
Adaptive Fractal Gene Regulatory Networks
for Robot Control

Peter J. Bentley

Department of Computer Science, University College London, Gower Street, London.
P.Bentley@cs.ucl.ac.uk

Abstract. Fractal proteins are an evolvable method of mapping genotype
to phenotype through a developmental process, where genes are expressed
into proteins comprised of subsets of the Mandelbrot Set. The resulting
network of gene and protein interactions can be designed by evolution to
produce specific patterns that in turn can be used to solve problems. In this
paper, adaptive developmental programs, capable of developing different
solutions in response to different signals from an environment, are investi-
gated. Experiments show that such methods are highly effective in produc-
ing robot controllers that generate different movements in response to sen-
sor inputs.

1 Introduction

Development in nature never ceases. From conception to the death of the organism,
genes are expressed into proteins, which control cellular growth, differentiation and
pattern formation. This remarkable process produces highly complex structures from
minimal numbers of genes. For example, a current estimate of the number of genes in
the human genome is 20,000 – and a current estimate of the number of neurons in our
brains is 100 billion.

But development doesn’t just generate complex phenotypes. It also enables those
phenotypes to regenerate (repair themselves if damaged) and adapt. Plants provide the
most obvious examples of adaptive development. Even if two plants are genetically
identical, they will grow differently, dynamically adapting to their environments. The
differences between phenotypes can be extreme, as a cursory examination of any ivy
tree will show.

In a very real sense, all organisms rely on adaptive development. Each cell is con-
trolled by the proteins produced by the genes inside it, but those genes are affected by
signals (proteins produced by genes) from other cells. Change the signals, and the
development of cells is changed, dynamically and adaptively. (Wolpert et al, 2001)

In animals those signals come mainly from within (although forces such as gravity
are essential for correct skeletal and musculature development, light is essential for the
correct development of the visual cortex, and temperature can affect the gender of many
reptiles). In plants, the external environment also provides factors such as sunlight,
forces (e.g., an obstacle blocking the direction of growth) and nutrients in the soil.
These factors are often translated into proteins which trigger major changes in devel-
opment, for example “shade leaves” instead of “sun leaves”. (Wolpert et al 2001)

Whether we regard the external environment of an organism as the source of “ex-
tended” cell signals (cf. Dawkins’s extended phenotype), or we regard intercellular
signals as an environment for the cell, it is clear that the ability for development to
respond adaptively (and differently) to different environmental signals is critical.

The work described here continues an ongoing investigation into the use of fractals
as a computer representation of proteins. Earlier work has shown that fractal proteins
are highly evolvable by a genetic algorithm (Bentley 2004, 2003c), that specific pat-
terns of activation in a fractal gene regulatory network (GRN) can be evolved (Bentley,
2004, 2003b), that evolved fractal GRNs naturally show fault-tolerance (Bentley
2003c), and that they can perform computational tasks such as function regression and
robot control (Bentley 2003a). This work now focuses on adaptive GRNs, posing the
following question: Can a single fractal developmental process be evolved, which
generates different results in different environments? The experiments in this paper
provide evidence to show that such adaptive GRNs can be evolved quickly, reliably
and consistently, by producing wall-following robot controllers that make a robot
respond differently, given different sensor inputs.

2 Background

Researchers such as Hornby (2003), Bongard (2002), and Kumar and Bentley (2003)
have demonstrated that various types of development can enable smaller genotypes to
represent more complex phenotypes through the ability of development to discover
modularities and repetition. Other scientists in the field have been focussing on the
ability of developmental methods to enable self-repairing behaviour and graceful degra-
dation of solutions. For example, the work of Andy Tyrrell and his group create fault-
tolerant hardware inspired by ideas of embryology and immune systems (Jackson and
Tyrrell, 2002). More recently, Julian Miller has described experiments evolving devel-
opmental programs to create “French Flag” patterns (Miller and Banzhaf, 2003). He
shows that development is able to regenerate these patterns, and that different patterns
can be evolved in different environments. Work on applying developmental algorithms
to robot control is less common. Most seem to rely on the development of neural
networks that are then used to control motion (and in some cases generate form)
(Jakobi 1995; Hornby, 2003; Bongard 2002). However, the recent work of Quick
(2003) is highly relevant, describing the evolution of a simple GRN for control of a
Khepera robot. Quick emphasises the need for GRNs to be embodied (linked or cou-
pled) to their environments, with changes in environment causing changes in the
GRN (Quick 2003). He successfully evolved light-finding behaviour, although there
seem to be evolvability issues with his simple representation of genes and proteins.

