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ABSTRACT
Motivation: Proteins underlay the functioning of a cell and the
wiring of proteins in protein-protein interaction network (PIN) relates
to their biological functions. Proteins with similar wiring in the PIN
(topology around them) have been shown to have similar functions.
This property has been successfully exploited for predicting protein
functions. Topological similarity is also used to guide network
alignment algorithms that find similarly wired proteins between PINs
of different species; these similarities are used to transfer annotation
across PINs, e.g., from model organisms to human. To refine these
functional predictions and annotation transfers, we need to gain
insight into the variability of the topology-function relationships. For
example, a function may be significantly associated with specific
topologies, while another function may be weakly associated with
several different topologies. Also, the topology-function relationships
may differ between different species.
Results: To improve our understanding of topology-function
relationships and of their conservation among species, we develop a
statistical framework that is built upon canonical correlation analysis.
Using the graphlet degrees to represent the wiring around proteins
in PINs and Gene Ontology (GO) annotations to describe their
functions, our framework: (1) characterizes statistically significant
topology-function relationships in a given species, and (2) uncovers
the functions that have conserved topology in PINs of different
species, which we term topologically orthologous functions. We apply
our framework to PINs of yeast and human, identifying 7 biological
process and 2 cellular component GO terms to be topologically
orthologous for the two organisms.
Availability: Software and datasets are available upon request.
Contact: natasha@imperial.ac.uk

1 INTRODUCTION
Proteins carry out specific tasks in a cell by binding to each
other. New proteins are getting identified due to recent advances
in genome sequencing technologies and annotating their biological
functions is receiving increasing interest (Radivojac et al., 2013).

∗to whom correspondence should be addressed

Similarly wired proteins in the protein-protein interaction networks
(PINs) are shown to carry out similar functions and that fact
has been exploited for transferring functional annotations between
proteins (Vazquez et al., 2003; Samanta and Liang, 2003; Nabieva
et al., 2005; Milenković and Pržulj, 2008). A protein’s function
can be described at different levels of detail, from its molecular
functions to the phenotypes that it affects. Identifying a unified
descriptor for protein function is a challenging task due to the
inter-dependencies and unclear separation between these levels.
Gene Ontology (GO) is a well-established way of handling these
issues (Ashburner et al., 2000). A GO term represents either a
biological process, a molecular function, or a cellular component
phenomenon and the ontology containing these terms describe their
dependencies. A protein can be associated with multiple GO terms,
each representing a different functional characteristic of the protein.

One of the important properties of a network is density: density is
the proportion of the node pairs in a network that are connected
with edges and it measures how tightly the network is wired.
Apart from density, many different standard network properties,
such as degree distribution, clustering coefficient, betweenness
centrality, and closeness centrality, can be used for trying to
understand the information contained in the wiring of a protein
in the PIN (Newman, 2010). Graphlets have been shown to be
particularly useful in capturing different aspects of the wiring
around a node; graphlets are small, connected, non-isomorphic,
induced subnetworks of a large network (Pržulj et al., 2004). Nodes
within each graphlet are said to belong same automorphism orbit
if they can be mapped to each other by an automorphism (Pržulj,
2007). The thirty 2- to 5-node graphlets and their 73 automorphism
orbits are illustrated in Fig. 1 A. The wiring around a node can
be described by generalising the notion of node degree to graphlet
degree (Milenković and Pržulj, 2008): the graphlet degree vector of
node n, denoted by GDVn, is a 73-dimensional vector where its
ith coordinate, GDVn[i], is the number of graphlets that node n
touches at orbit i (Fig. 1 B). The graphlet degree vector captures the
wiring patterns around a node for all possible subnetworks with up
to 5 nodes.

