got phosphorylated, among which two

were dephosphorylated and then phosphorylated again
(as the envelope reveals by showing that more interactions
happened with Enzyme1 than with Enzyme2 involving the
two KKKs respectively located at the bottom and at the
right). The activated KKK at the bottom phosphorylated
a KK in turn dephosphorylated by the KK-phosphatase.
The activated KKK at the right phosphorylated a KK. In
Figure 20(b) (after 25 interactions), four KKKs are acti-
vated and phosphorylating KKs. Four groups of KKs and
phosphates centred around an activated KKK at the four
corners can be observed. Thus far four KKKs are active and
seven KKs are phosphorylated. Finally, Figure 20(c) (after
50 interactions) shows the progression of the previous
state with more and more KKs being phosphorylated,
and the first Ks being phosphorylated. The amplification
effect is visible with each activated KKK locally phospho-
rylating in turn several KKs (groups of phosphates and KKs
gathering around activated KKKs).

From these first three stages we can observe a progres-
sion of the global phosphorylation. The amplification
effect is observable with increasingly more KKs being

20

Novel visualisation and analysis of natural and complex systems

Figure 17: Small MAPK cascade model (Two KKKs, five KKs and five Ks) visualised with the 3D explorer and the abstract
structure.

Figure 18: Evolution in the MAPK cascade of the amount of kinases over time (averaged over 30 runs) (a) in the SC model
and (b) in the stochastic �-calculus model.

phosphorylated while the amount of activated KKKs
remains stable. It is expected from equation (2) that
half of the KKKs (five KKKs) on average would remain
phosphorylated at a time. With only one KK-phosphatase
to counterbalance the effect of several activated KKKs,
phosphorylation of KKs is inevitably more likely to occur
than their dephosphorylation. The same phenomenon
is therefore expected to occur on the next cascade level
with even more activated kinases (more activated KKs
than activated KKKs), leading to a faster phosphorylation
of Ks.

To investigate this, Figure 21 shows two later stages
after, respectively, 100 and 150 interactions, following the
stages from Figure 20, and illustrating the fast phospho-
rylation of Ks. Note that the changes in systems states
(tree ring view) are no longer shown as the global view
of the model is getting too large to make it readable at
this scale.

Figure 21(a) (after 100 interactions) shows the evolution
since Figure 20(c) with more phosphorylated KKs, several
activated KKs (doubly phosphorylated) and Ks being
phosphorylated in various places. Figure 21(b) (after 150

21

Le Martelot and Bentley

Figure 19: Tree ring view of the three kinases in their activated state.

interactions) shows the fast phosphorylation rate of Ks
being now as numerous as phosphorylated KKs. The
notion of local contribution to the global amplication
effect well visible in Figure 20(c) for activated KKKs is
again visible for the next cascade level as groups of Ks
now also gather around activated KKs. As expected the
activation of KKKs remains stable and the phosphoryla-
tion of KKs progresses but slower than the phosphoryla-
tion of Ks. With each activated kinase phosphorylating
several kinases of the next level, which in turn phospho-
rylate several kinases of the level after, there seems to be
an exponential phosphorylation effect. Further stages are
expected to see a significant increase in phosphorylated Ks
and final stages should contain a vast majority of doubly
phosphorylated Ks. Figure 22 illustrates this by showing
two late stages taken after 250 and 475 interactions.

Figure 22(a) (after 250 interactions) shows that more
phosphorylated and especially doubly phosphorylated
KKs and Ks appeared. At this point there is a similar
amount of simply phosphorylated KKs (26) and Ks (27),
and doubly phosphorylated KKs (21) and Ks (22). From
the results presented in Figure 18(a), it is at approxi-
mately 250 interactions on average that phosphorylated
Ks become more numerous over phosphorylated KKs.
Finally, Figure 22(b) (after 475 interactions) shows a
late stage where all (100) Ks are doubly phosphorylated
whereas only 43 KKs (and five KKKs) are activated.

The visualisation of interactions over Figures 20–22 thus
allowed a visual analysis of the local and emerging global
behaviour of the cascade over time.

