
New Trends in Evolutionary Computation

P. J. Bentley, T. Gordon, J. Kim and S. Kumar
Department of Computer Science

University College London, Gower St., London, UK
P.Bentley@cs.ucl.ac.uk

Abstract- In the last five years, the field of evolutionary
computation (EC) has seen a resurgence of new ideas,
many stemming from new biological inspirations. This
paper outlines four of these new branches of research:
Creative Evolutionary Systems, Computational
Embryology, Evolvable Hardware and Artificial
Immune Systems, showing how they aim to extend the
capabilities of EC. Recent, unpublished results by
researchers in each area at the Department of
Computer Science, UCL are provided.

1 Introduction

This paper describes four recent branches in evolutionary
computation (EC) that take us a few steps closer to the
target of a mature technology based on evolutionary
processes. We show how these new ideas are based on a
better understanding of the capabilities of evolutionary
search. Instead of forcing evolution to do what we think it
should by adding heuristics or local searches, we are
harnessing the innate abilities of evolution for exploration,
innovation, adaptability and distributed search, often
identified through new biological inspirations (Bentley,
2001). Examples and results are provided by researchers
from each area, based at the Department of Computer
Science, University College London.

We begin by examining how evolutionary algorithms
are being extended and employed for unconventional
applications, enabling the development of creative
evolutionary systems. We then show how new advances in
evolutionary design of electronic circuits are possible,
using similar ideas in evolvable hardware. Next, we
describe how computational embryology is opening up new
possibilities of scalability and adaptability. Finally, we
present one of the latest major types of evolutionary
algorithm: an artifical immune system and show its abilities
for machine learning. The paper concludes with a brief
summary and discussion.

2 Creative Computation

The techniques of evolutionary computation have long
been used for optimisation, with some considerable
success. But some researchers are beginning to argue that
evolution is not a natural optimiser. In nature, evolution

propagates change through populations that exist in
dynamic, interacting and ever-changing environments.
Concepts of optima are meaningless in such natural
systems – at most we can talk of ‘better’ or ‘worse’
solutions to the day-to-day problems faced by organisms.

Evolution works very well with such undefined and
changing problems. It may not be the best optimiser, but
when optima are irrelevant, its abilities to explore
possibilities and find creative (if transitory) solutions
seems unsurpassed (Bentley and Corne, 2001).

Recent research is focussing on these abilties of
evolution more and more. Rather than attempt to optimise
static and simplified functions, embedding knowledge (and
constraints) into the search, new work applies evolutionary
algorithms to dynamic and ill-defined problems. Such
research ‘traditionally’ took place only in the field of
artificial life, but researchers now investigate how
evolution can generate novelty for unconventional
applications such as music composition, art, conceptual
design and even novel fighter pilot strategies (Bentley and
Corne, 2001).

Previous and forthcoming work (Bentley, 2000; Bentley
and Corne, 2001) has explored the huge variety of new,
creative applications being tackled by evolutionary
practitioners today. But how do we enable evolution to
handle creativity? One common definition of creativity is
removal of constraints. It is no coincidence, then, that
when we examine how creative evolutionary systems differ
from more traditional evolutionary systems, we see that
constraints of one form or another have been relaxed or
removed. Some researchers do this quite explicitly – for
example the recent work of Ian Parmee concentrates on the
development of interactive evolutionary systems that allow
users to relax functional constraints for engineering design
problems (Parmee & Bonham, 2000). But there are other,
more important constraints that must be considered if we
are to enable creative evolutionary systems to generate
novelty.

Traditional implementations of evolutionary search
suffer from the same fundamental drawbacks as all
conventional search algorithms. They rely on a good
parameterisation to permit them to find a good solution. If
we are optimising a propeller blade, but the
parameterisation does not permit the width of the blade to

vary, then the computer will never be able to find solutions
with different widths. Evolution, like all search algorithms,
is limited and constrained by the representation it can
modify. While relaxing functional and parameter
constraints will permit evolution to arrive at a larger
diversity of solutions, only by modification of the
representation can we enable evolution to innovate. It
seems that the remarkable results obtained by creative
evolutionary systems require the removal of constraints
within the representations, and not only the fitness
functions. And by using a different type of representation,
we can cause this to happen automatically.

