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Abstract. We describe the combination of a novel, biologically plausible model 
of development with a genetic algorithm. The Evolutionary Developmental 
System is an object-oriented model comprising proteins, genes and cells. The 
system permits intricate genomic regulatory networks to form and can evolve 
spherical embryos constructed from balls of cells. By attempting to duplicate 
many of the intricacies of natural development, and through experiments such 
as the ones outlined here, we anticipate that we will help to discover the key 
components of development and their potential for computer science. 

1 Introduction 

Talk to any evolutionary biologist and they’ll tell you that the standard genetic 
algorithm (GA) does not resemble natural evolution very closely. While our GAs may 
evolve their binary genes, most biologists would be horrified to discover that concepts 
such as genotype and phenotype are so blurred in evolutionary computation that some 
researchers make no distinction between the two. Should you have the courage to go 
and talk to a developmental biologist, you’ll have an even worse ear-bashing. You’ll 
be told that development is the key to complex life. Without a developmental stage 
from genotype to phenotype, all you have is a big DNA or RNA molecule. With 
development you can have layer upon layer of complexity, from cells to organs to 
organisms to societies. 

Of course our motivations in computer science are often very different from the 
motivations of biologists. Nevertheless, it has long been the goal of evolutionary 
computationists to evolve complex solutions to problems without needing to program-
in most of the solution first. The dream of complex technology that can design itself 
requires rejection of the idea of knowledge-rich systems where human designers 
dictate what should and should not be possible. In their place we need systems 
capable of building up complexity from a set of low-level components. Such systems 
need to be able to learn and adapt in order to discover the most effective ways of 
assembling components into novel solutions. And this is exactly what developmental 
processes in biology do, to great effect. 

In this paper we present, for the first time, an overview of a novel biologically 
plausible model of development for evolutionary design. This system is intended to 
model biological development very closely in order to discover the key components 
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of development and their potential for computer science. The paper is divided into 
sub-sections covering different aspects of the Evolutionary Developmental System 
(EDS). It begins with an overview of the entire system, followed by sections detailing 
individual components in isolation. These individual components are then drawn 
together, and how they work as part of the overall developmental system is detailed as 
well as the role of evolution and how the genetic algorithm is wrapped around the 
developmental core. Finally we present some examples of results generated during 
on-going experiments. 

2 Background 

Development is the set of processes that lead from egg to embryo to adult. Instead of 
using a gene for a parameter value as we do in standard EC (i.e., a gene for long legs), 
natural development uses genes to define proteins. If expressed, every gene generates 
a specific protein. This protein might activate or suppress other genes, might be used 
for signalling amongst other cells, or might modify the function of the cell it lies 
within. The result is an emergent “computer program” made from dynamically 
forming gene regulatory networks (GRNs) that control all cell growth, position and 
behaviour in a developing creature [Bentley, 2002].  

The field of Computational Development has matured steadily over the past decade 
or so, with work touching upon a wide range of aspects of development ranging from 
its use for the construction of neural net robot controllers [Jakobi, 1996], to the large 
scale modelling of morphogenesis [Fleischer, 1993]. 

Recently a resurgence of interest into computational development has fuelled much 
research. Problems of scalability, adaptability and evolvability have led many 
researchers to attempt to include processes such as growth, morphogenesis or 
differentiation in their evolutionary systems [Eggenberger, 1996; Haddow et al, 2001; 
Bongard, 2002; Miller 2002]. For reviews see [Kodjabachian and Meyer, 1994; 
Kumar and Bentley, 2002]. 

3 The Evolutionary Developmental System (EDS) 

In nature, development begins with a single cell: the fertilised egg, or zygote. In 
addition to receiving genetic material from its two parents, the zygote is seeded with a 
set of proteins — the so-called ‘maternal factors’ deposited in the egg by the mother 
[Wolpert, 1998]. The maternal factors trigger development causing the zygote to 
cleave (fast cell division with no cell growth). After cleavage, normal cell division 
begins; as cells divide they inherit the state of their parents. To ensure the embryo is 
not homogenous, one or two asymmetric divisions occur, resulting in an unequal 
distribution of factors to the daughter cells.  In doing so, cells become different from 
one another.  