Since proteins almost never perform their function alone, but
interact with each other to carry out their function, analysing their
interaction patterns can give valuable insights into their function
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Fig. 1. Graphlets. (A) The thirty 2- to 5-node graphlets, denoted
by G0, . . . , G29 and their 73 automorphism orbits, denoted by
0, 1, . . . , 72 (Pržulj, 2007). (B) An illustration of the graphlet degree vector
(GDV) of node v. E.g., node v is touched by four edges (orbit 0 - illustrated
in the left panel), one triangle (orbit 3 - illustrated in the middle panel), and
one four-node cycle (orbit 8 - illustrated in the right panel). In this way, GDV
quantifies the wiring of a node in the network (Milenković and Pržulj, 2008).

inside a cell (Sharan et al., 2007). It has been shown that proteins
with similar functions and cellular locations tend to cluster together
in the PIN of yeast (Chua et al., 2006) and 70 - 80% of interacting
protein pairs share at least one function (Vazquez et al., 2003).

Several graph-theoretic approaches were proposed to predict the
functions of proteins based on their shared neighbourhoods (Vazquez
et al., 2003; Samanta and Liang, 2003), or on their closeness in
the PINs (Nabieva et al., 2005). However, it was shown that the
functional similarities between proteins do not necessarily depend
on them being in the same local neighbourhoods, but on the
similarities of their interaction patterns independent of the network
location (Milenković and Pržulj, 2008). Another group of methods
aligns PINs of two or more species to identify the evolutionary
conserved parts of the PINs and use the resulting node-to-node
mappings to transfer the functional annotations of proteins across
species (Clark and Kalita, 2014). These graph-theoretic approaches
show that the topological characteristics of proteins complement
their sequence and structural characteristics and enable transfer of
their functional annotation (Yook et al., 2004; Sharan and Ideker,
2006).

Although the link between topology and function has been widely
studied, all of these studies assume that, for each function, the
wiring patterns of the annotated proteins are similar. However,
evolution might have varying effects on different parts of the PINs.
For this reason, while some essential functions might carry the
topological similarity constraint, other functions that are linked
with more species-specific processes may not have such topological
similarity constraints and therefore, their topological characteristics
can vary.

Unlike the previous studies that aim to predict the functions
of proteins from their wiring patterns in PINs, we aim

to identify the most prominent wiring patterns of biological
functions and to characterize their conservation across species.
Our new method utilizes the Canonical Correlation Analysis
(CCA) method (Hotelling, 1936) to identify significant topology-
function relationships, with the topology being represented by
the graphlet degrees of proteins and their functions by GO
annotations. To identify the evolutionarily conserved topology-
function relationships, we separately apply our CCA-based
methodology on different species and integrate the obtained results.
We illustrate our method on yeast and human PINs, as they are
the most complete to date, and we uncover consistent topology-
function relationships for 7 biological processes and 2 cellular
components. These functions reveal the regions of the PINs that
are evolutionarily the most conserved, which we term topologically
orthologous. Furthermore, we perform three case studies on the
identified patterns of “DNA-dependent Transcription Initiation,”
“Cellular Localization” and “Proteasome Complex” GO annotations
and show that our results are coherent with the underlying topology.

2 MATERIALS AND METHODS

2.1 Our New Methodology
We uncover the species-specific and evolutionarily conserved (cross-species)
relationships between wiring patterns and functional annotations of proteins
with the following three step approach.

Step 1: Identifying Topology - Function Relationships. For each species,
the associations between topological characteristics and biological functions
are defined based on their common change patterns (also called shared
variance). Canonical Correlation Analysis (CCA) (Hotelling, 1936; Dillon
and Goldstein, 1984) is a method for finding linear relationships between two
sets of variables. CCA has been applied in bioinformatics context for linking
gene expression data with sequence motifs (Rhee et al., 2009), identifying
binding and functional sites in protein sequences (Gonzalez et al., 2012),
and identifying correlated gene expressions and network characteristics (Vert
and Kanehisa, 2003). Here, we utilize it to link topological descriptors with
functional annotations.

