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Abstract: This chapter describes research into the embryonic field of Compu-
tational Embryology. The chapter starts with a brief history of embryology and
the contributions scientists have made over the years causing the gradual amal-
gamation of embryology and genetics to form developmental biology. This is
followed by a detailed investigation into the evolution of computational embryo-
genies. The focus of this chapter is on the two most promising types of embryo-
geny: Explicit and Implicit, investigating the evolvability and scalability of both
embryogenies for morphogenesis. The problem set is that of evolving certain pre-
defined shapes - letters of the alphabet. The results show that both embryogenies
are good at defining different morphologies, but significantly, the implicit em-
bryogeny incurs no increase in genotype size as the problem is scaled. Finally, the
chapter ends with a description of a more biologically plausible computational
model of aspects of biological development.

1. Introduction

Evolutionary computation (EC) has been a very successful area of computer sci-
ence for some time. EC has grown from several types of evolutionary algorithms
(EAs) which take their inspiration from nature (Bentley, 1999): Genetic Algo-
rithms, Genetic Programming, Evolutionary Strategies and Evolutionary Pro-
gramming. Although these methods are essentially the same, an important differ-
ence is the distinction between the genotype (coded parameters and values) and
the phenotype (representation of solutions). GP practitioners often regard the
genotype as the phenotype, as do ES and EP practitioners. The genetic algorithm
(GA) is the only one of the four EAs that makes the distinction. It is the omission
of this crucial genotype to phenotype mapping process, known in biology as an
embryogeny, which can often deny the non-GA practitioner the advantages that
embryogenies bring.

This chapter investigates the evolvability of two of the most interesting types
of computational embryogeny, explicit, and implicit. The chapter is organised as
follows: a brief history of embryology is given in section two, section three ex-
plains embryology in nature and introduces Computational Embryology. The two
embryogeny based systems are introduced in section four, with section five de-



scribing a series of experiments together with an analysis of the results. Section
six introduces a new more biologically plausible model of development. Conclu-
sions are provided in section seven.

2. From Embryology to Developmental Biology: A Historical
Review.

Man has pondered questions such as his place in the universe and the existence of
god for millenia, however a question much closer to home, yet equally baffling is
that of development. How are our bodies and other organic entities formed? What
gives rise to these bodies? Is the complete body plan of an animal already present
in the fertilised egg, i.e. is it preformed? If not, then what mechanisms mould and
sculpt such complexity?

Greece saw the formation of such questions starting with Hippocrates, who
first addressed the important question of the nature of development, as long ago
as the 5th Century BC.

The 4th Century BC provided the setting to take the question a step further.
Aristotle was the first to formulate the problem of how structure arose in the em-
bryo. He proposed two possibilities: Preformationism - namely, that the animal is
preformed and simply gets bigger, and the second, Epigenesis (meaning ‘upon
formation’), namely, that structure arises progressively. Aristotle favoured epi-
genesis, however in the 4th century religion was prevalent and the church favoured
preformationism, which made a hostile environment for epigenesis to compete.
Aristotle’s preformation/epigenesis dichotomy was to provide the fuel for vigor-
ous debate over the coming centuries.

Some two thousand years later in 1672, Italian scientist Marcello Malpighi
provided a detailed description of the chick embryo. Preformationist thinking,
endorsed by the church, still prevailed in the 17th century. Unfortunately, Malpighi
simply could not help but believe in preformationism, remarking that the embryo
was so small that he was just not able to see it, even with his most powerful mi-
croscopes.

Fortunately, preformationism was shown to be wrong by the observations of
Carl Friedrich Wolff. Wolff did not believe in preformationism and disproved it in
1759 by studying how blood vessels appeared in the chick. Wolff demonstrated
that the blood vessels of the chick blastoderm slowly developed from islands of
material surrounded by liquid. The reaction to Wolff’s evidence was that the
blood vessels were there all the time, but became visible later. In 1768, Wolff
dealt preformation the final blow, demonstrating that the chick gut was not ini-
tially a tube but emerged by the gradual folding of the ventral sheet of the em-
bryo.

The basic unit of life: the cell, was discovered in 1838-1839 by German bota-
nist Matthais Schleiden and physiologist Theodor Schwann. This was a turning
point for embryology providing the beginnings of a new era in which embryology
was eventually to be subsumed by Developmental Biology.