When the parameters of our representation do not
define the solution directly, when they define a set of
components from which the solution is constructed, we
permit far greater freedom for evolutionary search
(Bentley, 2000). Now evolution explores new ways of
constructing the solution by changing the relationships
between components. It can vary the dimensionality of the
space by adding or removing elements. It can explore
alternatives instead of optimising a single option.

But while component-based representations enable
evolution to discover novel solutions, they do not allow us
tackle unevaluatable or ill-defined problems. To do this we
often need to add human interaction to the evolutionary
process. Our judgement must contribute to or replace the
fitness functions (or any other part of the evolutionary
algorithm that helps generate selection pressure). When we
modify EAs in this way, we call them interactive
evolutionary algorithms, or collaborative evolutionary
algorithms (Bentley and Corne, 2001).

There are a large number of different approaches used
in this area. For example, Furuta et al (1995) allowed users
to judge the aesthetics of evolving bridges in addition to
their structural evaluation, and employed ‘psychovectors’
to quantify aesthetic factors. Others use multiobjective
optimisation methods to combine user input and fitness
functions (Bentley, 1999), some use fuzzy logic to aid the
input of knowledge into the search (Parmee & Bonham,
2000). Most evolutionary art systems will present users
with some or all of the evolving population, and allow
them to rank or vote on the quality of the images
(Rowbottom, 1999). Some, like the system described in
Adrian Thompson’s recent work (Ch. 9 in Bentley and
Corne, 2001), even allow users to ‘vote with their feet’ and
physically move themselves towards evolving solutions
that they prefer.

2.1 Interactive Genetic Algorithm Designer
The addition of user input into an evolutionary algorithm is
so easy, and the results often so good, that it is surprising
how few researchers actually permit it. To provide an
example of such a system in operation, Bentley’s genetic
algorithm designer, GADES (Bentley, 1999) was modified.

Figure 1 The generic evolutionary design system.

The system comprises four main elements (fig. 1):
• A low-parameter spatial-partitioning representation,

used to define the shape of solid-object designs by
shaping and combining separate solid ‘blocks’.

• Hierarchically structured genotypes combined with a
hierarchical crossover operator, which allow child
designs to be efficiently generated from parent designs
with different sized genotypes without loss of meaning.

• A steady-state multiobjective genetic algorithm, using
an explicit mapping stage between genotypes and
phenotypes, preferential selection of parents and a life-
span operator, which forms the main search-engine at
the core of the system.

• Modular evaluation software, which is used to guide
evolution to functionally acceptable designs, with new
design tasks being quickly specified by the user picking
combinations of existing evaluation modules from a
library.

“dragonfly”
evolved with human guidance only

“airplane”
evolved using human guidance and

objective functions

Figure 2 Shapes evolved by the interactive GADES.

A new evaluation module was added which simply
displayed a 3D rendered image of each member of the
evolving population to the user in turn, and asked for a
fitness score to be input (a number between 0 and 9). With
a reduced population size of ten individuals, slightly higher
mutation rates than normal (to slow convergence) and
about 30 or 40 generations, a wide variety of ‘interesting
solutions’ were evolved. Because of the time needed to
judge the solutions, each took around half an hour. Figure
2 shows how creative the results of evolution were, when

combined with human guidance. The left image illustrates
a shape evolved with human guidance alone, the right
image shows a shape evolved with human guidance as one
objective, and two other objectives (to ensure the shape
was not fragmented and also to reduce ‘wind resistance’ by
ensuring a streamlined shape). Other results are provided in
(Bentley and Corne, 2001).

3 Evolvable Hardware

There are of course more significant applications than
evolving shapes that look like dragonflies or airplanes
(however streamlined they may be). One important new
area is evolvable hardware: the automatic design and
synthesis of electronic circuits. The most exciting area
within this field is that of intrinsic hardware evolution,
where evolved designs are tested for fitness in vivo on field
programmable gate arrays (FPGAs).

Modern circuits can contain a large number of
components. Human designers need to reduce the search
space of all functions of these components to a manageable
size. To do this, they tend to work in a space of lower
dimensionality in which they are expert. For instance,
some designers treat all components as perfect digital
gates, when in fact the components are physical devices
that behave as high gain analogue amplifiers.

In order for this digital design abstraction to be realised
in hardware, we have to restrict the temporal behaviour of
the physical circuit, imposing set-up and hold times on
sections of the circuit. This allows the analogue circuit to
appear to behave as digital gates. Restrictions on timing
such as these not only prevent us from taking advantage of
a huge amount of potentially useful gate behaviour, but
also force us to spend a great deal of the design effort
ensuring that the phase rules are adhered to throughout the
circuit.