For identifying the topology-function relationships, the first variable set,
Rt, is defined to represent topological information based on the graphlet
degree vectors of the proteins in the PIN. For both human and yeast, we
obtain the PINs and compute the graphlet degree vectors of all nodes in
the PINs. We rescale the graphlet degrees to log-scale (i.e., replacing each
graphlet degree x with log(x+ 1)) to suppress extreme values (Milenković
and Pržulj, 2008). Since low degree nodes are likely to be located in the
incomplete parts of the PIN (Wang and Wu, 2013), we exclude the proteins
with degree less than 4 from the CCA after which, 8, 192 proteins remain
for human, and 4, 740 proteins remain for yeast in their respective PINs.
This threshold is chosen so that all proteins can touch to graphlets at any of
the graphlet orbits (a detailed discussion on the degree threshold is provided
in Supp. Section S.1). Note that the graphlet degree vectors are computed
before this filtering, so the exclusion has no effect on the graphlet degree
vectors, but only on the number of proteins that are analysed by the CCA.
The second variable set of CCA, Rf , is defined to represent the functional
information based on the GO term annotations of the proteins. For each
protein in the PIN, we encode its GO annotations as binary variables: 1 if the
protein is annotated with the GO term, and 0 otherwise. We only include the
GO terms that have at least 5 annotated proteins for both yeast and human, as
we would like to identify consistent patterns in the two species and reliable
patterns are unlikely to be found with fewer than 5 example cases. Given n

pairs of variable vectors from Rt × Rf for n proteins, CCA finds weight
vectors so as to maximize the Pearson’s correlation between the weighted
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Fig. 2. Our method for identifying the species-consistent relationships
between network topology and biological function. Panel A illustrates
the association matrix construction from Canonical Correlation Analysis
(CCA). CCA identifies weight matrices W1 and W2 that maximize the
Pearson’s Correlation between the resulting canonical variates. These weight
matrices are used for defining an association matrix that transforms graphlet
degree vectors to topology-based GO annotations. Panel B shows the
process of identifying and characterizing single-species topology-function
associations. The association matrix is used for computing the topology-
based GO annotations that explain how strongly each GO term is associated
with a given graphlet degree vector. The Pearson’s Correlation between
the topology-based GO annotations and observed GO annotations give
the structure association strengths that indicate the extent to which each
GO term is associated with network structure. The Pearson’s Correlation
between the graphlet degree vectors and the topology-based GO annotations
give the orbit contribution strengths that explain the involvement of each
orbit in the topology-function association per GO-term. Panel C illustrates
the identification of orthologous topology-function associations. For a pair of
species, the multi-species structure association strength can be computed by
taking the minimum of the two per-species structure association strengths.
Orbit contribution similarities for the GO terms can be quantified via the
Spearman’s Correlation of the per-species orbit contribution strengths.

sums of Rt and Rf , i.e., between canonical variates. After finding the first
set of such weights, CCA iterates min{t, f} times to find more weight
vectors, such that the resulting canonical variates are not correlated with
any of the previous canonical variates. The weight matrices, W1 and W2,
are constructed by combining all of the identified weight vectors.

The association matrix that encodes the pairwise relations between the
two sets of features is then constructed as W1 × S × W+

2 , where S is a
diagonal matrix of canonical correlations (i.e., Pearson’s Correlations among
canonical variates) that weights the variates according to their correlation
strength and W+

2 is the Moore-Penrose pseudoinverse of W2 (detailed in

Supp. Section S.2). The association matrix combines all topology-function
relationships identified by CCA and it is able to transform a graphlet degree
vector to a vector of real-valued topology-based annotations (illustrated in
Fig. 2 A and additionally explained in the figure’s legend).

Step 2: Quantifying the Topology-Function Relationship Strengths. There
are two questions that we would like to answer using the information
encoded in the association matrix: (1) which GO terms are significantly
associated with a specific topological pattern in the PIN, and (2) which
graphlet orbits are significantly important for the topological pattern of a
specific GO term. Although the canonical variates and their correlations
with the input variables can be analysed directly in this respect, such an
approach would be insufficient for uncovering the conserved patterns across
species because the dimensions of the two CCA runs on yeast and human
are different and the obtained canonical variates are not comparable. To
overcome this issue, we develop a method that elegantly summarizes the
information encoded in the association matrix. Our method first computes
the topology-based GO term annotations by multiplying the graphlet degree
vectors with the association matrix and then uses the obtained topology-
based annotations to derive two measures that answer the two questions
(Fig. 2 B).