The mid 1860s saw the Austrian monk and botanist, Gregor Mendel show, by
plant hybridization experiments, that the origin of hereditary variability lay in
differences in ‘factors’ (later to be named genes by Johannsen) that pass un-



changed from one generation to the next.
In the mid 19th century, the German biologist August Weismann proposed that

characteristics in the offspring are inherited from the germ cells (the eggs and
sperm) and not the soma (body). He further suggested that germ cells were not
influenced by the body that bears them. Weismann devised a model of develop-
ment in which ‘special factors’ known as determinants were contained in the nu-
cleus of the zygote. These determinants were then unequally distributed to
daughter cells during zygote division (cleavage), allowing for control over the

Scientist Date Contribution

Hippocrates
5th Century

BC
First to address the problem of development.

Aristotle
4th Century

BC

Aristotle considered two possibilities to the
problem of how structure arose in the
embryo, namely, preformationism and

epigenesis.

Marcello Malpighi 1672
Provided an accurate description of chick

embryo.

Carl Friedrich Wolff
1759-
1768

Dismissed preformationism by providing
evidence that the chick gut was not initially
a tube but emerged by the gradual folding of

the ventral sheet of the embryo.
Mathais Schleiden +
Theodor Schwann

1838-
1839

Recognised, independently, the cell as the
basic unit of life.

Gregor Mendel Mid 1860s
Proposed, origin of hereditary variability lay

in differences in ‘factors’ that pass
unchanged from one generation to the next.

August Weismann
19th-

End of 19th

Century

Proposed that the offspring does not inherit
its characteristics from the soma of the

parent, but from the germ cells.
In addition, proposed a ‘special factors’

model of development.

Wilhelm Roux
Late

1880s

Provided confirmation of Weismann's ideas,
by experimenting on frogs. Concluding, frog

development was based on a mosaic
mechanism.

Hans Driesch Late
1880s

Disproved Roux’s results showing that cells
retain the developmental potential of the

zyogte and were hence not based on a
mosaic mechansim.

Wilhelm Johannsen 1909
Recognised the distinction between

genotype and phenotype, helping to link
genetics with embryology.

Table 1: Table showing key contributions in the history of embryology.



future development of the cells. In effect, cell fate, according to Weismann’s
model, is controlled by the unequal distribution of the determinants, and hence
predetermined in the egg during cleavage. Weismann’s model was termed mosaic,
as the egg was likened to a mosaic of discrete localised determinants.

Weismann’s ideas received support in the late 1880s due to the German em-
bryologist Wilhelm Roux. Roux provided support by experimenting with frog
embryos. After allowing the first cleavage of a zygote, he destroyed one of the
two cells with a hot needle. He found that the remaining cells developed into a
well-formed half-larva, and concluded that the “development of the frog is based
on a mosaic mechanism, the cells having their character and fate determined at
each cleavage”.

Hans Driesch, also in the late 1880s, disagreed with Roux and set about to
disprove Roux’s results. Driesch repeated Roux’s experiment, but on invertebrate
sea urchin eggs, however instead of killing one of the cells at the two-cell stage
he separated them. He found that these isolated cells went on to develop nor-
mally, concluding that all cells retained the developmental ability of the zygote.

Despite these discoveries it was left to Danish botanist Wilhelm Johannsen in
1909 to not only label Mendel’s ‘factors’ as genes, but also to make the funda-
mental distinction between genotype (genetic composition) and phenotype
(physical appearance). This crucial concept helped link both genetics and embry-
ology giving way to Developmental Biology.

For a more detailed history of embryology, see (Wolpert, 1998) and (Bard,
1990).

3. Embryology and Embryogenies

Biology has moved on considerably since Aristotle, and an entire new field now
known as Developmental Biology has emerged.  Through the centuries of scien-
tific research, we now know that Aristotle’s notion of epigenesis was the closest
to the truth. Developmental Biology and in particular, Embryology has fast be-
come an exciting and fashionable subject for research.

Today we regard Embryology to be the study of the controlled formation and
development of animal and plant embryos. It involves three fundamental proc-
esses:

• morphogenesis - which involves the emergence and change of form
(Bard, 1990).

• regional specification (pattern formation) - in which compartmentali-
sation of the embryo into specific regions occurs (Slack, 1991).