Evolutionary search works best without adding such
constraints. Indeed, by allowing evolution to use the
analogue behaviour abstracted away by digital designers,
we can enable the generation of more efficient circuits, and
perhaps even aid the evolutionary process through
improved evolvability. Thompson’s (1996) tone
discriminator is an example of such work. Parts of this
circuit behave digitally, as specified by the FPGA vendor.
However, the overall behaviour is far from digital,
resulting in highly original and non-human electronic
circuit designs.

3.1 Evolving Adders
An intrinsic evolvable hardware platform has been
developed to further research at UCL. We selected the
Xilinx Virtex FPGA for our experiments1.

1 Virtex 2.5V Field Programmable Gate Arrays Databook V2.4
available at: http://www.xilinx.com/partinfo/ds003.pdf.

Although the Virtex architecture is course-grained it can
be configured using JBits (the Java configuration API from
Xilinx) at a fine level of detail. However to allow the
genetic algorithm to manipulate the configuration at such
fine granularity that JBits allows, a directly mapped binary
representation could not be easily used. To avoid unknown
and unwanted biases in the encoding, each resource that
could be modified by JBits was encoded as a separate
integer gene. The exceptions to this were the lookup table
(LUT) configuration, which were each sixteen bits.

Routing representation was also an issue. Each
configurable logic block (the Virtex is arranged as an array
of CLBs) is driven independently, so it is possible for
contention to arise between two drivers if two output
multiplexers from two different CLBs drive the same line.
Previously reported intrinsic evolution using Virtex FPGAs
has either worked with fixed routing (Hollingworth et al,
2000), or the method of contention avoidance has not been
reported (Levi, 2000).

To avoid contention we modified the representation. It
was noted that although CLB input multiplexers can
connect to many nearest neighbour routing lines (singles),
the connections between the output multiplexers and
singles are sparse, and few can connect to any that their
neighbours can. In fact, only eight of the possible forty-
eight connections had to be prohibited to prevent any
possible contention arising. Only singles were encoded on
the chromosome, and connection points between singles
were not evolved. Although the representation was
necessarily restricted with the human design principle of
contention avoidance, it allows the genetic algorithm
access to manipulate almost all other configurable features
on the FPGA. Searching this unconstrained design space
offers the opportunity to find innovative circuits designed
expressly for the Virtex architecture. An overview of the
chromosome structure for one CLB and its associated
routing is shown in table 1.

Number of Genes Type of Gene No. of Values

16 LUT Input MUXes 27

2 Clock Input MUXes 11

2 SR Input MUXes 10

2 Clock Enable Input MUXes 11

4 Other Input MUXes 4

64 LUT Configuration 2

48 Other CLB Logic 1-3

8 Output signal MUX 13

40 Output MUX to single switches 2

Table 1 Overview of the genotype for one CLB.

A small rectangle of the chip was selected for evolution.
The cells on the edges of this area only allowed to use the
routing connections to the rest of the evolved area, and not

outside. For instance the cell on the northeast corner was
restricted to use only output multiplexer connections to
single lines travelling south and west.

3.2 Experiments
A genetic algorithm was developed to evolve this structure.
In addition to the behaviour of standard integer genetic
algorithms, it was also required that the number of alleles
that each gene can assume can be set independently of the
others. We chose to validate this genetic algorithm by
evolving in simulation a circuit representation that Miller
et al (1997) had examined, the two-bit adder.

The circuit is represented by an indexed rectangle of
cells. They are indexed from the top left cell, row-wise
then column-wise. Each cell has two inputs and one logic
function. The function may either be a two input logic gate
or a two data input multiplexer. Inputs to a cell can be
either from other cells, or the circuit inputs. The circuit
inputs are the test input vector, the inverted test input
vector, logic 0 or logic 1. To avoid feedback, each input
must be from a cell with a lower number than the cell
itself. The circuit outputs required are restricted to the top
and right hand side of the cell array.

The circuit is encoded as an integer string. There is a
triplet of integers for each cell, representing the sources of
the two cell inputs and the cell function, with the triplet
locus mapping to the cell index. If the cell function is a
logic gate, the function allele represents a specific logic
gate. If the cell function is a multiplexer, then the allele
represents the multiplexer control signal source, which can
be either the output of another cell or a circuit input. Table
2 shows the list of functions used. Cell outputs are
represented by an integer each, the allele referring to the
output cell index.