However, to reach the state of total phosphorylation
shown in Figure 22(b), it is still unclear, for instance,
what the respective roles of some kinases were (how many
were involved doing what). Analysing the envelope after
the 475 interactions can reveal which systems did not
interact, which did and did what, and help to under-
stand the requirements of the model’s behaviour. Previous
captions like Figure 21(b) clearly showed that all KKKs
took part in phosphorylation of KKs (the envelope shows

traces of interations with KKs for all KKKs), but it is less
clear regarding the involvement of KKs. Figure 23 shows
envelopes after 475 interactions to investigate the impli-
cation of KKs in the building of the current Ks phos-
phorylation state. Phosphate systems are not displayed
for clarity.

Figure 23(a) shows the non-activated KKs at the 475
interactions stage from Figure 22(b) and the ones that
were involved at least once in a phosphorylation of Ks
are marked with a red area around them (four of them).
Figure 23(b) provides a zoom onto the marked one at
the top-right of Figure 23(a). The violet envelope branch
is going from red (colour of KKs) to blue (colour of Ks),
revealing an interaction involving a K. Figure 23(c) shows
the involvement of activated KKs (43 of them). The ones
in the yellow areas (14 of them) did not contribute to
phosphorylation of Ks (their envelope has no branch
going towards a blue colour). From these two figures we
can see that only 4 + (43 − 14) = 33 KKs were actively
involved in the current state. Looking at Figure 23(d)
showing all systems but phosphates, we observe that
only eight systems (in the grey areas on the side), all
being KKs, were not involved in any computation. (Note
that although Figure 23(d)may appear cluttered, the level
of information can be reduced, for instance, by hiding
some systems or interactions, zooming in, or spread out
systems more.) Therefore, out of the 100 KKs, 8 were not
involved, 33 contributed actively to the phosphorylation
of Ks and thus 100 − (8 + 33)= 59 KKs were alternatively
phosphorylated and dephosphorylated without getting
to phosphorylate any K. Computationally, the more KKs
the higher the probability for each KK not to be dephos-
phorylated. Indeed the phosphatase system being here
single and only able to interact with one kinase at a
time, it is thus less and less likely to dephosphorylate a
given kinase the more numerous they are. Therefore, it is
noteworthy that the fact that a kinase is not involved in
any phosphorylation does not mean it has no impact on
the model’s behaviour.

22

Novel visualisation and analysis of natural and complex systems

Figure 20: Visualisation over time of the MAPK model at three early stages: (a) after 10 interactions; (b) after 25 interactions
and (c) after 50 interactions.

Other interesting situations

Thus far the visualisation framework was illustrated with
models of fire chemistry, bistable gene network and
mitogen-activated kinase cascade. Other modelling situa-
tions were not encountered and are interesting to look at.
The following describes two more situations using special
examples not related to the previous models.

Systems grouping

One case is the sorting of systems in a scope based on inter-
action, similarly to a crowd that would gather into clearly
defined groups depending on, for instance, the debated
subject.

In the explorer, interactions between systems create a
momentary force that brings these interacting systems

23

Le Martelot and Bentley

Figure 21: Visualisation over time of the MAPK model at two later stages (following those from Figure 20).

and the context closer towards their centre of mass. This
enables to make appear groups of systems interacting
with one another and to place these groups away from
each other in the space of a scope. Figure 24 shows

an example in which five types of systems are initially
randomly placed within a parent system and then are
moved according to their interactions. If considering,
for instance, people attending a research conference, the

24

Novel visualisation and analysis of natural and complex systems

Figure 22: Visualisation over time of the MAPK model at an advanced and at a late stage (after those from Figures 20 and
21): (a) after 250 interactions and (b) after 475 interactions (all systems displayed).