• cellular differentiation - in which cells become specialised for par-
ticular functions (Wolpert, 1998).

These three processes operate together in different parts of the embryo, at dif-
ferent times, and in stages according to a ‘recipe’ known as an embryogeny. Em-
bryogenies have evolved in nature to describe how an animal should be grown,
rather than contain an overall description of an animal.



Embryology like other subjects has its own set of problems that need answer-
ing. One such problem is that of positional information, i.e. how cells ‘know’
where to grow?  This was addressed by the eminent embryologist Lewis Wolpert
who put forth positional information theory (Wolpert, 1998).

Positional information theory states that cells glean their positional informa-
tion from the free diffusion of a chemical, known as a morphogen, relative to a
boundary. The information is coded in the form of the concentration value of the
diffusing morphogen. This diffusion sets up a chemical gradient, thus allowing
cells to position themselves relative to the boundary whereupon they can, if need
be differentiate, i.e., become a specialised type of cell (Wolpert, 1998). The idea
of chemical gradients is used in the implicit computational embryogeny described
later.

3.1 Computational Embryology

Having reviewed biological embryology, this section explores computational em-
bryology.

Computer science first saw the use of morphogenesis in 1952 by Alan Turing.
Since then morphogenesis has featured in a number of works, such as in the evo-
lution of neural network morphologies (Jakobi, 1995), and evolvable hardware
using cellular encoding (Koza et al. 1999).

However, to date computer science has used crude approximations of the
natural embryological processes, paying little attention to the intricate subtleties.
Regional specification, which plays an important part in the early stages of em-
bryogenesis has to the authors’ knowledge not been investigated, despite its obvi-
ous advantages for the creation of form, such as compartmentalisation (which can
be viewed as reducing the problem down to smaller units).

Nevertheless, researchers have been using simple computational embryoge-
nies of various guises for over a decade. Current computational embryogenies can
be classified into three different types: external, explicit, and implicit (Bentley &
Kumar, 1999).

Most external embryogenies are hand-designed and are defined globally and
externally to genotypes. For example, Evolutionary Art systems often use em-
bryogenies defined by fixed, non-evolvable structures which specify how pheno-
types should be constructed using the genes in the genotypes (Bentley, 1999).
Similarly, Richard Dawkins’ Blind Watchmaker program (Dawkins, 1987), em-
ploys a simple external embryogeny to create biomorphs, using the ‘eye of the
beholder’ to provide a measure of fitness, and mutation to vary the evolving
shapes. Dawkins  also points out advantages of using embryogenies, why they are
so important, and perhaps most interestingly, that different embryogenies can lead
to different results. For example, different embryogenies allow different areas of
‘solution space’ to be searched and thus in doing so constrain themselves to dif-
ferent types of shapes or designs (not necessarily a bad thing as Dawkins shows,
relative to what he calls naïve pixel-peppering).

An explicit embryogeny specifies each step of the growth process in the form
of explicit instructions. In computer science, an explicit embryogeny can be
viewed as a tree containing a single growth instruction at each node. Genetic Pro-



gramming (GP) uses tree structures to represent its genotypes. GP therefore, of-
fers a simple and concise way to evolve explicit embryogenies. Typically, the
genotype and the embryogeny are combined and both are allowed to evolve si-
multaneously. Examples of explicit embryogenies include Coates (1997) who
uses Lindenmayer systems to evolve architectural form. Koza et al (1999) use an
explicit embryogeny in the form of cellular encoding for the evolution of ana-
logue circuits. Sims (1999) uses an explicit embryogeny with the idea of directed
graphs to specify the nervous systems (neural networks), and morphologies of
virtual creatures.

An implicit embryogeny does not explicitly specify each step of the growth
process. Instead, the growth process is implicitly specified by a set of rules or
instructions, similar to a ’recipe’ that govern the growth of a shape. For example,
de Garis (1999) describes an implicit embryogeny to evolve convex and concave
shapes using a cellular automata approach along with the notion of cellular differ-
entiation. He has reported encouraging results, as well as highlighting problems
that need to be tackled in order to improve this approach  (de Garis, 1999).