Fitness was measured by subjecting each candidate
circuit to a test vector containing the complete two-bit
adder truth table. One fitness point was awarded for each
correct input/output sequence, giving a total of 96 for
maximum fitness. The circuit inputs were therefore A0,
A1, B0, B1, Carry In, !A0, !A1, !B0, !B1, !Carry In, 0, and
1. The outputs were S0, S1, and Carry Out.

Allele Function Allele Function
0 A . B 7 !A
1 A . !B 8 !A +B
2 !A . B 9 !B
3 A ⊕ B 10 !A + B
4 A + B 11 !A + !B
5 !A . !B 12.... !C . A + C . B, C =

circuit input 0
6 !A ⊕ B ...(n) !C . A + C . B, C = input

(n-12)

Table 2 List of function to allele mappings used.

Uniform crossover was used with two-member tournament
selection (the winner of each tournament was selected with

70% probability). The mutation rate was set to 5% of all
genes in the population. The population size was set to 30.
20,000 generations (unlike Miller et al’s 40,000-80,000)
seemed sufficient to produce good results.

3.3 Results
10 runs were each made for cell array sizes of 3x3, 3x4,
and 4x4. Table 3 shows overall results. Fitnesses and
deviations have been scaled to 100.

Array
Size

Mean fitness of
Best Solutions

Std. Dev. Of
Best Solutions

% of Runs with
Perfect Solutions

3x3 96.25 4.99 50%
4x3 96.88 3.71 50%
4x4 97.50 4.03 60%

Table 3 Results from 10 runs of 2 bit adder evolution across a
range of array sizes

The results achieved from these experiments agree well
with Miller's results (Miller et al, 1997). For example, for a
3x3 array, Miller reported a mean fitness of 96.14 with a
standard deviation of 4.52, and 50% of cases perfect.
Figure 3 shows an example of a two-bit adder evolved on
the 3x3 array. This is a variation on a traditional two-bit
ripple-carry adder, using the same number and types of
gates, but in a slightly different configuration. As discussed
in (Miller and Thompson, 1998), this illustrates the ability
of evolution to discover novel digital circuit designs. By
using representations that allow evolution to explore a
greater space of circuits than human designers would
consider, we enable the generation of innovation.

B0

C In

A0

B1

A1

S1

C Out

S0

Figure 3 Example of an adder evolved on a 3x3 grid.

4 Computational Embryology

Allowing evolution greater freedom by modifying
representations is just the first step towards achieving the
diversity and scalability of solutions created by natural
evolution. In nature, ‘representations’ are much more
complicated: there is not a one-to-one mapping from gene
to phenotypic effect. Organisms develop from a set of
genetic instructions. The new fields of embryonics,
artificial morphogenesis and computational embryology
attempt to harness the power of such developmental
processes.

Researchers have been using very simple computational
embryogenies of various guises for over a decade. Current
computational embryogenies can be classified into three
different types: external, explicit, and implicit (Bentley &
Kumar, 1999).

External embryogenies are typically, hand-designed and
are defined globally and externally to genotypes. They are
characterised by their fixed, non-evolvable structures. For
example, Evolutionary Art systems often use external
embryogenies which specify how phenotypes should be
constructed using the genes in the genotypes. Similarly,
Richard Dawkins’ Blind Watchmaker program (Dawkins,
1987), employs a simple external embryogeny to create
biomorphs, using ‘eye-of-the-beholder’ to provide a fitness
measure, and mutation to vary the evolving shapes.

An explicit embryogeny specifies each step of the
growth process in the form of explicit and evolvable
genetic instructions. In computer science, an explicit
embryogeny can be viewed as a tree containing a single
growth instruction at each node. Genetic Programming
(GP) uses tree structures to represent its genotypes. GP
therefore, offers a simple and concise way to evolve
explicit embryogenies. Typically, the genotype and the
embryogeny are combined and both are allowed to evolve
simultaneously. Perhaps most famous example is the work
by Koza et al (1999) who used Gruau’s cellular encoding
for the evolution of analogue circuits. Also, Sims (1999)
used an explicit embryogeny with the idea of directed
graphs to specify the nervous systems (neural networks),
and morphologies of virtual creatures.