25

Le Martelot and Bentley

Figure 23: Involvement of kinases in phosphorylation after 475 interactions. The state is the same as in Figure 22(b), using
here different views: (a) shows the non-activated KKs and their envelope, revealing that four only (highlighted in darkened
areas, in red in the coloured version) were effectively involved in phosphorylation of Ks; (b) provides a zoom onto the top-
right KK in darkened (or red) area on (a): the third branch of the envelope starting from the top (in violet in the coloured
version) reveals an interaction (phosphorylation) with a K system (blue in the coloured version); (c) shows the activated KKs
and their envelope. Similarly, activated KKs not involved in phosphorylation do not have an envelope branch going towards
a K system (in blue in the coloured version), they are here highlighted in a yellow area. Finally, (d) shows all kinases at
once. The most involved tend to be located towards the centre whereas the less involved are moved to the sides. Grey areas
highlight the systems, all being KKs, that never interacted.

universe (in red in the coloured version) can represent
the conference hall, the other systems represent people
coming from various universities or companies (the
colour can be the field of research).

In Figure 24(a) people randomly entered the room and
in Figure 24(b) people are now chatting. The interactions
can be people exchanging words in the context of another
person momentarily leading a debate (as illustrated by
yellow, violet and blue systems in the coloured version),
or it can also be an interaction between people and the

room (assuming a presentation is going on in a corner of
the room) in the context of a speaker. The three single
systems (in green in the coloured version) represent bored
people, having no interest in anything going on.

Figure 25 shows views of this example using the struc-
ture visualisation. Figure 25(a) and (b), respectively,
show the structure of the systems after many inter-
actions without and with time-based occlusion. The
disappearance of the three single systems (green in the
coloured version) on the edges systems (bored people) in

26

Novel visualisation and analysis of natural and complex systems

Figure 24: Example of systems grouping within a given scope using the 3D explorer. In (a) the systems (for example people,
colour could represent their field of research) are randomly placed in an initial state. (b) shows the same systems after some
interactions: the three groups of systems in the centre left interact only with systems of their own colours; two other groups
of systems on the edge interact with systems of the same colour but also with the parent system the three remaining systems
(in green in the coloured version) systems are not interacting at all.

Figure 25(a) shows that they did not interact recently,
and Figure 25(d) shows, using the envelope, that they
did not interact at all. Figure 25(d) also shows that the
remaining people (in yellow, violet and sea blue in the
coloured version) respectively interact with all people of
their field whereas the two other groups (light blue and
brown in the coloured version) of people also interact
with the conference hall, suggesting that people are all
debating a lot within their group.

Recursive hierarchies

Another interesting case can be related to the modelling
of self-replication or reproduction. Considering a cell or
an organism that has the potential to self-reproduce and
assuming the modelling of the cycle of reproduction over
time, the model should loop onto itself. When zooming in
a model using the 3D explorer the user should therefore be
able to explore even a recursive hierarchy. As the explorer
shows a scope-wise representation of the hierarchy, it actu-
ally unrolls the recursive hierarchy to allow an in-depth
exploration showing clearly the content of each scope.
Figure 26 shows the 2D graph of an example involving a
recursive hierarchy: A contains B which contains D which
contains A. We can consider A as a fractal set containing
subset B, itself containing subset D containing the set A
itself.

Figure 27 shows the exploration of such model using
the 3D explorer. Looking at Figure 27(d) it can be observed
that D (the largest system, in violet in the coloured
version) does indeed contain A and its sub-hierarchy,
the exact same A sub-hierarchy that is visualised in
Figure 27(b). Note that such exploration could in theory
go on forever (in fact, only up to computer floating point
precision).

Analysis

The two case studies showed how SC models can be anal-
ysed by exploiting the online and the overall computa-
tional past’s visual information instead of reading and
deciphering it from text. They illustrated how behaviour
can be tracked and analysed by looking at models under-
going computation. Using SC for modelling and visual-
ising offers several benefits, discussed below.

Improved naturalness

SC has been designed to imitate natural computation
and enable computational models that reflect as much as
possible their original concept. Part of this is achieved by
using scopes for relative location and influences between
systems, and interaction and transformations for the
changes in systems’ state. By visualising these concepts
the visual output’s interpretation benefits from intuitive
cues such as systems’ physical location to express the
relations between them, and links between systems to
represent hierarchy and interactions. The visualisation of
an SC model is thus a concrete output representing an
abstraction of the original concept that reveals its under-
lying computational processes while keeping a similar
organisation.