4. Evolving Embryogenies

Previous work (Bentley & Kumar, 1999), compared the performance and scal-
ability of different evolved computational embryogenies for the representation of
tessellating tiles. Subsequent experiments have shown that significant questions
remain concerning the evolvability of different embryogenies. Specifically,
evolved implicit and explicit embryogenies show inconsistent abilities to define
specific morphologies. Consequently, it was decided that further investigation
was necessary to help explore and understand these issues of evolvability.

4.1 Evolving Predefined Shapes

In order to assess the change in performance of the two embryogenies, a number
of fixed shapes were specified as targets for evolution. Since shapes with distinct
and useful characteristics were desired (e.g. convex, concave, solid, hollow,
curved and linear), a subset of the alphabet was selected. Six letters were chosen:
C, E, G, L, O, and R, as shown in figure 1.

Figure 1: The pre-defined six target shapes.



These six letters were selected based upon how much of the alphabet they
were representative of. For example, the diagonal in the letter R forming the bot-
tom right portion of the letter is characteristic of the letters M, N, W, X, Y, Z.
Likewise, the semi-circle is characteristic of the letter P,R,B. The Letters E and L
with their upright stem are characteristic of P,T,D,F.

To judge how closely each evolving shape matched the targets, a fitness func-
tion based on the number of incorrectly filled squares was employed. The fitness
score is incremented by one whenever an element in the evolving shape differs
from the corresponding element in the current target, see figure 2. To assess scal-
ability, three different phenotype grid sizes of 4x4, 8x8 and 16x16 cells were
used.

         [a]      [b] [c]

Figure 2: Calculating the fitness of an 8x8 evolving shape. [a] shows the target, [b] shows
the shape to be judged, [c] shows the incorrect elements identified by the fitness function.

4.2 Explicit

This first system used genetic programming (GP) (Koza, 1992) to evolve explicit
embryogenies in the form of program trees. Beginning at a seed or zygote cell
placed in the phenotype grid, the embryogeny defines the direction of growth at
every point. Four functions were used: LEFT, RIGHT, UP and DOWN, with each
node in the tree allowed up to four branches. Paths of growth were permitted to
overlap. Figure 3 shows an example genotype defining the explicit embryogeny.
The root node has two parts: x and y for the co-ordinates of the seed.

RIGHT

root

DOWN

DOWNDOWN UP

LEFT

RIGHT

RIGHT

RIGHT DOWN

DOWNDOWN UP

RIGHT

RIGHT

ROOT
 ( )xpos, ypos

Figure 3: An example explicit embryogeny defined by a tree of nine nodes, and its corre-
sponding 4x4 phenotype.

The GP system used steady-state selection and a crossover designed to mini-
mise disruption by crossing parents at points of similarity in the two trees. Further
details of this system and crossover operator can be found in (Bentley, 1999 and



Bentley & Wakefield, 1996). As with all GP systems, bloat occurred, so an addi-
tional fitness function penalised genotypes with more nodes. This system differed
from the one presented in (Bentley & Kumar, 1999), in that it evolved the co-
ordinates of the seed.

4.3 Implicit

The second system was an advanced variable length chromosome GA that
evolved implicit embryogenies. Each genotype comprised a variable number of
rules (usually between four and eight). Each rule had a precondition and an ac-
tion. Each precondition had six fields: LEFT, RIGHT, UP, DOWN, X, Y. A spe-
cific rule can take the following values for each precondition field (where # is
don’t care, 0 is empty, 1 is filled, 0,1,2,3,4,5,6,7 are gradient zones):

LEFT
  0,1,#

RIGHT
   0,1,#

UP
  0,1,#

DOWN
  0,1,#

X
    0-7,#

Y
    0-7,#

For a rule to be fired, values in at least four of the six fields in the precondi-
tion must be matched. (This provides the equivalent of disjunction for rule pre-
conditions.) The action of a rule can be: DIE, UPDATE, or grow LEFT, RIGHT,
UP or DOWN.

Growth takes place in a phenotype grid, which as usual can be 4x4, 8x8 or
16x16 elements. In order to permit evolution of specialised rules that can provide
detail in specific areas of the phenotype, the grid has two ‘gradients’ - one in the
x direction, one in the y direction. In a similar way to the gradients used to pro-
vide positional information in eggs and wombs of nature (Wolpert, 1998, Slack,
1991, Lawrence, 1995), the gradients divide the grid into eight zones per axis (as
opposed to four in previous work), regardless of the number of elements in the
phenotype grid.