An implicit embryogeny does not explicitly specify
each step of the growth process. Instead, the growth
process is implicitly specified by a set of genetic rules or
instructions, similar to a ‘recipe’ that govern the growth of
a shape. For example, de Garis (1999) describes an implicit
embryogeny to evolve convex and concave shapes using a
cellular automata approach. Jakobi (1996) devised an
implicit embryogeny based system that employed cell
division, cell movement, and diffusable proteins, in order
to evolve neural net robot control architectures. Table 4
summarises the three categories of computational
embrogeny.

Outside genotypes
(Non-evolvable)

Inside Genotypes
(Evolvable)

Timing and action of
every growth step

is provided

EXPLICIT
EMBRYOGENY

Timing and action of
growth emerges

EXTERNAL
EMBRYOGENY

IMPLICIT
EMBRYOGENY

Table 4 External, explicit and implicit embrogenies.

4.1.1 Experiments
Previous work (Bentley & Kumar, 1999; Kumar and
Bentley, 2000), compared the performance and scalability
of different evolved computational embryogenies for the

generation of tessellating tiles and letters of the alphabet.
The results showed impressive scalability by an implicit
embryogeny, which maintained constant genotype sizes
despite evolving tessellating tiles in finer resolutions. For
example, fig. 4 shows the six letters of the alphabet used as
targets for evolution. Presented as 4x4, 8x8 (as shown) and
16x16 targets, they provided an assessment of the ability of
evolution to produce accurate and scalable developmental
processes, capable of ‘growing’ the desired letter.

Figure 4 The pre-defined six target shapes

In these tests, two embryogenies were evolved and
compared. The first was an explicit embryogeny, using GP
trees to direct paths of growing cells in a phenotype grid.
The second was an implicit embryogeny, which iteratively
used CA-like rules to enable shapes to emerge in a
phenotype grid. For full details, refer to (Kumar and
Bentley, 2000). Table 5 gives the results of the
experiments.

Perhaps the most significant results shown in Table 5
are the solution sizes. It is clear that the explicit
embryogeny required ever-increasing tree sizes as the scale
of the target shapes were increased. However, the reverse
seems to be true for the implicit embryogeny, where the
number of rules actually appears to decrease as the
problems are scaled up. This lack of increase of solution
size corroborates and confirms the results obtained in
previous work which reported similar findings (Bentley &
Kumar, 1999).

4x4 8x8 16x16
Shape Mean

Soln.
Size

Mean
Fitness

Mean
Soln.
Size

Mean
Fitness

Mean
Soln.
Size

Mean
Fitness

C 14.28
12.70

0.92
1.64

57.70
11.47

13.20
12.82

309.40
10.00

84.1
53.7

E 24.22
11.42

1.28
0.32

168.44
11.96

9.54
5.89

693.58
6.700

81.40
49.40

G 18.88
13.86

1.2
0.78

59.52
10.98

12.72
12.84

302.12
6.000

76.34
52.90

L 9.52
11.22

0.26
0.58

71.04
9.02

3.56
6.38

235.46
8.200

39.46
38.40

O 20.20
11.60

1.31
0.18

81.29
13.29

15.76
9.00

293.00
6.400

104.33
48.70

R 18.78
12.98

1.35
0.60

121.53
12.33

7.88
9.92

513.43
6.900

76.16
55.80

Table 5 Results for the target shapes. Values in italics denote the
results for the implicit embryogeny. Solution sizes are measured

in tree nodes for the explicit, and rules for the implicit
embryogeny.

4.1.2 Biologically plausible implicit embryogeny
With the results of this experiment in mind, a new implicit
model is now under development by the authors. The
current system has been extended from the two-
dimensional cellular automata, to an isospatial grid
system. The isospatial grid, is a three dimensional
coordinate system, developed by (Frazer, 1995), it uses six
axis to define a point in space, yielding twelve equidistant
neighbours for each point.

 The system uses spheres to represent cells and builds
three-dimensional morphologies by carefully placing and
organising a colony of cells using a growth process. This
process will use the concept of freely diffusing
morphogens to allow cells to acquire positional-
information. In addition, key embryological processes such
as differentiation and pattern formation shall be
investigated to grow morphologies. Although heavily
inspired by biology, this system is not intended as a model
of biological development. Instead, the work is aimed at
extending the capabilities and scalability of evolutionary
algorithms.