Our first measure, the structure association strength, identifies the
GO terms that are strongly linked with a specific topological pattern
by quantifying the linear dependence between the topology-based GO
annotations and the observed GO annotations (obtained from NCBI FTP
Server (Maglott et al., 2013)) using the Pearson’s correlation (Fig. 2 B).
The high structure association strength indicates that there is a strong
correspondence between topology and function.

Our second measure, orbit contribution strength, identifies the most
important orbits for the topological pattern of a GO term by quantifying the
linear dependencies between graphlet degrees of each orbit and topology-
based GO annotations using the Pearson’s correlations (Fig. 2 B). For each
GO term, the orbits with the highest absolute orbit contribution strengths
characterize the local topology associated with the function described by the
GO term. A discussion on choosing the topology-based annotations rather
than the observed annotations for computing this measure is provided in
Supp. Section S.3.

Step 3: Identifying Orthologous Topology-Function Relationships. We
can effectively find the topology-function relationships for each species
by analysing their structure association strengths and orbit contribution
strengths. The remaining question that we would like to answer is: Which of
the identified topology-function relationships are conserved across different
species? To identify orthologous topological patterns, we first compute
the structure association strengths and orbit contribution strengths for each
species by applying the first two steps of the method. Each GO term will then
have a structure association strength and a 73-dimensional orbit contribution
strength vector for each species. We compare these statistics to assess the
conservation, as explained in Fig. 2 C.

Consistently strong topology-function correspondences for two species
can be identified by taking the minimum of each GO term’s per-species
structure association strengths, which we term multi-species structure
association strengths. Taking the minimum when combining the scores
guarantees that the worst topology-function correspondence is taken into
account for each GO term. High multi-species structure association strengths
mean that the annotations for the GO term can be accurately inferred from
the local topology for both species.

To determine whether a GO term is associated with similar topologies
across two species, we compute the orbit contribution similarities by taking
Spearman’s Correlation between the two orbit contribution strength vectors
of the GO term. The Spearman’s Correlation tests the similarity of the rank
ordering of the orbits, and therefore assesses whether the best and worst orbit
associations are consistent for the two species.
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The statistical significance of the two strength measures and of the cross-
species topology-function similarities are computed using permutation tests
(see Supp. Section S.4 for details). We adjust the estimated p-values using
Benjamini-Hochberg correction for the statistical errors caused by multiple
hypotheses testing.

2.2 Datasets
Protein-protein Interaction Networks (PINs) We obtain the PINs of S.
cerevisiae (baker’s yeast) and H. sapiens (human) from BioGRID database
(version 3.2.106 – November 2013) (Stark et al., 2006). We include all
physical interactions that are identified by any of the relevant experimental
evidence codes, while excluding interactions that are annotated only as
genetic interactions. We remove the ubiquitin proteins from the PINs of
both species (i.e., UBC from human and UBI4 from yeast), since these
proteins can bind to almost all proteins in the PIN, hiding the topological
characteristics of functional interactions and generating noisy topological
patterns. The resulting human PIN contains 13, 410 proteins (nodes)
and 116, 552 interactions (edges), while the yeast PIN contains 77, 360
interactions among 5, 831 proteins.

Gene Ontology (GO) Annotations We obtain GO term annotations for the
human and yeast proteins from the NCBI FTP Server1 (downloaded on
06/11/2013) (Maglott et al., 2013). GO annotations from all GO evidence
codes are included in the dataset, but annotations with qualifiers (e.g., NOT,
colocalizes-with) are excluded. GO terms labelled by an alternate ID are
remapped to the unique ID for the term. We use the full GO hierarchy2 and
infer parent GO annotations from “is-a” relationships.

3 RESULTS AND DISCUSSION
We apply our methodology to identify the orthologous topology-
function associations between yeast and human. Although our
methodology can be applied on the datasets of any species, due
to the limited availability of protein-protein interaction and GO
annotation data, we study these two organisms for which the
available datasets are more complete. Yeast is a model organism that
is widely used to infer the molecular basis of biological processes
in human. For this reason, determining the functions that are
performed in similar ways is important and this motivates us to study
these two organisms. We summarize our main observations on the
two organisms (Section 3.1) and perform case studies on three GO
terms that show consistent patterns for the two species (Sections 3.2
and Supp. Section S.9).