3 Fractal Proteins

Development is the set of processes that lead from egg to embryo to adult. Instead of
using a gene for a parameter value as we do in standard EC (i.e., a gene for long legs),

natural development uses genes to define proteins. If expressed, every gene generates a
specific protein. This protein might activate or suppress other genes, might be used
for signalling amongst other cells, or might modify the function of the cell it lies
within. The result is an emergent “computer program” made from dynamically form-
ing gene regulatory networks (GRNs) that control all cell growth, position and behav-
iour in a developing creature (Wolpert et al, 2001).

Table 1. Types of objects in the representation
fractal proteins defined as subsets of the Mandelbrot set.
Environment contains one or more fractal proteins (expressed from the environment gene(s)),

and one or more cells.
Cell contains a genome and cytoplasm, and has some behaviours.
Cytoplasm contains one or more fractal proteins.
Genome comprising structural genes and regulatory genes. In this work, the structural

genes are divided into different types: cell receptor genes, environment genes
and behavioural genes.

regulatory gene comprising operator (or promoter) region and coding (or output) region.
cell receptor gene a structural gene with a coding region which acts like a mask, permitting variable

portions of the environmental proteins to enter the corresponding cell cytoplasm.
environment gene a structural gene which determines which proteins (maternal factors) will be

present in the environment of the cell(s).
behavioural gene structural gene comprising operator and cellular behaviour region.

Environment

Cell
Cytoplasm

Genome Fractal
proteins

Fractal
proteins

Environment gene
Cell recepter gene
Regulatory gene
Behavioural gene

FRACTAL DEVELOPMENT

For every cell in the embryo:

For every developmental time step:

Express all environment genes and
calculate shape of merged environment fractal proteins

Express cell receptor genes as receptor fractal proteins
and use each one to mask the merged environment proteins
into the cell cytoplasm.

If the merged contents of the cytoplasm match a promoter
of a regulatory gene, express the coding region of the gene,
adding the resultant fractal protein to the cytoplasm.

If the merged contents of the cytoplasm match a promoter of a
behavioural gene, use coding region of the gene to specify a
cellular function.

Update the concentration levels of all proteins in the cytoplasm.
If the concentration level of a protein falls to zero, that protein
does not exist.

Fig. 1. Representation using fractal proteins. Fig. 2. The fractal development algorithm.

In this work, a biologically plausible model of gene regulatory networks is con-
structed through the use of genes that are expressed into fractal proteins – subsets of
the Mandelbrot set that can interact and react according to their own fractal chemistry.
Further motivations and discussions on fractal proteins are provided in (Bentley, 2004
& 2003a,b,c). Table 1 describes the object types in the representation; Figure 1 illus-
trates the representation. Figure 2 provides an overview of the algorithm used to de-
velop a phenotype from a genotype. Note how most of the dynamics rely on the inter-
action of fractal proteins. Evolution is used to design genes that are expressed into

fractal proteins with specific shapes, which result in developmental processes with
specific dynamics.

3.1 Defining a Fractal Protein

In more detail, a fractal protein is a finite square subset of the Mandelbrot set, defined
by three codons (x,y,z) that form the coding region of a gene in the genome of a cell.
Each (x, y, z) triplet is expressed as a protein by calculating the square fractal subset
with centre coordinates (x,y) and sides of length z, see fig. 3 for an example. In addi-
tion to shape, each fractal protein represents a certain concentration of protein (from 0
meaning “does not exist” to 200 meaning “saturated”), determined by protein produc-
tion and diffusion rates.

Fig. 3. Example of a fractal protein defined by
(x=0.132541887, y=0.698126164, z=0.468306528)

3.2 Fractal Chemistry

Cell cytoplasms and the environment usually contain more than one fractal protein. In
an attempt to harness the complexity available from these fractals, multiple proteins
are merged. The result is a product of their own “fractal chemistry” which naturally
emerges through the fractal interactions.