 An implicit embryogeny based system is used to
evolve rules that are able to grow designs in complex ways.
A chromosome comprises a series of rules (genes). A rule
consists of a precondition field and an action field. Each
cell has a copy of the chromosome. The rules are applied
(expressed) by matching the preconditions to a cell’s state.
If the preconditions are satisfied the rule is expressed. In
this way, rules expressed earlier on in the development can
affect other rules by switching them on or off.

Figure 5 illustrates six morphologies grown from
random genomes using the new system. It should be clear
that the isospatial grid enables surprisingly organic forms
to emerge.

Figure 5 Six example random morphologies grown by the new
system without any morphogens in the environment.

5 Artificial Immune Systems

So the use of processes that have been inspired by
development in nature can increase the scalability of
evolutionary algorithms. But this is not the only natural
evolutionary process that researchers have recently ‘stolen’

from biology. Our own immune systems use evolution,
enabling highly robust, adaptive and distributed detection
of a vast variety of foreign pathogens. And a growing
number of computer scientists have carefully studied the
success of this competent natural mechanism and proposed
computer immune models for solving various problems
including fault diagnosis, virus detection, and mortgage
fraud detection (Dasgupta, 1998).

Among these various areas, intrusion detection is a
vigorous research area where the employment of an
artificial immune system (AIS) has been examined
(Dasgupta, 1998). The main goal of intrusion detection is
to detect unauthorised use, misuse and abuse of computer
systems by both system insiders and external intruders.
Currently many network-based intrusion detection systems
(IDS’s) have been developed using diverse approaches.
Nevertheless, there still remain unresolved problems to
build an effective network-based IDS. As one approach of
providing the solutions of these problems, previous work
(Kim and Bentley, 1999a) identified a set of general
requirements for a successful network-based IDS and three
design goals to satisfy these requirements: being
distributed, self-organising and lightweight. In addition,
Kim and Bentley (1999a) introduced a number of
remarkable features of human immune systems that satisfy
these three design goals. It is anticipated that the adoption
of these features should help the construction of an
effective network-based IDS.

Previous work (Kim and Bentley, 1999a) introduced the
salient functions of the human immune system with respect
to network intrusion detection. In this work, we view the
normal activities of monitored networks as self and their
abnormal activities as non-self and design an AIS for
distinguishing normal network activities from abnormal
network activities.

Based on this view, we proposed a novel AIS for
network intrusion detection (Kim and Bentley, 1999b), see
figure 6. The AIS for network intrusion detection consists
of a primary IDS and secondary IDS’s. For the AIS, the
primary IDS, which we view as being equivalent to the
bone marrow and thymus within the human body,
generates numerous detector sets. Each individual detector
set describes abnormal patterns of network traffic packets
and common patterns of network traffic packets when
network intrusion occurs. This unique detector set is
transferred to a monitored single local host. We view local
hosts as secondary lymph nodes, detectors as antibodies
and network intrusions as antigens. At the local hosts
(secondary IDS’s), detectors are background processes
which monitor whether non-self network traffic patterns
are observed from network traffic patterns profiled at the
monitored local host. The primary IDS and each secondary
IDS have communicators to allow the transfer of
information between each other, see figure 6.

P rim ary ID S

S econdary ID S

N etw o rk p ack e ts

R ou te r

C om m u n ica to r

C om m u n ica tion f low

D etec to rs

Figure 6 Architecture of the AIS for network intrusion
detection.

5.1.1 Experiments
For the proposed AIS, several sophisticated mechanisms of
the human immune system are embedded in three
evolutionary stages: gene library evolution, negative
selection and clonal selection. These processes allow the
AIS to satisfy the identified goals for designing effective
network-based IDS’s (Kim and Bentley, 1999a). They also
exploit key features of natural immune systems such as
distributed detection, adaptation to new antigens and
discovery of new patterns in data.

Recent work has investigated the combination of clonal
selection with negative selection in the AIS. Detectors (in
the form of classification rules) are evolved using the
clonal selection algorithm: parent detectors compete in
groups, with only the rule that matches a non-self antigen
having its fitness increased. The fittest parents are
randomly picked for reproduction, and if child detectors
match any ‘self’ antigens, they are removed (negative
selection), with parents generating new children. The
combination of these two processes results in the evolution
of a population of detectors that are clustered into niches,
and that can together distinguish between ‘self’ and ‘non-
self’ data. For full details, refer to (Kim and Bentley,
2001).