3.1 Summary of Observed Topology-Function Patterns
For both yeast and human datasets, we first apply CCA to obtain
all existing linear dependencies across the wiring patterns and GO
term annotations of proteins. The highest canonical correlations
identified by this analysis is within the range of the 0.239 to 0.433.
Further discussions on the raw CCA results are provided in Supp.
Section S.5.

For identifying the statistically significant relationships between
GO terms and graphlet orbits, we compute the structure association
strengths and orbit contribution strengths of the GO terms that are
annotated with at least 5 proteins in both species The GO term
annotation threshold of 5 is chosen so that the GO annotations
provide sufficient variance for CCA analysis while as many GO
terms as possible are considered (a detailed discussion on the

1 ftp://ftp.ncbi.nlm.nih.gov/gene/DATA/gene2go.gz
2 http://www.geneontology.org/ontology/obo format 1 2/

GO term annotation threshold is provided in Supp. Section S.1).
The topology-function relationship of a GO term is accepted to
be significant if the following conditions hold: (1) the structure
association strength of the GO term has an adjusted p-value≤ 0.05,
and (2) at least one of the orbit contribution strengths of the GO
term has an adjusted p-value ≤ 0.05. To avoid reporting results
on high-level GO terms, which annotate too many proteins and
hence are not specific enough for interpretation, we only report the
significant patterns of the GO terms that annotate fewer than 5% of
the proteins in the PINs (i.e., 291 proteins in yeast and 670 proteins
in human). Supp. Table S.1 reports the number of GO terms that
have significant topology-function relationships along with the total
number of evaluated GO terms.

Next, we focus on identifying the subset of these patterns that
are conserved between yeast and human. We identify the GO
terms with consistent topology-function relationships across yeast
and human by utilizing orbit contribution similarities and multi-
species structure association strengths. A GO term is accepted
to have a significantly conserved topology-function relationship
if the following conditions hold: (1) the multi-species structure
association strength of the GO term has an adjusted p-value ≤
0.05, and (2) the orbit contribution similarity of the GO term
has an adjusted p-value ≤ 0.05. Based on these conditions, we
show that 15 biological process terms and 9 cellular component
terms have significantly conserved topology-function relationships,
while no molecular function terms have such patterns. Note that
these patterns provide further evidence of the link between network
topology and biological function, since it is not possible to obtain
such large numbers of significant topology-function relationships
from meaningless randomized networks, as explained in Supp.
Section S.6. We say that two GO terms are “redundant” if they
annotate similar sets of proteins and have similar meanings. When
we group the identified GO terms based on their redundancies,
we obtain 7 biological processes and 2 cellular components that
are non-redundant (see Supp. Section S.7). For interpreting their
consistent topological patterns, we compute their orbit contribution
strength profiles by averaging the two orbit contribution strength
vectors obtained from yeast and human. Fig. 3 summarizes
the orbit contribution strength profiles of the non-redundant
conserved topology-function relationships. Detailed results for each
statistically significant GO term are provided in the Supp. Fig. S.10.

Our analysis shows that “Localization” and “Regulation of Cel-
lular Organization” processes are significantly linked with orbit
group {0, 2, 7, 16, 21, 23, 28}. These orbits correspond to “broker”
roles (i.e., topological positions) in sparse graphlets, where the
“broker” orbit mediates the connection between two nodes that are
not directly connected (illustrated in Fig. 3). A case study that
investigates the brokerage role of the proteins that are annotated
with “Cellular Localization” (GO:0051641) term is provided in
Section 3.2.