Development is controlled by our DNA. In response to proteins, genes will be 
expressed or repressed, resulting in the production of more (or fewer) proteins. The 
chain-reaction of activation and suppression both within the cell and within other 
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nearby cells through signaling proteins and cell receptors, causes the complex 
processes of cellular differentiation, pattern formation, morphogenesis and growth. 

The Evolutionary Developmental System is an attempt to encapsulate many of 
these processes within a computer model. At the heart of the EDS lies the 
developmental core. This implements concepts such as embryos, cells, cell cytoplasm, 
cell wall, proteins, receptors, transcription factors (TFs), genes, and cis-regulatory 
regions (see figure 1 for a graphical view of the EDS). Genes and proteins form the 
atomic elements of the system. A cell stores proteins within its cytoplasm and its 
genome (which comprises rules that collectively define the developmental program) 
in the nucleus. The overall embryo is the entire collection of cells (and proteins 
emitted by them) in some final conformation attained after a period of development. 
A genetic algorithm is wrapped around the developmental core. This provides the 
system with the ability to evolve genomes for the developmental machinery to 
execute.  

 
Figure 1:   A single cell in the Evolutionary Developmental System 
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4 Components of the EDS 

The following sections describe the main components of the developmental model: 
proteins, genes and cells.  

4.1 Proteins   

In nature, proteins are the driving force of development. They are macromolecules, 
long chains of amino acids that assemble at protein production sites known as 
ribosomes. The only function of genes is to specify proteins.  

The EDS captures the concept of a protein as an object. Each protein has an ID tag, 
which is simply an integer number. The EDS uses eight proteins (although number of 
proteins used is a user defined variable in the system). Protein objects contain both a 
current and a new state object (at the end of each developmental cycle all protein new 
states are swapped with current states to provide “parallel” protein behaviour). These 
protein state objects house important protein-specific information, for example, the 
protein diffusion co-efficient.  

Protein creation, initialisation, and destruction. In the EDS, proteins do not exist in 
isolation; they are created and owned by cells. Thus, during protein construction each 
protein is allocated spatial co-ordinates inherited from the cell creating the protein. 
Handling protein co-ordinate initialisation using this method overcomes the problem 
of knowing which cell created which proteins.  

A protein lookup table (extracted from the genome, see next section) holds details 
about all proteins and is used to initialise each protein upon creation. It has the 
following details for each protein: 

 

Rate of Synthesis  amount by which the protein is synthesised 

Rate of Decay amount by which the protein decays 

Diffusion coefficient amount by which the protein diffuses 

Interaction strength strength of protein interaction, i.e., activation or inhibition 

Protein Type ID tag, e.g., long-range hormone, or short-range receptors 

 
Additionally, each protein keeps the following variables: 

Bound? whether or not a receptor protein is currently bound1 
Protein Source Concentration the current concentration of the protein 

Spatial coordinates the position of the source of the protein 
 
Protein destruction in the EDS is implemented by simply setting the protein’s 

source concentration to zero: if the concentration is zero there can be no diffusion, 
unless more of the protein is synthesised. 

                                                           
1The bound variable is only operational in receptor proteins. 
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Protein Diffusion. Diffusion is the process by which molecules spread or wander due 
to thermal motions [Alberts et al., 1994]. When molecules in liquids collide, the result 
is random movement. Protein molecules are no different: they diffuse.  

The average distance that a molecule travels from its starting point is proportional 
to the square root of the time taken to do so. For example, if a molecule takes on 
average 1 second to move 1 µm, it will take 4 seconds to move 2 µm, 9 seconds to 
move 3 µm, and 100 seconds to move 10 µm. Diffusion represents an efficient 
method for molecules to move short distances, but an inefficient method to move over 
large distances. Generally, small molecules move faster than large molecules (Alberts 
et al., 1994). 

Protein diffusion in the EDS models this behaviour. Diffusion is implemented by 
using a Gaussian function centred on the protein source. The use of the Gaussian 
assumes proteins diffuse equally in all directions from the cell. 