Three different data sets from the UCI repository2 for
machine learning algorithm benchmark work were used to
test the system: Wisconsin breast cancer data (241
examples belong to ‘Malignant’ class and 458 examples
belong to ‘Benign’), the ‘vote’ data set (267 ‘democrat’
and 168 ‘republican’ examples) and the iris data set (50
examples each of ‘setosa’, ‘virginia’ and ‘versicolour’). A
tenfold cross-validation method was employed to prepare
training sets for the AIS to evolve and test sets to evaluate
detection of previously unseen non-self patterns. A detector
population size of 300 was used. Each experiment was run
for a maximum 50 generations.

2 ftp:// ftp.ics.uci.edu/pub/machine-learning-databases

TP FP
Cancer Data 95.65 % 5.41 %
Vote Data 92.49 % 3.57 %
IRIS Setosa 99.8 % 1.2 %
IRIS Versicolor 95 % 5 %
IRIS Virginia 95.6 % 1 %

Table 6 The mean of TP and FP rates. IRIS class label in each
row indicates the assigned self class.

Table 6 presents the results of the experiment, where
the detector sample size was 10 and the antigen sample
size was 1 (groups of ten detectors competed to detect one
antigen). The detection rate of the system is described by a
True Positive (TP) rate and a False Positive (FP) rate. The
TP is “non-self” detection rate and the FP is the rate at
which “self” is mistakenly detected by a generated detector
set. The desired system will have a high TP and a low FP.
The table shows the means of 10 experiments.

The results show good accuracy rates, with evolved
detectors correctly identifying between 92.5 and 99.8% of
non-self antigens in the test data. Equally, false-positive
rates were low, with detectors mistakenly matching
between 1 and 5.4% of self antigens. Further results can be
found in (Kim and Bentley, 2001). Like the previous three
examples, these results illustrate the benefits of exploiting
the natural capabilities of evolution. The combination of
immune processes produced niches of distributed detectors,
which together discovered patterns in data that
distinguished 'self' from 'non-self'.

6 Summary and Discussion

The four branches of evolutionary computation that we
have briefly examined here form part of a new vision of
EC that is now being shared by many researchers. These
approaches do not force evolution to do what we think it
should do by adding constraints, problem heuristics, and
ill-conceived hybridisations. Instead, they all pay attention
to the strengths and weaknesses of evolution. By designing
systems that take full advantage of the special capabilities
of evolutionary search, we are beginning to harness the
power of evolution for new and more difficult problems.

The first example: creative evolutionary systems,
illustrated these ideas. In order to enable evolution to
generate a huge diversity of original solutions, knowledge
and constraints were removed, not added. By using
component-based representations, evolution is free to do
what it does best: explore the search space for novelty, not
find a single, global optimum. And by also allowing human
interaction, evolution is able to produce good solutions to
problems that cannot be encompassed in fitness functions.

The second example: evolvable hardware, also showed
the creative potential of evolution in what looks set to be a
very significant application for evolution in the future. By

allowing evolution to consider a larger space of solutions,
it is able to find innovative new circuit designs that human
designers might not think of. The results for this section
included an example of such novelty: a two-bit adder
evolved with a non-traditional gate configuration.

The third example illustrated some of the lessons we are
continuing to learn from biology. Natural evolution is able
to generate diversity and complexity in living organisms
because it uses developmental processes. Like the
innovations by creative evolutionary systems and evolvable
hardware, evolution can generate novel developmental
programs, which enable increased scalability, as was
shown in the results.

Finally, the fourth example shows another way that
researchers are beginning to use the natural abilities of
evolution observed in biology. Our immune systems are
robust, adaptive and distributed because they employ some
clever evolutionary tricks. By using ideas inspired by these
processes within our computers, we are able to create
robust, adaptive and distributed tools, capable of
discovering novel patterns that distinguish between
different types of data such as normal traffic and intruders
in a network.

In summary, this paper has described the evolution of
"dragonflies", adders, programs of development and
immune system detectors. Although diverse, these new
trends in EC have something important in common: in
them we are exploiting the innate abilities of evolution for
exploration, innovation, adaptability and distributed search.
Together, all of these new approaches will increase our
abilities to harness the power of natural processes in our
future technology.

Bibliography

Bentley, P. J. (2001). Digital Biology: how nature is transforming
our technology. Hodder Headline Press, London (to appear).
Bentley, P. J. (2000). Exploring Component-Based
Representations - The Secret of Creativity by Evolution? In
ACDM 2000, April 26th - 28th, 2000, University of Plymouth.