The MAPK cascade model illustrated a network in which
all entities are represented. Visualisations of these inter-
acting entities provided an intuitive representation that
shows kinases physically organised and linked depending
on their phosphorylation state and located mostly near
the other kinases they interacted with. The bistable gene
network focussed on genes activity and thus modelled
proteins of each type as one system (there was no need
for this study to populate the model with many protein

27

Le Martelot and Bentley

Figure 25: Example of systems presented in Figure 24 captured during execution: (a) shows the structure of the systems
without usage occlusion and (b) shows the same state with occlusion; (c) shows the structure of the systems without hierarchy
links and without the envelope and (d) shows the same state with the envelope.

Figure 26: 2D graph of a model with a recursive hierarchy:
A contains B which contains D which contains A.

systems). The visualisations thus represented the intensity
of the genes’ activity where activity and state changes can
be observed using intuitive clues such as proximity and
links between interacting systems, and physical bounds
for systems hierarchy.

In contrast, approaches such as �-calculus maintain
separate processes in which one compound (for example
a gene bound to a protein) is actually being modelled. In
addition, the use of channels does not reflect a feature

of the model but a leftover from concurrent processes
communication modelling. This is illustrated in Figure 28
providing the graphical representation for the stochastic
�-calculus model of the bistable gene network from
Phillips et al.27

Conciseness, compactness and readability

As discussed in above and in previous work,28 SC
models provide advantages of clarity compared to other
modelling approaches such as �-calculus. The binding of
systems, whether genes and proteins in the gene network
or phosphate groups and kinases in the MAPK cascade,
is modelled in SC within the structure of the models as
structural changes occurring over time and resulting from
interactions.

Owing to its unnatural rules not suitable for biological
processes, the stochastic �-calculus model requires two
separate diagrams (see Figure 28) both representing a part
of the model, leading to an unclear representation. Repre-
senting changes of structure in such model is therefore
equally unclear.

28

Novel visualisation and analysis of natural and complex systems

Figure 27: Example of exploration in depth starting from (a) the top view (universe), then (b) zooms from the universe
into A (green), (c) zooms further into B (blue) and (d) zooms even further into D (violet).

By using the notions of scopes, interacting systems and
transformations SC avoids these issues (for example, two
interacting systems binding to each other are transformed
so that they become bound by their scopes) and enables
a better consistency between the model and its original
concept. Visualising these features thus enables clearer
and more intuitive representations of the underlying
processes.

Natural properties exploitation ability

Rather than considering models as computer programs,
SC considers them as processes in which the physical
implementation is irrelevant and only interactions and
structure matter. By considering these processes from
such angle, emphasis is put on their behaviour. The
visualisation of these processes hence becomes a graph-
ical mapping of their behaviour, and therefore of their
displayed properties. Specific systems can be shown or

hidden to highlight the activity of a subset of systems. The
past states of systems can be visualised as a tree ring view.
The overall interaction activity can be summarised by
the abstract envelope. Computation can be broken down
into steps to visualise progressively the changes occur-
ring in the model, as was performed within the two case
studies. Visualising SC is therefore another way in which
the natural properties exploited in SC can be analysed.

Local, stochastic and distributed computation is clearly
visualised with the ongoing interactions attracting
interacting systems towards their context of interaction
while the emerging behaviour can be observed within the
progressive changes in structure, the respective systems
location, the links between them and the envelope. The
bistable gene network illustrated a network with several
possible states depending upon stochastic interactions.
These interactions could be visualised over time and
summarised using the envelope, providing a different
pattern for each potential final state. This pattern there-
fore reveals the distribution of interactions. Systems

29

Le Martelot and Bentley

Figure 28: Bistable gene network implementation from
Phillips et al27 using the graphical representation for the
stochastic �-calculus. Gene a transcribes a protein A by doing
a stochastic delay at rate tA and then executing a newprocess
A in parallel with the gene. Protein A can either degrade by
doing a stochastic delay at rate dA, or bind to gene b by doing
an output on channel inhibit, or bind irreversibly to protein B
by doing an output on channel bind. When protein A binds
to gene b it sends a private channel u and then executes the
process A_b, which can unbind from the gene by doing an
input on u. When protein A binds irreversibly to protein B
it executes the process A_B, which can degrade by doing a
stochastic delay at rate dAB. Thus, protein A is neutralised by
protein B. Conversely, gene b can either transcribe a protein
B by doing a stochastic delay at rate tB, or bind to protein A
by doing an input on channel inhibit. When gene b binds to
protein A it receives a private channel u and then executes
the process b_A, which can either unbind from the protein
by doing an output on u, or transcribe a protein B at a
much slower rate tB′. Thus, gene b is inhibited by protein A.
Protein B can either degrade by doing a stochastic delay at
rate dB, or bind irreversibly to protein A by doing an input
on channel bind.