In more detail: the source concentration records the amount of the current protein. 
Every iteration, its value is decremented by the corresponding ‘rate of decay’ 
parameter. If expressed by a gene, its value is also incremented by the corresponding 
‘rate of synthesis’ parameter. To calculate the concentration of a protein at a distance 
x from the protein source: 

2
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Where: d is the diffusion coefficient of the current protein. 
 x is distance from protein source to current point 
 s is the current protein source concentration. 

 
Figure 2 illustrates the way protein concentration changes according to the three 

variables: distance, diffusion coefficient and source concentration. 
 

   
 

Figure 2. Plot of protein concentration against distance from source, where: d = 0.5 
and s = 1.0 (left), d = 0.5 and s = 2.0 (middle), and d = 1.5 and s = 1.0 (right). 

4.2 Genes 

The EDS employs two genomes. The first contains protein specific values (e.g., 
synthesis, decay, diffusion rates, see above). These are encoded as real floating-point 
numbers. The second describes the architecture of the genome to be used for 
development; it describes which proteins are to play a part in the regulation of 
different genes. It is this second genome that is employed by each cell for 
development; the information evolved on the first genome is only needed to initialise 
proteins with their respective properties. 
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In Nature, genes can be viewed as comprising two main regions: the cis-regulatory 
region [Davidson, 2001] and the coding region. Cis-regulatory regions are located just 
before (upstream of) their associated coding regions and effectively serve as switches 
that integrate signals received (in the form of proteins) from both the extra-cellular 
environment and the cytoplasm. Coding regions specify a protein to be transcribed 
upon successful occupation of the cis-regulatory region by assembling transcription 
machinery. Currently, the EDS’s underlying genetic model assumes a “one gene, one 
protein” simplification rule (despite biology’s ability to construct multiple proteins); 
this aids in the analysis of resulting genetic regulatory networks. To this end, the 
activation of a single gene in the EDS results in the transcription of a single protein. 
This is currently ensured by imposing the following structure over genes: each gene 
comprises both a cis-regulatory region and a consequent protein-coding region. 

A novel genome representation (based on eukaryotic genetics) was devised for 
development in the EDS. This genome is represented as an array of Gene objects (fig. 
3). Genes are objects containing two members: a cis-regulatory region and a protein-
coding region. The cis-regulatory region contains an array of TF target sites; these 
sites bind TFs in order to regulate the activity of the gene.  

Figure 3. An arbitrary genome created by hand. Genes consist of two objects: a cis-regulatory 
region and a coding region. Cis-regulatory regions consist of transcription factor target sites 
that bind TFs, triggering transcription of the coding region. Each number denotes a protein.  
 

The gene then integrates these TFs and either switches the gene ‘on’ or ‘off’. 
Integration is performed by summing the products of the concentration and interaction 
strength (weight) of each TF, to find the total activity of all TFs occupying a single 
gene’s cis-regulatory region: 

 

 
where: a is the total activity, i is the current TF, 

d is the total number of TF proteins visible to the current gene, 
 conci is the concentration of i at the centre of the current cell, 
 interaction_strengthi is the strength of protein interaction for the current TF 
(see previous section). 

 
This sum provides the input to a logistic sigmoid threshold function (a hyperbolic 

tangent function), which yields a value between –1 and 1. Negative values denote 
gene repression and positive values denote gene activation: 
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Figure 4 illustrates this sigmoid calculation used to determine whether a gene is 
activated and produces its corresponding transcription factor or not. 
 

 
Figure 4.  A gene showing the various positive and negative inputs received in the form of 
transcription factors, with their respective affinities (weights), and concentrations of 0.24, 0.87, 
and 0.11 respectively. Internally, the gene integrates these TFs and decides whether or not to 
switch the gene ‘on’ or ‘off’. TF1 and TF3 are both activators, whereas TF2 is a repressor, 
denoted by a ‘-‘ symbol. 