A different set of topological patterns, consisting of orbit groups
{3, 13, 29, 48, 55, 61}, {14, 58, 67, 71}, {72} (illustrated in Fig. 3),
is linked with “Proteasome Assembly,” “Transcription Initiation”
and “Transcription Elongation” processes. The first orbit group
is linked with nodes located on triangles, or nodes that connect
multiple triangles. The second and third orbit groups represent
dense network regions (e.g., orbits 14, 67, 71) and mediators
between a dense network region and a “hanging off” (sparsely
linked) node, such as orbit 58. In addition to the three orbit
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Fig. 3. The orbit contribution strength profiles of non-redundant terms that have significantly conserved topology-function relationships. The heatmap
at the top summarizes the significant patterns for the non-redundant biological process (BP) terms, and the heatmap at the bottom summarizes the significant
patterns for the non-redundant cellular component (CC) terms. Each heatmap row corresponds to the average orbit contribution strength profile of the GO
term that represent the redundant group. Each heatmap cell represents the maximum orbit contribution strength in the relevant orbit group (see Fig. 1 A
for illustrations of orbits 0, 1, . . . , 72). For illustrative purposes, graphlet orbits are grouped based on the similarity of their graphlet degrees following the
methodology of Yaveroğlu et al. (2014) (explained in Supp. Section S.8). The orbit groups that do not have any significantly high orbit contribution strengths
are coloured semi-transparently. Note that cells plotted with solid colors do not mean that all orbits in the relevant group have significant relationships with the
GO term, but it means that at least one of the orbits has a significant relationship (for the exact list of significant orbits, see Supp. Data 1). Black nodes of the
graphlets on the right denote the orbits of the corresponding column in the heatmap.

groups, “Proteasome Assembly” process is also linked with orbit
group {57, 66, 70}, which represents non-central positions on dense
subgraphs. Transcription-related processes are also linked with
orbit 69, which has a role similar to orbits {3, 13, 29, 48, 55, 61}.
“Transcription Elongation” is further linked with orbit groups
{4, 15, 27}, {10, 41, 43, 60, 64, 68}, {11, 30, 33, 42, 44} and
{12, 46, 52, 59, 65} that represent peripheral and semi-peripheral
orbits on sparser graphlets. As a case study about this group of
topological patterns, we analyse the “DNA-dependent Transcrip-
tion, Initiation” (GO:0006352) in Sec. 3.2.

In contrast to the previously listed GO terms that are linked
with certain topological characteristics, “Acetylation” and “Protein
Modification by Small Protein Removal” terms are significantly
linked with multiple topological characteristics. The interesting
point about their topological patterns is that cyclic patterns, such
as graphlets G5 and G15, are never statistically significantly linked
with these processes. This might indicate that these processes tend
not to appear in topological patterns that are easily destructible,
since it is easy to disrupt a cycle simply by disrupting a single node,
e.g., removal of orbit 8 in G5 increases the distances between its
nodes.

The consistency of these patterns for yeast and human indicates
that the regulation of cellular organization, transcription and
acetylation mechanisms are topologically well-preserved during
evolution. This might be because these processes are essential and
hence they need to be similarly carried out for all species, and
therefore, being conserved through evolution and showing similar
wiring patterns in different organisms.

The cellular component terms that have significant topology-
function relationships fall into two groups: (1) protein complexes,
and (2) cytosolic part. Both of these cellular component groups are
linked with orbit groups {14, 58, 67, 71} and {72}, that reside in
densely connected regions of the PINs. In addition, cytosolic part
is also linked with orbit groups {57, 66, 70} and {69} that again

reside in dense network regions, the first group representing non-
central roles in these regions, and the second group representing the
role connecting 4 triangles. To investigate a pattern from this group
of topology-function relationships, we provide a case study on the
“Proteasome Complex” (GO:0000502) term in Supp. Section S.9.

3.2 Case Studies
A systematic validation of the results presented in Section 3.1 is
not possible, since there does not exist a gold-standard topology-
function mapping. For this reason, we perform three case studies
to find biological validation for the observed wiring patterns of the
topologically orthologous functions (also see Supp. Section S.9 for
the proteasome complex case).