occlusion, the tree ring view and the envelope were used
to visualise how interactions happen in the MAPK cascade,
displaying how kinases get phosphorylated and involved
over time in the phosphorylation of other kinases.

Conclusion

This article presented a set of novel visualisation
tools combined with systemic computation for the
understanding of natural and complex systems as an on-
line visualisation of models using the systemic computa-
tion paradigm. The framework involved a 2D graph, a 3D
explorer and a 3D informational structure with a graph-
ical online trace of the flow which provides a graphical
output depending on models’behaviour. This trace reveals
the quantity of interactions that occurred over a window
of time or a whole run. The changes systems underwent
are also recorded and presented as a tree ring view.

Two concrete bio-inspired models, a bistable gene
network and an MAPK signalling cascade, respectively
presented in François and Hakim39 and in Huang and
Ferrell40 and both used in Phillips et al,27 were studied.
The bistable gene network, starting from a same initial
state, showed after transformations a different shape
depending on its final state. The MAPK cascade visuali-
sation provided over time all the interactions informa-
tion required to understand the inner mechanism for
the evolution of activated kinase quantities, increasingly
amplified as the cascade is traversed.

The visualisation provides a novel method that reveals
the information flow within a dynamic system, allowing
analysis of interactions, transformations and structure
over time. It provides the control along the information
flow to stop and look into a state, varying display options
and camera views to analyse the model. The user can
go back in time and try an alternative step to see what
would happen next if another interaction was to happen.
The bistable switch network showed that the final state
it ends up in is because of a stochastic combination of
interactions that can lead to one or another final state.
Only an online analysis of these interactions can explain
how and when the network switched to a particular
behaviour that would lead to its final state. Similarly,
only such visualisation of the MAPK cascade enabled the
comprehension of the emerging organisation and the
distribution of roles within kinases.

The graphical output provides the potential for in-
depth analysis of more complex models in the future that
may have non-intuitive behaviours. Different behaviours
could be classified, grouped or identified based on the
shape produced by the visualisation. Should two radi-
cally different models show the same or similar emergent
shapes then both share the same kinds of interactions
and information flow. It is anticipated that these kinds of
analyses and comparisons could become essential tools
for understanding commonalities in biological, natural
and complex systems.

Availability: The systemic computation environment
software which includes the work presented in this article
is freely available from http://code.google.com/p/sc-scope
and from http://www.cs.ucl.ac.uk/staff/E.LeMartelot with
its documentation. Contact e.le_martelot@ucl.ac.uk for
any information.

References

1 Hochheiser, H., Baehrecke, E.H., Mount S.M. and Shneiderman, B.
(2003) Dynamic querying for pattern identification in microarray
and genomic data. In: Proceedings of the 2003 International
Conference on Multimedia and Expo (ICME ’03), Vol. 3.
Washington DC: IEEE Computer Society, pp. 453–456.

2 Holland, J.H. (1998) Emergence: From Chaos to Order. Oxford, UK:
Oxford University Press.

3 Kauffman, S.A. (1993) The Origins of Order: Self-organization and
Selection in Evolution. USA: Oxford University Press, May.

30

Novel visualisation and analysis of natural and complex systems

4 Goldsby, R.A., Kindt, T.J., Kuby, J. and Osborne, B.A. (2002)
Immunology. 5th edn., New York, NY: W.H. Freeman.

5 Meinhardt, H. (1995) The Algorithmic Beauty of Sea Shells. New
York, NY: Springer-Verlag New York.

6 Wolfram, S. (2002) A New Kind of Science. USA: Wolfram Media.
7 Mitchell, M. (1996) An Introduction to Genetic Algorithms.