4.3 Cells 

Cells can be viewed as autonomous agents. These agents have sensors in the form of 
surface receptors able to detect the presence of certain molecules within the 
environment. Additionally, the cell has effectors in the form of hundreds and 
thousands of protein molecules transcribed from a single chromosome able to affect 
other genes in other cells. Cells resemble multitasking agents, able to carry out a 
range of behaviours. For example, cells are able to multiply, differentiate, and die. 

Like protein objects, cell objects in the EDS have two states: current and new. 
During development, the system examines the current state of each cell, depositing 
the results of the protein interactions on the cell’s genome in that time step into the 
new state of the cell. After each developmental cycle, the current and new state of 
each cell is swapped ready for the next cycle. 

The EDS supports a range of different cell behaviours, triggered by the expression 
of certain genes. These are currently: division (when an existing cell “divides”, a new 
cell object is created and placed in a neighbouring position), differentiation (where the 
function of a cell is fixed, e.g., colour = “red” or colour = “blue”), and apoptosis 
(programmed cell death). 

The EDS uses an n-ary tree data structure to store the cells of the embryo, the root 
of which is the zygote. As development proceeds, cell multiplication occurs. The 
resulting cells are stored as child nodes of the root in the tree. Proteins are stored 
within each cell. When a cell needs to examine its local environment to determine 
which signals it is receiving, it traverses the tree, checks the state of the proteins in 
each cell against its own and integrates the information. 
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4.4   Evolution 

A genetic algorithm (GA) is “wrapped around” the developmental model. The GA 
represents the driving force of the system. Its main roles are to: 

1. provide genotypes for development; 
2. provide a task or function, and hence a measure of success and failure; and 
3. search the space of genotypes that give rise to developmental programs 

capable of specifying embryos, correctly and accurately according to the task 
or function. 

Individuals within the population of the genetic algorithm comprise a genotype, a 
phenotype (in the form of an embryo object), and a fitness score. After the population 
is created, each individual has its fitness assessed through the process of development. 
Each individual is permitted to execute its developmental program according to the 
instructions in the genome. After development has ended a fitness score is assigned to 
the individual based upon the desired objective function.  

The EDS uses a generational GA with tournament selection (typically using ¼ of 
population size), and real coding. Crossover is applied with 100% probability. Creep 
mutation is applied with a Gaussian distribution (small changes more likely than large 
changes), with probability between 0.01 and 0.001 per gene.  

 
Figure 5. Isopatial coordinates permit twelve equidistant neighbours for each cell 
(left) and are plotted using six axis (right). 
 

   

Figure 6. Examples of proteins with their associated cell (at centre). Left: single cell emitting a 
long-range hormone-type protein. Middle: single cell emitting a short range (local) protein. 
Right: single cell emitting four proteins of various spread, reflected by the radius of each 
protein sphere. 
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4.6 Coordinates and Visualisation 

The underlying co-ordinate system used by the EDS is isospatial. All coordinate 
systems have inherent biases towards different morphologies; the isospatial system is 
no different. However, the isospatial system bias results in what can only be described 
as more natural (biologic) morphologies than its Cartesian counterpart [Frazer, 1995]. 
Isospatial co-ordinates permit a single cell to have up to twelve equidistant 
neighbours defined by 6 axis (fig. 5), Cartesian co-ordinates only permit 6. 

The EDS automatically writes VRML files of developed embryos, enabling three-
dimensional rendered cells and proteins to be visualised. Cells are represented by 
spheres of fixed radius; proteins are shown as translucent spheres of radius equal to 
the extent of their diffusion from their source cells. In order to place a cell in VRML 
its Cartesian co-ordinates need to be defined: to this end, isospatial co-ordinates are 
converted to Cartesian. Figure 6 illustrates how cells and proteins appear when 
rendered. 

5 Experiments 

Because of the complexity of the system, numerous experiments can be performed to 
assess behaviour and capabilities. Here (for reasons of space) we briefly outline two: 
1. The ability of genes and proteins to interact and form genomic regulatory 

networks within a single cell. 
2. The evolution of a 3D multi-cellular embryo with form as close to a prespecified 

shape as possible. 