LEFT  RIGHT    UP  DOWN   X  Y

x-gradient

y-
gr

ad
ie

nt

RULE 0        0      0       #     0       #  #         down
RULE 1        #      0       0     0       #  #         right
RULE 2        0      1       0     0       1  3         left

PRECONDITION

iteration 0

0      1      2      3

0

1

2

3

0

1

2

3

0

1

2

3

0      1      2      3 0      1      2      3

iteration 2iteration 1

ACTION

Figure 4:  Example of a three-rule implicit embryogeny and its corresponding pheno-
type after two iterations.

At iteration zero, a seed cell is placed in the phenotype grid at a position de-
fined by the coordinates held in dedicated genes of the chromosome. To model
biological cell growth, the rules in the genotype are then applied for a fixed num-
ber of iterations to each filled element in the current embryonic phenotype grid.



(This is unlike traditional cellular automata, where rules are applied to empty or
filled grid elements.) Depending on whether the neighbouring elements of the
current element exist or not, and on the strength of the two gradients at that point,
the rules may be activated, causing growth or cell death in the phenotype. Rules
are applied ‘in parallel’ so that the results of applying the rules to each filled ele-
ment only take effect at the end of each iteration step. However, a rule which per-
forms the UPDATE action causes all activated rules in the current iteration to be
applied. By prematurely placing cells in the phenotype grid in this way, evolution
can increase the number of rules applied in each iteration and provide extra
growth where needed. This new type of rule action was added to the embryogeny
because during the development of the system, the number of iterations was
found to be overly critical. Finally, the system was also given the ability to evolve
the seed co-ordinates. Figure 4 shows the growth of a target shape, defined by
three rules.

5.  Experiments

5.1 Objectives and Parameters

The experimental objectives were three-fold: firstly to investigate the use of both
embryogenies for efficiency of search in terms of fitness. Secondly, to investigate
the scalability of both embryogenies for evolving different morphologies, and
finally, to see how the evolution of the two embryogenies differs in defining dif-
ferent morphologies.

A total of 50 runs were performed with each target shape (letters C, E, G, L, O
and R) for each grid size. Population sizes of 100 and a total of 100 generations
were used for each run. The explicit embryogeny system used an initial tree depth
of 4 for the 4x4, 5 for the 8x8 and 6 for the 16x16 grids. All trees were created
randomly.

The implicit system used random rule initialisation for both the initial popula-
tion and for each new rule added to the genome1. The cellular automata presented
in this work used iteration values of 4 for the 4x4, 8 for the 8x8, and 14 for the
16x16 grids. Both systems used random crossover for offspring creation. The
explicit system employed a mutation probability rate of 0.001 per bit, whereas
preliminary experiments revealed that the implicit system required a rule mutate
rate of 0.5 and an  increased bit mutation rate of 0.05.

                                                       
1 This is as opposed to copying an existing rule as in previous work (Bentley & Kumar 1999).



5.2 Results

A summary of the results from the experiments is given in Table 22. As shown in
the table, both embryogenies attained good fitnesses for all 4x4 target letters.
However, relative performances between the two approaches were inconsistent.
For example, the explicit embryogeny outperformed the implicit for the letters C
and L, whilst the reverse was true for the other targets.

For the 8x8 grid, fitness scores were reduced, on average for both methods.
For example, the explicit embryogeny managed 3.55 at best for the letter ‘L’ and
at worst 15.76 for the ‘O’. The implicit faired similarly on the 8x8 targets
achieving a fitness of 5.89 for the 'E' and only 12.84 for the 'G'. Again, relative
performances varied, this time with each embryogeny providing better scores for
3 of the letters.

When the problem was scaled up to the 16x16 grid, the results show that the
implicit embryogeny outperformed the explicit, in terms of fitness. The figures
are, however, a little deceptive. For these targets, many of the shapes evolved by
the implicit embryogeny were solid blocks. Because of the simple nature of the
fitness function, such shapes were awarded higher fitness scores compared to the
attempts of the explicit. (Nevertheless, it should be noted that the forms generated
by the explicit rarely resembled the desired targets, either.)