Cambridge, MA: MIT Press.
8 Bentley, P.J. (2007) Systemic computation: A model of interacting

systems with natural characteristics. International Journal of
Parallel, Emergent and Distributed Systems 22(2): 103–121.

9 Eisen, M.B., Spellman, P.T., Brown, P.O. and Botstein, D. (1998)
Cluster analysis and display of genome-wide expression patterns.
Proceedings of the National Academy of Sciences of the United States
of America 95(25): 14863–14868.

10 Hong, J., Jeong, D.H., Shaw, C.D., Ribarsky, W., Borodovsky, M.
and Song, C. (2005) Gvis: A scalable visualization framework for
genomic data. In: K. Brodlie, D. Duke and K. Joy (eds) EUROVIS
2005: Eurographics/IEEE VGTC Symposium on Visualization
2005, Leeds, UK: Eurographics/IEEE-CS, pp. 191–198.

11 Karp, P.D., Paley, S. and Romero, P. (2002) The pathway tools
software. Bioinformatics 18(1): S1–S8.

12 Kanehisa, M. and Goto, S. (2000) Kegg: Kyoto encyclopedia of
genes and genomes. Nucleic Acids Research 28(1): 27–30.

13 Gasteiger, E., Gattiker, A., Hoogland, C., Ivanyi, I., Appel, R.D.
and Bairoch, A. (2003) Expasy: The proteomics server for in-depth
protein knowledge and analysis. Nucleic Acids Research 31(13):
3784–3788.

14 Shannon, P. et al.(2003) Cytoscape: A software environment for
integrated models of biomolecular interaction networks. Genome
Research 13(11): 2498–2504.

15 Van Ham, F., van de Wetering, H. and van Wijk, J.J.
(2002) Interactive visualization of state transition systems.
IEEE Transactions on Visualization and Computer Graphics 8(4):
319–329.

16 Pretorius, A.J. and van Wijk, J.J. (2005) Multidimensional
visualization of transition systems. In: IV ’05: Proceedings of the
Ninth International Conference on Information Visualisation.
Washington DC: IEEE Computer Society, pp. 323–328.

17 Pretorius, A.J. and van Wijk, J.J. (2006) Visual analysis of multi-
variate state transition graphs. IEEE Transactions on Visualization
and Computer Graphics 12: 685–692.

18 Gröller, M.E. (1998) Application of visualization techniques to
complex and chaotic dynamical systems. In: Proceedings of
the 5th Eurographics Workshop on Visualization in Scientific
Computing, Eurographics Workshop in Scientific Computing;
May.

19 Löffelmann, H., Doleisch, H. and Gröller, M.E. (1998) Visualizing
Dynamical Systems Near Critical Points. Institute of Computer
Graphics and Algorithms, Vienna University of Technology.
Technical Report TR-186-2-98-09.

20 Viste, M. and Skartveit, H.-L. (2004) Visualization of complex
systems – The two-shower model. PsychNology Journal 2(2):
229–241.

21 Hendley, R.J. and Drew, N.S. (1995) Visualisation of Complex
Systems. Technical Report.

22 Wood, A., Beale, R., Drew, N.S. and Hendley, R.J. (1995)
Hyperspace: A world-wide web visualiser and its implications for
collaborative browsing and software agents. In: Poster Proceedings
of the Third International World-Wide Web Conference; April;
USA: Elsevier, pp. 21–25.

23 Benford, S. et al.(1999) Three dimensional visualization of the
world wide web. ACM Computing Surveys 31: 25.

24 Bartram, L. (1998) Enhancing visualizations with motion.
In: Proceedings of IEEE Information Visualization, USA: IEEE
Computer Society Press, pp. 13–16.

25 Robertson, G.G., Mackinlay, J.D. and Card, S.K. (1991) Cone
trees: animated 3d visualizations of hierarchical information. In:
S.P. Robertson, G.M. Olson and J.S. Olson (eds.) CHI ’91:
Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems; New York, NY: ACM, pp. 189–194.

26 Bosch, R., Stolte, C., Tang, D., Gerth, J., Rosenblum, M. and
Hanrahan, P. (2000) Rivet: A flexible environment for computer
systems visualization. Computer Graphics 34: 68–73.