5.1  Genetic Regulatory Networks 

In order to assess the natural capability of the EDS to form GRNs independently of 
evolution, genomes of five random genes were created and allowed to develop in the 
system for ten developmental steps. The cell was seeded with a random set of eight 
proteins (maternal factors). 

Figure 7 (top) shows an example of the results of this experiment. The pattern 
shows gene four exhibiting autocatalytic behaviour having initially bound to protein 
zero. (Gene four is activated when in the presence of protein zero, and produces 
protein zero when activated.) 

Figure 7 (bottom) shows an example of the pattern that results when the initial 
random proteins (initial conditions) are varied very slightly, but the genome is kept 
constant. Again, gene four shows the same autocatalytic behaviour, but now the GRN 
has found an alternative pattern of activation. These two runs illustrate the difference 
the initial proteins can make on the resulting GRN. 
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Genome: { [ 2 | 1 ], [ 6 | 2 ], [ 5 | 7 ], [ 0 | 0 ], [ 1 | 7 ] } 
 
 
1        x  .  .  x  . 
2        .  .  .  x  x 
3        .  .  .  x  x 
4        x  .  x  x  . 
5        .  .  .  x  . 
6        .  .  .  x  x 
7        x  .  x  x  . 
8        .  .  x  x  . 
9        .  .  .  x  . 
10       x  .  .  x  x 
 
 
 

 
Genome: { [ 2 | 1 ], [ 6 | 2 ], [ 5 | 7 ], [ 0 | 0 ], [ 1 | 7 ] } 

 
 

1        x  .  .  x  . 
2        x  .  .  x  . 
3        x  .  .  x  . 
4        x  .  .  x  . 
5        .  .  x  x  . 
6        x  .  x  x  . 
7        x  .  x  x  . 
8        x  .  x  x  . 
9        .  .  .  x  . 
10       x  .  x  x  . 
 
 

 
Figure 7. Gene expression patterns for a run of a randomly created genome seeded with a 
random subset of proteins. The left side shows the raw output from the system where an ‘x’ 
means the gene in that column is ‘on’ and ‘.’ means the gene is ‘off’. The right side depicts this 
text pattern as a graphical output viewed as a 1D CA iterated over ten time-steps. Note, gene 4, 
i.e., [ 0 | 0 ] is autocatalytic. 

5.2  Morphogenesis: Evolving a Spherical Embryo 

In addition to GRNs, the other important capability of the EDS is cellular behaviour. 
The second experiment focuses on morphogenesis, i.e., the generation of an embryo 
with specific form, constructed through appropriate cellular division and placement, 
from an initial single zygote. For this experiment, the genetic algorithm was set up as 
described previously, with the fitness function providing selection pressure towards 
spherical embryos of radius 2 (cells have a radius of 0.5). 
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Figure 8. Six random initial embryos. 

 

  
 

Figure 9.  Two “spherical” embryos. Using the equation of a sphere as a fitness function 
with sphere of radius 2.0. 

 
 
Figure 8 shows examples of the initially random embryos with their corresponding 

proteins produced by the GRNs. Figure 9 shows two examples of final “spherical” 
embryos. As well as having appropriate forms, it is clear that the use of proteins has 
been reduced by evolution. Interestingly, analysis indicates that evolution did not 
require complex GRNs to produce such shapes. It seems likely that it is the natural 
tendency of the EDS to produce near-spherical balls of cells, hence evolution simply 
did not need to evolve intricate GRNs for this task. Further experiments to evolve 
more complex morphologies are under way. 
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6 Summary 

The staggering complexities of nature result from a combination of evolution and 
development. This work has described the combination of a novel, biologically 
plausible model of development with a genetic algorithm. We have shown how an 
Evolutionary Developmental System can be constructed based on an object-oriented 
model of proteins, genes and cells. We have also described how this system permits 
intricate genomic regulatory networks to form and can evolve spherical embryos 
constructed from balls of cells. By attempting to duplicate many of the intricacies of 
natural development, and through experiments such as the ones outlined here, we 
anticipate that we will help to discover the key components of development and their 
potential for computer science. Further experiments and analysis are ongoing. 
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