The Table: An Illustration of Evolutionary Design
using Genetic Algorithms

PETER J BENTLEY & JONATHAN P WAKEFIELD

DIVISION OF COMPUTER AND INFORMATION ENGINEERING,
SCHOOL OF ENGINEERING, UNIVERSITY OF HUDDERSFIELD, QUEENSGATE,
HUDDERSFIELD, WEST YORKSHIRE HD1 3DH, UK
email: p.bentley@eng.hud.ac.uk

ABSTRACT

This paper describes an attempt to enable
computers to generate truly novel conceptual
designs of solid objects by using genetic
algorithms (GAs). The current capabilities of
the system are illustrated by the example of
designing a table. Each individual table has its
functionality specified by an explicit objective
function, which is utilised by GAs to evolve
candidate designs. These designs are
represented using spatial partitions of
'stretched cubes'. The effect that varying the
number of spatial partitions in each design has
on evolution is investigated. Additionally, a
method of producing symmetrical designs is
explored.

1. INTRODUCTION

The genetic algorithm (GA) is a highly flexible
and powerful search algorithm that uses
principles of evolution observed in nature to
direct its search [1,2]. GAs can tackle
optimisation problems if these problems are
formulated in terms of search, where the search
space is the space containing all possible
combinations of parameter values, and the
solution is the point in that space where the
parameters take optimal values. Indeed, GAs
are commonly used to optimise designs, with
some remarkable results [3]. However, in this
paper we aim to demonstrate that GAs are able
to do more than just optimise existing designs -
we propose that they can create entirely new
designs from scratch.

The area of design creation using genetic
algorithms is a relatively unexplored area.
Using GAs to create new designs has the
potentially great benefit of new conceptual
designs being automatically created in addition
to optimal designs. So far research has been
performed in limited ways, such as the use of
GAs to create new conceptual designs from
high-level building blocks [4] although this
often seems to be little more than the
optimisation of connections between existing

designs rather than true design by the GA.
Also the related area of Genetic art is
becoming more popular, with various voting
systems now being on-line on the internet (e.g.
John Mount's 'Interactive Genetic Art' at
http://robocop.modmath.cs.cmu.edu.8001).
Other art-evolution systems using humans as
design evaluators have been created [5,6], but
as yet very few, if any, systems exist that can
evolve a design from scratch with no human
input during the evolution process. This paper
describes an early prototype of an evolutionary
design system, capable of doing just that. To
demonstrate this, the system is set the task of
designing a table. The table was chosen in
order to allow investigation of some
fundamental aspects of design and because it is
a recognisable everyday object.

2. REPRESENTATION

Evolving designs from scratch rather than
optimising existing designs requires a very
different approach to the representation of
designs. When optimising an existing design,
only selected parameters need have their
values optimised (e.g. for a jet-turbine blade,
such parameters could be the angle and
rotation speed of the blade). To allow a GA to
create a new design, the GA must be able to
modify more than a small selected part of that
design - it must be able to modify every part of
the design. This means that a design
representation is required, which is suitable for
manipulation by GAs. Many such
representations exist, and some are in use by
the evolutionary-art systems: a variant of
constructive solid geometry (CSQG) is used by
Todd & Latham [6], others use fractal
equations (e.g. John Mount - see the WWW
address given above), and Dawkins [5] uses
tree-like structures. For a system capable of
designing a wide variety of different solid
object designs, however, a more generic
representation is needed.



corrected and mapped to

GENOTYPE

(coded indirect representation of design)

A

GENETIC ALGORITHM

- PHENOTYPE

(representation of design)

\

EVALUATION SOFTWARE

fitness value(s)

Fig. 1 Operation of the prototype evolutionary design system.

A variant of spatial-partitioning representation
has been developed for this work [7]. This
representation uses spatial partitions of
variable sizes, each one being a 'cuboid' with
variable width, height, depth and position in
space. Each primitive shape can also be
intersected by a plane of variable orientation,
but this refinement to the representation will
not be considered in this paper. One of the
many benefits of using such a variable-sized
primitive shape as a spatial-partition is that few
partitions are required to represent designs.
Significantly, the fewer the partitions in a
design, the fewer the number of parameters
that need to be considered by the GA. A
disadvantage, however, is that it is possible to
represent illegal designs wusing the
representation, i.e. it is possible for two spatial-
partitions to overlap each other causing
redundancy and ambiguity.

The simplest way to overcome the problem of
illegal designs is to remove them from the
population if any are created. Unfortunately, it
seems that a high proportion of all new
offspring are illegal. Thus, a large amount of
the time spent by the GA is wasted producing
illegal designs which are immediately
discarded. An alternative method is to correct
the genotypes of any illegal designs in the
population, making them legal. This is
performed by a correction routine, which
compares each primitive in a design with every
other primitive, and squashes any overlapping
primitives until they touch. However, once
again, this causes problems. It seems that a
high proportion of all new offspring differ
only from their parents in that they have one or
more primitives that overlap. By correcting
them, these offspring become identical to their
parents, thus undoing the evolution.