27 Phillips, A., Cardelli, L. and Castagna, G. (2006) A graphical
representation for biological processes in the stochastic pi-
calculus. Transactions on Computational Systems Biology VII,
Vol. 4230, Springer Series: LNCS, htt://www.springerlink.com/
content/n218mu277hn50h3w, pp. 123–152.

28 Le Martelot, E. and Bentley, P.J. (2009) Modelling biological
processes naturally using systemic computation: Genetic
algorithms, neural networks, and artificial immune systems.
In: R. Choing (ed.) Nature-inspired Informatics for Intelligent
Applications and Knowledge Discovery: Implications in Business,
Science and Engineering, Chapter 9, July, Hershey, PA: IGI Global,
pp. 204–241.

29 Le Martelot, E., Bentley, P.J. and Beau Lotto, R. (2007a) A
systemic computation platform for the modelling and analysis
of processes with natural characteristics. In: D. Thierens et al.
(eds.) Proceedings of Genetic and Evolutionary Computation
Conference (GECCO 2007), July. USA: ACM Press, pp. 2809–2816.

30 Le Martelot, E., Bentley, P.J. and Beau Lotto, R. (2007b)
Exploiting natural asynchrony and local knowledge within
systemic computation to enable generic neural structures. In:
S. Yasuhiro, H. Masami, U. Hiroshi and A. Andrew (eds) Natural
Computing. Proceedings of 2nd International Workshop on
Natural Computing (IWNC 2007), Vol. 1 of Proceedings in
Information and Communications Technology; December. Japan:
Springer, pp. 122–133.

31 Le Martelot, E., Bentley, P.J. and Beau Lotto, R. (2008) Crash-proof
systemic computing: A demonstration of native fault-tolerance and self-
maintenance. In: S. Sahni (ed) Proceedings of the Fourth IASTED
International Conference on Advances in Computer Science and
Technology (ACST 2008), April. USA, Canada and Switzerland:
ACTA press, pp. 49–55.

32 Le Martelot, E. and Bentley, P.J. (2009) Metabolic systemic
computing: Exploiting innate immunity within an artificial
organism for on-line self-organisation and anomaly detection.
The Journal of Mathematical Modelling and Algorithms: Special Issue
on Artificial Immune Systems 8(2): 203–225.

33 Le Martelot, E. and Bentley, P.J. (2009) On-line systemic
computation visualisation of dynamic complex systems. In:
H.R. Arabnia and L. Deligiannidis (eds) Proceedings of the
2009 International Conference on Modeling, Simulation and
Visualization Methods (MSV’09), July. Las Vegas, NV, CSREA Press,
pp. 10–16.

34 Wheeler, M. and Clark, A. (1999) Genic representation:
Reconciling content and causal complexity. The British Journal for
the Philosophy of Science 50(1): 103–135.

35 Le Martelot, E. (2010) Investigating and analysing natural
properties enabled by systemic computation within nature-
inspired computer models. PhD thesis, University College
London.

36 Fruchterman, T.M.J. and Reingold, E.M. (1991) Graph drawing
by force-directed placement. Software Practice & Experience 21(11):
1129–1164.

37 Griffiths, D.F. (1999) Introduction to Electrodynamics, 3rd edn.,
B. Cummings (ed.) USA: Prentice Hall, p. 576.

38 Boresi, A.P. and Schmidt, R.J. (2002) Advanced Mechanics of
Materials. 6th edn., USA: Wiley.

39 François, P. and Hakim, V. (2004) Design of genetic networks
with specified functions by evolution in silico. Proceedings of the
National Academy of Sciences of the United States of America 101(2):
580–585.

40 Huang, C.-Y.F. and Ferrell, J.E. (1996) Ultrasensitivity in the
mitogen-activated protein kinase cascade. Proceedings of the
National Academy of Sciences of the United States of America 93(19):
10078–10083.

41 Pearson, G. et al.(2001) Mitogen-activated protein (map) kinase
pathways: Regulation and physiological functions. Endocrine
Reviews 22(2): 153–183.

31