Fractal proteins are merged (for each point sampled) by iterating through the fractal
equation of all proteins in “parallel”, and stopping as soon as the length of any is
unbounded (i.e. greater than 2). Intuitively, this results in black regions being treated
as though they are transparent, and paler regions “winning” over darker regions. See
fig 4 for an example.

Fig. 4. Two fractal proteins (left and middle) and the resulting merged fractal protein

combination (right).

3.3 Genes

The environment gene, cell receptor gene, regulatory genes, and behavioural genes all
contain 7 real-coded values:

xp yp zp Affinity
threshold

Concentration
threshold x y z type

where (xp, yp, zp, Affinity threshold, Concentration threshold) defines the pro-
moter (operator or precondition) for the gene and (x,y,z) defines the coding region of
the gene. The type value defines which type of gene is being represented, and can be
one or all of the following: environment, receptor, behavioural, or regulatory. This
enables the type of genes to be set independently of their position in the genome,
enabling variable-length genomes. It also enables genes to be multi-functional, i.e. a
gene might be expressed both as an environmental protein and a behaviour.

When Affinity threshold is a positive value, one or more proteins must match the
promoter shape defined by (xp,yp,zp) with a difference equal to or lower than Affinity
threshold for the gene to be activated. When Affinity threshold is a negative value, one
or more proteins must match the promoter shape defined by (xp,yp,zp) with a differ-
ence equal to or lower than |Affinity threshold| for the gene to be repressed (not acti-
vated).

To calculate whether a gene should be activated, all fractal proteins in the cell cyto-
plasm are merged (including the masked environmental proteins) and the combined
fractal mixture is compared to the promoter region of the gene. The full details of this
process are beyond the scope of this paper, interested readers should consult (Bentley
2004, 2003a,b and c).

Behavioural Gene. A behavioural gene is activated when other protein(s) in the
cytoplasm match its promoter region (using the affinity threshold). For this applica-
tion, a gradual activation between not activated and activated was required, using the x
value of the coding region (x,y,z) triplet as a fate value to define a function, calculated
as follows:

If the gene is being activated with a negative Affinity threshold,
output = output - (totalconcentration - concentrationthreshold) * fate

If the gene is being activated with a positive Affinity threshold,
output = output + (totalconcentration - concentrationthreshold) * fate

Note how the total concentration of proteins seen on the promoter is offset against the
Concentration Threshold gene and scaled by the fate gene (x value of the coding re-
gion), allowing evolution to adjust the range of values seen on the output, and used to
specify behaviours. (If there are more behavioural genes than are required, the resultant
behaviour will be the sum behaviour of all genes.)

3.4 Development and Evolution

As was illustrated in figure 2, an individual begins life as a single cell in a given
environment. To develop the individual from this zygote into the final phenotype,
fractal proteins are iteratively calculated and matched against all genes of the genome.
Should any genes be activated, the result of their activation (be it a new protein, recep-
tor or cellular behaviour) is generated at the end of the current cycle. Development
continues for d cycles, where d is dependent on the problem. Note that if one of the
cellular behaviours includes the creation of new cells, then development will iterate
through all genes of the genome in all cells.

All genes are evolved. The genetic algorithm used in this work has been used ex-
tensively elsewhere for other applications (including GADES (Bentley 1999)). A dual
population structure is employed, where child solutions are maintained and evaluated,
and then inserted into a larger adult population, replacing the least fit. The fittest n are
randomly picked as parents from the adult population. Typically the child population
size is set to 80% of the adult size and n = 40%. (For further details of this GA, refer
to (Bentley 1999).) Because real coding was used, duplication and creep mutation is
used, see (Bentley 2004) for complete details. Crossover is always applied; all muta-
tions occur with probability 0.01 per gene.

4 Robot Control

Previous work has demonstrated how evolution can generate specific fractal proteins
that interact with each other in order to produce a desired robot path through a series of
obstacles. The two behavioural genes are used as “steering” and “accelerator” to gener-
ate commands for a wonderborgTM robot, produced by Bandai, see Fig. 5. Instead of
directing cellular behaviour (i.e., cell division, differentiation or death), the fractal gene
regulatory networks direct robot behaviour. Full details of the robot and mapping from
behavioural genes to robot commands are available in (Bentley 2003a).

Fig. 5. The wonderborgTM robot (Bandai) has six legs, two feelers, two infrared collision
detection sensors, a floor sensor, a light sensor and capabilities for the addition of a further
motor and sensor.