Thus, some form of 'safe' correction is needed,
to convert overlapping primitives into non-
overlapping primitives without affecting
evolution. The solution is to correct the designs
during the mapping of the genotypes to the
phenotypes, rather than directly correct the
genotypes of the designs and interfere with the
evolution process by performing 'genetic
engineering'. This means that the genotype of a

design no longer directly corresponds to the
phenotype (i.e. the design) - the shape of the
design is now defined by the rules of the
representation as well as its genes [8].

Hence, the GA evolves new designs by
manipulating coded indirect representations in
the genotypes, which are mapped to the direct
representation of the phenotypes, Fig. 1. Since
the phenotypes are evaluated, not the
genotypes, the GA manipulates the shape of
the designs indirectly. Despite this fact, the GA
is able to take into account the restriction of
the design representation, and compensate.

Some form of guidance is necessary to direct
the evolution of the designs. This is provided
by evaluation software - effectively a software
version of the design specification. As will be
shown below, the evolutionary design system
can evolve new designs from scratch, guided
only by such evaluation software.

3. EVALUATION OF A TABLE

A series of previously documented
experiments [8] have shown that a table can be
adequately specified by the combined use of
six evaluation criteria. These are:

SIZE

Perhaps the most basic requirement for a table
is that of appropriate size. The size of the
design is specified by minimum and maximum
extents for the left, right, back, front, top and
bottom of the design. The fitness of a
candidate design decreases the further it is
from the ideal size.

MASS

Another basic, but vital requirement is that of
mass. An ideal mass is defined, the fitness of
the design decreasing the more the actual mass
differs from the ideal mass.

UNFRAGMENTED DESIGNS

The easiest way for the GA to create designs of
lower mass is to reduce the dimensions of the
primitive shapes that make up the designs.
However, this can produce fragmented
designs, where primitives become



disconnected from the main part of the design.
(Fragmented designs are detected by creating a
network of the primitives and their connections
in a design, and traversing it recursively. Any
primitive that is not part of the main design
will not be visited, meaning that the design is
fragmented.)

Since this work concentrates on the evolution
of a single object at a time, such fragmented
designs are heavily penalised. The fitness of
fragmented designs is only based on the sum of
the distance of each primitive from the origin
(normally the centre of the design).

STABILITY

A more complex requirement is stability under
gravity - the table must stand upright, and not
fall over under its own weight. The stability of
a candidate design is determined by calculating
whether the centre of mass of the design falls
within the outer extents of the primitive(s)
touching the ground. The more unstable the
design is, the worse its fitness becomes.

FLAT SURFACE

Perhaps the most important requirement of a
table is its flat, upper surface - the table top. A
good table should have a flat surface at an
appropriate height from the ground, and
covering an appropriate area. These criteria are
evaluated by randomly sampling, the top of the
design within the required area of the table top,
and checking how much the height at these
points differs from the required height. The
greater the difference, the less fit the design is.

SUPPORTIVENESS AND STABILITY

One final requirement for a table is that it must
be able to support objects on its flat upper
surface. Although tables evolved with the first
five criteria do stand up on their own, if an
object was to be placed on them, most would
still topple over. Greater stability is therefore
required. This is achieved by a simple
extension to the 'stability under gravity'
constraint, which requires the table to be able
to support an object placed at the very edges of
its extremities without falling over.

4. EVOLUTION OF A TABLE

The genetic algorithm used for the experiments
described in this paper remains unchanged
throughout, the only variation being the
number of generations it runs for. A basic
canonical GA was used [9], with primitive
'roulette wheel' partner selection [2], and real
coding [10]. The population was initialised with
primitives of random size and location at the
beginning of every test run (i.e. starting from
scratch). Initially, two experiments were

performed, to discover whether the GA could
evolve designs for tables comprised of five
primitives.

EXPERIMENT 1

Designs of five primitives were evolved, using
the first five evaluation criteria mentioned
previously (i.e. the tables were required to
remain standing under their own weight, but
not to support any additional weight). The
population size was set at 100, and the GA was
allowed to run for 300 generations.

The resulting designs were usually very good,
but compromises were being made by the GA.
It was not always able to fully satisfy all of the
evaluation criteria since, in order to have a
large flat surface, the size of the primitives
must be increased, but to have a low mass, the
size of the primitives must be decreased.
Results were often designs with excellent table
tops, but too massive (Fig. 2), or designs with
unusual multi-level table tops with the right
mass (Fig. 3). Nevertheless, all the designs
were the right size, stable, and unfragmented.