Bentley, P. J. (Contributing Editor), (1999). Evolutionary Design
by Computers. Morgan Kaufman Publishers Inc., San Fran, CA.

Bentley, P. J. and Corne, D. W. (Eds) (2001) Creative
Evolutionary Systems. Morgan Kaufmann Pub (to appear).
Bentley, P.J. & Kumar, S. (1999). Three Ways to Grow Designs:
A Comparison of Embryogenies for an Evolutionary Design
Problem. In Genetic and Evolutionary Computation Conference
(GECCO) Orlando, Florida, USA.
Dasgupta, D., (1998), “An Overview of Artificial Immune
Systems and Their Applications”, In Dasgupta, D. (editor).
Artificial Immune Systems and Their Applications, Berlin:
Springer-Verlag, pp.3-21.

Dawkins, R. (1987). The Evolution of Evolvability. Proceedings
of Artificial Life VI. Langton (Ed.) USA.
de Garis, H. (1999) Artificial Embryology and Cellular

Differentiation. Ch. 12 in Bentley, P. J. (Ed.) Evolutionary
Design by Computers. Morgan Kaufman Pub.

Frazer, J. (1995). An Evolutionary Architecture. Architecture
Association, London.
Furuta, H., Maeda, K. & Watanabe, W. (1995). Apllication of
Genetic Algorithm to Aesthetic Design of Bridge Structures. In
Microcomputers in Civil Engineering v10:6. Blackwell
Publishers, MA, USA, 415-421.
Hollingworth, G., Smith, S., and Tyrell, A. (2000) The Intrinsic
Evolution of Virtex Devices Through Internet Reconfigurable
Logic. In Proceedings of the Third Int. Conf. on Evolvable
Systems, Springer, pp. 72-79.
Jakobi, N. (1996) Harnessing Morphogenesis. University of
Sussex, Cognitive Science Research Report #429, Brighton, UK.
Kim, J. and Bentley, P., (1999a), “The Human Immune System
and Network Intrusion Detection”, 7th European Conference on
Intelligent Techniques and Soft Computing (EUFIT '99), Aachen,
Germany.
Kim, J. and Bentley, P., (1999b), “The Artificial Immune Model
for Network Intrusion Detection, 7th European Conference on
Intelligent Techniques and Soft Computing (EUFIT’99), Aachen,
Germany.
Kim, J. and Bentley, P. J. (2001), The Artificial Immune System
for Network Intrusion Detection: An Investigation of Clonal
Selection with a Negative Selection Operator. Submitted to
CEC2001, the Congress on Evolutionary Computation.
Koza, J.R., Bennett III, Forrest H, Andre, David, and Keane,
Martin A. (1999). Genetic Programming III. San Francisco, CA:
Morgan Kaufmann.
Kumar and Bentley (2000). Computational Embryology: Past,
Present and Future. To be published as an invited chapter in
Ghosh and Tsutsui (Eds) Theory and Application of Evolutionary
Computation: Recent Trends. Springer Verlag (UK).
Levi, D. (2000) "HereBoy: a fast evolutionary algorithm." In
Proceedings of the Second NASA/DoD Workshop on Evolvable
Hardware, IEEE, pp. 17-24.
Miller, J. F., Thompson, P., and Fogarty, T. (1997) Designing
Electronic Circuits Using Evolutionary Algorithms. Arithmetic
Circuits: A Case Study. In Genetic Algorithms and Evolution
Strategies in Engineering and Computer Science: Recent
Advancements and Industrial Applications, Wiley, Chapter 6.
Miller, J. F., Thompson, P. (1998) Discovering Novel Digital
Circuits using Evolutionary Techniques. In IEE Colloquium on
Evolvable Systems, IEE.
Rowbottom, A. (1999). Evolutionary Art and Form. In Bentley, P.
J. (Ed.) Evolutionary Design by Computers. Morgan Kaufman
Publishers Inc., San Francisco, CA.
Sims, K. (1999). Evolving three-dimensional Morphology and
Behaviour. Ch. 13 in Bentley, P. J. (Ed.) Evolutionary Design by
Computers. Morgan Kaufman Pub.

Thompson, A. (1996) Silicon Evolution. In Proceedings of
Genetic Programming 1996, MIT Press, pp. 444-452.