To enable high-speed evaluation of robot control programs, a wonderborgTM simulator
was created. This reads the same file format as used by Bandai’s proprietary software

(and as output by the fractal developmental system) and calculates the path of the
robot through an environment. The simulator was designed to be fast – on a 1 Ghz
PC, approximately 40 developmental cycles and corresponding robot control simula-
tions occur every second. Further details are available in (Bentley 2003a).

4.1 Environmental Signals

It is not possible to run the fractal GRNs on the robot’s simple processor, so in
this work the fractal GRNs are used to generate a series of control commands that are
then uploaded into the robot. The robot’s twin infrared (binary) collision detection
sensors were used as inputs, providing four possible states for the robot. (In the lan-
guage of the wonderborgTM these equate to: nothing there, on the left, on the right, or
in front.) Hence, to generate all necessary control commands, the same GRN was
developed four times in succession, in different environments.

As in nature, proteins were used to pass signals from the environment to the genes.
Here, the first two environment genes were used to define the fractal proteins produced
by the activated sensors, i.e., env. gene 1 defined the protein for sensor 1, and env.
gene 2 defined the protein for sensor 2. Other environment genes could be created and
used as extra “maternal factors” by evolution. Hence, during the four developmental
runs, the relevant environment proteins were switched: “off off” (nothing there), “on
off” (on the left), “off on” (on the right) and “on on” (in front), representing all possi-
ble states of the robot’s sensors. The resulting commands produced by the fractal GRN
for each input state were interruptible, meaning that should the sensors change, the
robot would immediately switch to the commands corresponding to the new input
state. With 32 developmental interations, 32 commands (each defining very small
moments) were created for each input state. Should the input state remain unchanged
after execution of all 32, the robot repeats the same commands.

5 Experiments

The experiments used a basic environment with four obstacles for the robot and an
enclosing wall, see figure 6. The robot simulator was initialised with the robot at one
end of the environment. The further the robot managed to walk across the environment
the higher the fitness of the corresponding controller. If the robot touched an obstacle
or an enclosing wall, its final position was measured as its last valid position in the
environment. A second fitness measure (of less importance than the first) was used to
provide penalties corresponding to the time taken by the robot and hence encourage
efficient and fast journeys.

To evolve the controllers, the fractal development system was initialised with a
single cell, 2 environment genes, 2 receptor gene, 2 behavioural genes and 6 regula-
tory genes. (Note that with variable length genomes, evolution was free to modify
these gene numbers). The operator and coding regions of the genes were randomly
initialised with the alleles that defined 10 previously evolved protein fractals (Bentley,

2004). 32 developmental steps were employed (four times, each in a different envi-
ronment, see above), and the evolutionary algorithm used a population size of 100,
running for up to 100 generations.

Fig. 6. The environment used for the experiments. The starting position of the robot i s
marked by “X.” The higher the robot manages to walk, the fitter the controller.

6 Results and Analysis

Previous experiments had successfully evolved robot controllers (using no sensors).
Typical results were good, but often over a thousand generations were needed to find
the intricate path through the obstacles. In this experiment (using sensors), evolution
needed typically no more than 5 generations to find impressive robot controllers,
capable of following walls and reaching the top of the arena. Collision avoidance and
wall-following behaviour evolved in every run, see fig. 7 for an illustration of all
twenty controllers.

Analysis shows that most GRNs evolved two different behaviours, for example:
Nothing there / On the right: Rotate Left 1, Forwards Right 2, Forwards Right 2, … (*31)
In front / On the left: Rotate Left 1, Rotate Left 1, … (*32)

However, on several occasions (e.g., top right controller of fig. 7), evolution gen-
erated three separate behaviours from the same GRN:
Nothing there / On the right: Forwards left 1, Forwards left 1, … (*32)
On the left: Forwards right 2, Forwards right 2, … (*32)
In front: Backup left 1, Backup left 1, … (*32)
The fractal proteins are being used in complex interactions to control the behaviours.
Interestingly, changing the environmental proteins hardly seems to alter the pattern of
regulatory gene activations within the GRN, but the differences of protein concentra-
tions is enough to change the pattern of behavioural gene activations and cause dis-
tinct and different behaviours. It should be noted that the fractal GRNs are not running
“natively” on the robot’s processor, so previous states of the system cannot influence
later states. Should the robot actually calculate fractal GRNs itself, such a concept of
memory would be introduced, potentially enabling even better control.