EXPERIMENT 2

Again, designs of five primitives were evolved,
this time with all six evaluation criteria being
used. The GA was allowed to run for 500
generations, and produced some remarkably fit
designs, coming up with two main methods for
increased stability: a very low centre of mass
(Fig. 4) or a very wide base (Fig. 5).

EXPERIMENT 3

Having found that excellent designs can be
evolved for tables comprised of five
primitives, an experiment to evolve tables
using fewer primitives was performed. For this
experiment, designs of only three primitives
were evolved, again using all the evaluation
criteria. The GA ran for 600 generations, but
the resulting designs were not as expected:
most of the time, insufficiently stable tables
evolved, Fig. 6. It seems that, because of the
random initial positions of the primitives,
designs with three primitives on top of each
other are rare, meaning that the expected
design (Fig. 7) could not evolve most of the
time. Nevertheless, the GA produced the best it
could, given the poor initial population. As is
clear from Fig. 6, the table is the right size,
mass, is unfragmented, has a good table top
and is very stable in one axis at least.

EXPERIMENT 4

To further investigate the effect that varying
the number of primitives has on evolution,
designs of ten primitives were evolved. After
600 generations, the evolved designs were
typically as shown in Fig. 8. Clearly, ten
primitives are too many to evolve satisfactory



| Pt P2
P4 1* 2 4
P5 2 3% 5
P6 4 5 6*

Table 1 Order to check and
correct overlapping primitives
(after reflection in x = 0)

designs; the GA is unable to incorporate all
of them in the design, with the result that the
table is not well formed and has unnecessary
parts. When the redundant primitives were
manually removed, the design was much
improved (see Fig. 9). Despite still being too
massive, this table does have a good table top,
and a very stable '"T' shaped footprint.

5. SYMMETRICAL DESIGNS

Although it should be apparent that the GA can
indeed create novel, usable designs for tables
using five primitives, almost all of the evolved
tables have just a single support, unlike the
four-legged table most of us are used to. The
missing feature is symmetry - all of the tables
evolved are highly asymmetrical. Enforcing
symmetry would allow the GA to produce
tables with two or four legs.

Symmetrical designs could be requested by the
addition of another criterion to the evaluation
software, i.e. the less symmetrical a design is,
the less fit it is. However, previous experience
indicates that the GA would rarely evolve
designs that fully meet the strict requirements
of symmetry. Additionally, the calculations to
determine the degree of symmetry in a design
would be complex. A more attractive method
is to enforce symmetry by reflecting the design
in one or more planes. This reflection is
performed in the genotype to phenotype
mapping, meaning that the genotype need only
specify the non-reflected portion of the design.
This has the advantage of always producing
symmetrical designs, with the GA only
needing to manipulate half or a quarter
(depending on the number of reflections) of the
primitives in each design.

Reflection can be performed inthe x =0,y =0
and z = 0 planes. A design can intersect a plane
and still be reflected in it: all primitives on one
side are reflected to the other. Since this can
(and often does) produce designs that have
primitives overlapping, the reflected design
must be corrected once again.

P1 P2 P3 P4 PS5 P6
P7 1* 2 4 1 2 4
P8 2 3* 5 2 3 5
P9 4 5 6* 4 5 6
P10 1 2 4 1* 2 4
P11 2 3 5 2 3* 5
P12 4 5 6 4 5 6*

Table 2 Order to check and correct overlapping
primitives (after reflection in x = 0, then z = 0)

For example, consider a design consisting of
primitive shapes P1 to P3. The genotype of the
design will always only hold coded versions of
these three, no matter how many reflections
take place later. During the mapping of
genotypes to phenotypes, the three primitives
are checked against each other and corrected
should any overlap. The design is then
reflected in the plane x = 0, producing a
symmetrical design consisting of primitives P1
to P6. The two halves: P1 to P3 and P4 to P6
are then checked for overlaps and corrected if
necessary. This checking and correction
process must be performed in a symmetrical
manner, to ensure both halves of the design are
corrected identically. (To correct overlapping
primitives, the primitives are squashed in the
direction which ensures the least change occurs
to them. However, there is a special case when
correcting a primitive that overlaps its mirror
image - it must always be squashed in the
direction normal to the plane of reflection.)
Table 1 shows the order in which the checks
must be performed, with each matching
number representing a check to be performed
simultaneously and each special case denoted
by an asterisk.

For a design symmetrical in two planes, the
process is repeated. The design consisting of
primitives P1 to P6 is reflected in z = 0. The
new design P1 to P12 must then be corrected
again, with these checks and corrections (if
necessary) occurring in a new symmetrical
manner as shown in Table 2.

Despite the seemingly large number of checks
that need to be performed for each design
during the genotype to phenotype mapping, by
checking at each stage, the number has been
reduced. In the example above, if every
primitive shape was checked for overlaps affer
both reflections, 11+10+9+...4+2+1 = 66 checks
would be required. By checking at each stage
of reflection, the number of checks is reduced
to 3+9+36 = 48.