Execution times were noticeably different for the two techniques. As the scale
of the problem was increased, both methods took longer to grow shapes, but of
the two, the implicit required the most computation time. For example, evolution

                                                       
2 Because of time constraints, average values given for the 16x16 targets using the implicit embryo-
geny were based on only 10 experiments per target.

Table 2: Results for the target shapes. Values in italics denote the results for
the implicit embryogeny. Solution sizes are measured in tree nodes for the ex-

plicit, and rules for the implicit embryogeny.

4x4 8x8 16x16
Shape Mean

Soln. Size
Mean
Fitness

Mean
Soln. Size

Mean
Fitness

Mean
Soln. Size

Mean
Fitness

C 14.28
12.70

0.92
1.64

57.70
11.47

13.20
12.82

309.40
10.00

84.1
53.7

E 24.22
11.42

1.28
0.32

168.44
11.96

9.54
5.89

693.58
6.700

81.40
49.40

G 18.88
13.86

1.2
0.78

59.52
10.98

12.72
12.84

302.12
6.000

76.34
52.90

L 9.52
11.22

0.26
0.58

71.04
9.02

3.56
6.38

235.46
8.200

39.46
38.40

O 20.20
11.60

1.31
0.18

81.29
13.29

15.76
9.00

293.00
6.400

104.33
48.70

R 18.78
12.98

1.35
0.60

121.53
12.33

7.88
9.92

513.43
6.900

76.16
55.80



time of six hours for one run of the implicit was not uncommon, compared to less
than an hour for the explicit.

Perhaps the most significant results shown in Table 2 are the solution sizes. It
is clear that the explicit embryogeny required ever-increasing tree sizes as the
scale of the target shapes were increased. However, the reverse seems to be true
for the implicit embryogeny, where the number of rules actually appears to de-
crease as the problems are scaled up. This lack of increase of solution size cor-
roborates and confirms the results obtained in previous work which reported
similar findings (Bentley & Kumar, 1999).

5.3 Analysis

The results show interesting behaviours of both embryogenies for all grid sizes.
For the 4x4 grid, because of the size of the targets, the ability of both methods to
find good solutions is not surprising. The explicit embryogeny uses small trees to
define its solutions, but the implicit often seems to evolve more rules than are
necessary. More specifically, a larger number of rules are evolved than are actu-
ally used during the growth process. The reason for the inefficiency for such
small targets seems to be to do with the search process - it is very hard for evolu-
tion to find the correct rules for specific shapes. Clearly the ‘add rule’ mutation
plays an important, but excessive role for these smaller problems. Rules are
added until an appropriate collection exists to define the target, but the unused
rules are not removed by mutation, much like bloat in GP.

The same searching mechanism is also evident for larger grid sizes with the
implicit embryogeny, with similar levels of redundancy observed. However, be-
cause the number of rules did not increase much beyond 12, such redundancy
becomes a more acceptable compromise for larger problems.

So how does evolution fine-tune solutions to make them match the target let-
ters? Both types of embryogeny seem to begin by filling a large part (or all) of the
phenotype grid, and then ‘pruning away’ unnecessary elements, see figures 5 and
6. The explicit embryogeny achieves this by pruning branches of its trees; the
implicit embryogeny makes use of ‘kill’ rules to remove elements. Of the two, the
implicit embryogeny goes to the furthest extreme with this technique - often by
evolving a completely solid block and then picking out the odd element, see fig-
ure 6.

The fitness function may be to blame for the ‘carving letters from a solid
block’ approach - for it awards considerably higher fitnesses for solid shapes than
for emptier ones.



TARGET GEN. 0 GEN. 10 GEN. 20

GEN. 30 GEN. 40 GEN. 50 GEN. 100

Figure 5: The evolution of an ‘E’ using the explicit embryogeny. The best new shapes
grown in the population are shown every 10 generations (except where no change oc-

curred). The final shape has a fitness of 8 and a soln. size of 251 nodes.

TARGET GEN. 0 GEN. 10 GEN. 20

GEN. 30

GEN. 80 GEN. 100GEN. 90

GEN. 40 GEN. 60 GEN. 70

Figure 6:  The evolution of an ‘E’ using the implicit embryogeny. The best new shapes
grown in the population are shown every 10 generations (except where no change oc-

curred). The final shape has a fitness of 7 and a solution size of 11 rules.