Fig. 7. The twenty evolved robot controllers. All produce general-purpose collision
avoidance and wall-following behaviour.

7 Conclusions

Development is an adaptive and highly interactive process, which is capable of gener-
ating different solutions in different environments, whether a cellular or organism
environment. This work has shown that fractal GRNs can be evolved in different
environments to have these properties. Twenty robot controllers were evolved, all
demonstrating generic wall-following behaviour. All were evolved in 5 or fewer gen-
erations, yet all comprise highly complex interactions between fractal proteins. Future
work will investigate the extension of fractal GRNs to multicellular systems.

Acknowledgments

This material is based upon work supported by the European Office of Aerospace Research
and Development (EOARD), Airforce Office of Scientific Research, Airforce Research Labo-
ratory, under Contract No. F61775-02-WE014. Any opinions, findings and conclusions or
recommendations expressed in this material are those of the author and do not necessarily
reflect the views of EOARD. MOBIUS is an project.

References

[1] Bentley, P. J. Fractal Proteins. 2004. In Genetic Programming and Evolvable Ma-
chines Journal.

[2] Bentley, P. J. Evolving Fractal Gene Regulatory Networks for Robot Control. 2003a.
In Proceedings of ECAL 2003.

[3] Bentley, P. J. Evolving Fractal Proteins. 2003b. In Proc. of ICES ’03, the 5th Interna-
tional Conference on Evolvable Systems: From Biology to Hardware.

[4] Bentley, P. J. Evolving Beyond Perfection: An Investigation of the Effects of Long-
Term Evolution on Fractal Gene Regulatory Networks. 2003c. In Proc of Information
Processing in Cells and Tissues (IPCAT 2003).

[5] Bentley, P. J. From Coffee Tables to Hospitals: Generic Evolutionary Design. 1999.
Chapter 18 in Bentley, P. J. (Ed) Evolutionary Design by Computers. Morgan Kauf-
mann Pub. San Francisco, pp. 405-423.

[6] Bongard, J. C. Evolving Modular Genetic Regulatory Networks. 2002. In Proc.of
2002 Congress on Evolutionary Computation, IEEE Press, pp. 1872-1877.

[7] P. C. Haddow, G. Tufte, and P. van Remortel. Shrinking the Genotype: L-Systems for
EHW 2001. In Proc. Of 4th Int. Conf. On Evolvable Systems: From Biology to Hard-
ware, Tokyo, Japan.

[8] Hornby, G. S. Generative Representations for Evolutionary Design Automation.
2003. Brandeis University, Dept. of Computer Science, Ph.D. Dissertation.

[9] A.H. Jackson, A.M. Tyrrell Implementing Asynchronous Embryonic Circuits using
AARDVArc. 2002. In Proceedings of 2002 NASA/DoD Conference on Evolvable
Hardware (EH-2002), IEEE Computing Society, Alexandria, Virginia, pp. 231-240.

[10] N. Jakobi. Harnessing Morphogenesis. 1995. International Conference on Informa-
tion Processing in Cells and Tissues, Liverpool, UK.

[11] S. Kumar and P. J. Bentley. Computational Embryology: Past, Present and Future.
2003. Invited chapter in Ghosh and Tsutsui (Eds) Theory and Application of Evolu-
tionary Computation: Recent Trends. Springer Verlag (UK).

[12] Mandelbrot, B. The Fractal Geometry of Nature. 1982. W.H. Freeman & Company.
[13] Miller, J. and Banzhaf, W. Evolving the Program for a Cell: From French Flags to

Boolean Circuits. 2003. Invited chapter in Kumar, S. and Bentley, P. J. (Eds) On
Growth, Form and Computers. Academic Press, 2003.

[14] Quick, T. Evolving Embodied Genetic Regulatory Network-Driven Control Systems.
2003. In Proc. of ECAL 2003.pp. 266-277.

[15] Lewis Wolpert, Rosa Beddington, Thomas Jessell, Peter Lawrence, Elliot Meyerowitz,
Jim Smith. Principles of Development, 2nd Ed. 2001. Oxford University Press.