Using this method of enforcing symmetry, two
more experiments were performed.



EXPERIMENT 5

Designs of five primitives reflected about x =0
(symmetrical ten-primitive designs) were
evolved for 600 generations. The results were
the best yet seen, being judged practically
perfect by the evaluation software (see Figs 10
& 11). As expected, introducing symmetry
made evolution to good designs a much easier
task for the GA. A symmetrical design is
inherently more stable and it is much easier for
crossover and mutation to produce designs of
the right size, mass and with good table tops.

Although the designs do consist of ten
primitives, since many are 'doubled up' (i.e. the
table tops in both figures shown are made up
from two, not one primitive), there is no
serious problem of too many primitives as was
seen in the fourth experiment.

EXPERIMENT 6

Designs of five primitives reflected in x = 0
and z = 0 (symmetrical twenty-primitive
designs) were evolved for 600 generations.
The results were again excellent, but for some
the high number of primitives did reduce the
fitness slightly. Perhaps the greatest problem
with so many primitives in each design was
one of aesthetics - the tables tended to look
somewhat cluttered. However, since the
evaluation software judges tables purely on
functionality, not artistic features, some results
of this type are to be expected. The GA
favoured two main types of design: the table
with one large base, Fig. 12, and the four-
legged table, Fig. 13.

6. CONCLUSIONS

The genetic algorithm is capable of more than
design optimisation - it can evolve entirely
new designs. The GA can modify coded,
indirectly represented designs and compensate,
producing some excellent results. It can evolve
symmetrical, almost perfect designs of tables
(as judged by the evaluation software), despite
the fact it only indirectly manipulates such
designs.

It is clear that the number of primitive shapes
permitted in a design strongly effects the
ability of the GA to evolve good results. To
solve this problem, it is anticipated that the GA
can be made to evolve not only the position
and dimensions of the primitive shapes, but
also the number of primitives making up a
design. Thus the number of primitives in a
design could be increased or reduced during
evolution, perhaps by a new mutation operator,
until optimal.



il

Fig. 2 Experiment 1: evaluating size, low Fig. 3 Experiment 1: evaluating size, low
mass, stability and flat top mass, stability and flat top
a g li
Fig. 4 Experiment 2: evaluating size, low Fig. 5 Experiment 2: evaluating size, low
mass, flat top and greater stability mass, flat top and greater stability
Fig. 6 Experiment 3: design evolved with 3 Fig. 7 Experiment 3: expected design with 3
primitives. primitives (not evolved).
h g :

Fig 8 Experiment 4: design evolved with 10 Fig. 9 Experiment 4: design evolved with 10

primitives primitives, redundant primitives removed.



Fig. 10 Experiment 5: evolved design
symmetrical in x =0

Fig. 12 Experiment 6: evolved design
symmetrical inx=0and z=0

7. REFERENCES

[1] Holland, J H (1975). Adaptation in
Natural and Artificial Systems. The
University of Michigan Press, Ann Arbor.

[2] Goldberg, D E (1989). Genetic
Algorithms in Search, Optimization &
Machine Learning. Addison-Wesley, USA.

[3] Parmee, | C & Denham, M J (1994).
The Integration of Adaptive Search
Techniques with Current Engineering
Design Practice. Proc from Adaptive
Computing in Engineering Design and
Control -'94, Plymouth, 1-13.

[4] Pham, D T & Yang, Y (1993). A
Genetic Algorithm based Preliminary
Design System. Journal of Automobile
Engineers v207:D2, 127-133.

[5] Dawkins, R (1986). The Blind
Watchmaker. Longman Scientific &
Technical Pub.

[6] Todd, S & Latham, W (1992).
Evolutionary Art and Computers.
Academic Press.

-
¥

Fig. 11 Experiment 5: evolved design
symmetrical in x =0

Fig. 13 Experiment 6: evolved design
symmetrical inx =0andz=0

[7] Bentley, P J & Wakefield, J P (1994).
Generic Representation of Solid Object
Geometries for Genetic Search.
Microcomputers in Civil Engineering (to

appear).

[8] Bentley, P J & Wakefield, J P (1995).
The Evolution of Solid Object Designs
using Genetic Algorithms. Proc. Applied
Decision Technologies, April 1995,
London.

[9] Miihlenbein, H (1992). Darwin's
continent cycle theory and its simulation by
the Prisoner's Dilemma, Conf. Proc. Ist
European Conference on Artificial Life
Towards a Practice of Autonomous
Systems. Paris, 236-244.

[10] Goldberg, D E (1991). Real-coded
Genetic Algorithms, Virtual Alphabets, and
Blocking. Complex Systems 5, 139-167.