As Dawkins (1987) points out, certain embryogenies are better than others at
producing certain morphologies. This observation seems to be echoed in this
work too. The explicit embryogeny found morphologies such as C’s and O’s dif-
ficult, whereas the implicit was able to handle these morphologies with relative
ease. This can be attributed to the fact that the implicit need only generate a few
general growth rules for specific directions, and in doing so, can start from a sin-
gle seed and grow to encompass all four sides of the grid whilst leaving (or kill-
ing), for example in the case of the letter ‘O’,  a hole in the middle. This is diffi-
cult for the explicit embryogeny as it must evolve a long and difficult growth path
around the edge of the grid, whilst keeping the centre of the shape free of ele-
ments.



The way in which evolution attempted to generate morphology indicates two
points: firstly that the implicit embryogeny seems to have considerable potential
because of its impressive scalability, perhaps more so than the explicit embryo-
geny. Secondly, the representation used for the implicit embryogeny is not as
amenable to evolution as we would desire. This may be caused by:
• the representation, which allows dissimilar phenotypes to be close together in

the solution-space, providing a discontinuous search-space of solutions and
thus causing problems for evolution.

• ineffective positional rules. Although the notion of ‘zones’ improved the
quality of solution for the implicit more than without, it is clear that
positional information is hard to glean using the current implicit system,
making the evolution of specific rules difficult, leading in turn to bad fitness
results.

6. Biologically plausible implicit embryogeny

With the results of this experiment in mind, a new implicit model is now under
development by the authors. The current system has been extended from the two-
dimensional cellular automata, to an isospatial grid system. The isospatial grid is
a coordinate system developed by Frazer which uses six axis to define a point in
space, yielding twelve equidistant neighbours for each point (Frazer, 1995).
     The new embryogeny system uses spheres to represent cells and builds three-
dimensional morphologies by carefully placing and organising a colony of cells
using a growth process. This process will use the concept of freely diffusing mor-
phogens to allow cells to acquire positional-information. In addition, key em-
bryological processes such as differentiation and pattern formation shall be in-
vestigated to grow morphologies. Although heavily inspired by biology, this sys-
tem is not intended as a model of biological development. Instead, the work is
aimed at extending the capabilities and scalability of evolutionary algorithms.
     An implicit embryogeny based system is used to evolve rules that are able to
grow designs in complex ways. A chromosome comprises a series of rules
(genes). A rule consists of a precondition field and an action field. Each cell has a
copy of the chromosome. The rules are applied (expressed) by matching the pre-
conditions to a cell’s state. If the preconditions are satisfied the rule is expressed.
In this way, rules expressed earlier on in the development can affect other rules
by switching them on or off.

Notions of evolvability and speed of growth are playing a key role in the de-
sign of this new implicit system. Recent ideas about representations and evolv-
ability such as the use of component based approaches (Bentley, 2000) and neu-
tral networks (Barnett, 1997) may throw light on more suitable representations.
The authors are also intending to use a parallel Beowulf supercomputer to exploit
the inherent parallelism of growth processes.

Figure 7 shows six morphologies grown from random genomes using the new
system. It is clear that the isospatial grid enables surprisingly organic forms to
emerge. Shape 4 also illustrates how flat surfaces can arise from multiple cells.
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Figure 7: Diagram showing six example random morphologies grown by the
new system without any morphogens in the environment.



7. Conclusions
This chapter has introduced computational embryology. It began with a historical
review of embryology in biology and then described the recent development of
computational embryology in computer science. The chapter then looked at pres-
ent computational embryogenies, comparing the evolvability and scalability of
two different approaches (explicit and implicit) for the problem of evolving shape
morphologies.

The behavioural analysis of these two embryogenies have shown that both are
good at growing different shape morphologies, and that evolutionary computation
can benefit from the use of embryogenies.

In addition, this work highlighted some of the problems that require attention
with regard to designing evolvable embryogenies. For example, biological con-
cepts such as positional-information, as echoed in this work in the form of zones,
can assist in the evolution of shape morphologies, but need to be very carefully
designed.

The paper ended with a brief description of a future computational embryo-
geny system using more biologically plausible methods to overcome the prob-
lems encountered in the experiment.

Nature has been successfully evolving complex animals for millions of years.
It is the concept of an embryogeny (which itself evolved in nature) that has al-
lowed the evolution of these complex designs.
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