DNA-dependent Transcription Initiation. DNA-dependent Tran-
scription Initiation term captures any biological process that is
involved in the assembly of RNA polymerase preinitiation complex
(PIC) at the core promoter region of a DNA template, resulting in
the subsequent synthesis of RNA from that promoter (Borukhov and
Nudler, 2008). Our analysis shows that this process is consistently
linked with densely-connected regions of the PIN, i.e., orbits
3, 13, 14, 58, 61, 67, 69, 71, and 72 (Supp. Fig. S.10). 212 proteins
in human PIN and 32 proteins in yeast PIN are annotated with this
term. When we check the GO term enrichments of these proteins to
understand their common characteristics, we observe that many of
these proteins appear in the nucleus (135 proteins for human and
31 proteins for yeast), where the protein-protein interactions are
more clustered and denser than the other parts of the cell (Supp.
Table S.2). On the other hand, many of these proteins form protein
complexes (122 proteins for human and 29 proteins for yeast).
Protein complexes tend to appear in densely connected patterns,
which is also similar to the topological patterns of DNA-Dependent
Transcription Initiation. There are two major protein complexes
that are consistently associated with the annotated proteins of both
species: (1) RNA Polymerase II, and (2) Mediator Coactivator
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patterns for the proteins of this function on the cell membrane, over the
green membrane pores (circles filled with red). The DNA-dependent tran-
scription initiation term is identified to be significantly linked with dense
connections and clique-like patterns; i.e., 3, 13, 14, 58, 61, 67, 69, 71, and
72. We illustrate such connectivity patterns inside the nucleus, over the
transcription factors and DNA (circles filled with blue).

Complex. RNA Polymerase II is an enzyme that catalyses the tran-
scription of DNA to synthesize precursors of mRNA (Kornberg,
1999), and therefore, has a principal role in the gene expression and
regulation for all organisms (Borukhov and Nudler, 2008). Mediator
Coactivator Complex serves as a bridge between the activator and
basal transcription machinery of RNA Polymerase II and the general
transcription factors (Biddick and Young, 2005) and acts as a
docking site for transcription elongation factors (Takahashi et al.,
2011). It has been shown that most protein complexes tend to be
densely connected in PINs and RNA Polymerase II and Mediator
Coactivator Complex are no exceptions (Gagneur et al., 2004).
Apart from the densely connected patterns that are associated with
orbits 14 and 72, observing that orbits 13, 58, 61, 67, 69, and 71
are also significantly associated with the GO term highlights the
bridging role of the Mediator complex in these dense subnetworks
(illustrated in Fig. 4). It is shown that significant homology
exists between RNA polymerases over organisms, which suggests
the existence of an evolutionarily conserved mechanism of RNA
synthesis (Sims et al., 2004). Similarly, mammalian Mediator
complex is also shown to share structural and functional properties
with yeast Mediator subunits (Tomomori-Sato et al., 2004) and
it is known to be evolutionarily conserved (Malik and Roeder,
2010). These studies validate our observations on the conserved
topological patterns of DNA-dependent transcription initiation. Our
observations provide further evidence on the conservation of this
process in the wiring of the PINs, complementing the sequence-
similarity based evidences.

Cellular Localization. Cellular Localization term captures any cel-
lular process in which a substance, or a cellular entity (e.g., a
protein complex, or organelle) is transported to, or maintained in

a specific position within the membrane of a cell. Our analysis
on this process shows that this process is consistently linked with
broker positions on sparse graphlets, which mediate the connection
between two disconnected nodes, or connect a node to a well-
connected group of proteins, i.e., orbits 0, 2, 7, 11, 16, 21, 23, 33, 42
and 44 (Supp. Figure S.10). 283 proteins in human PIN and
205 proteins in yeast PIN are annotated with cellular localization
term. When we check the other GO term enrichments of these
proteins to understand their common characteristics, we observe
that many of them are located at the membrane (147 proteins for
human and 67 proteins for yeast), and cytoplasm (121 proteins
for human and 99 proteins for yeast). Proteins are more loosely
connected in these cellular components than in nucleus (Supp.
Table S.2), and this supports the observation on the sparsity of
the graphlets that are significantly linked with this GO term. In
addition, many of these proteins are linked with transport process
(131 proteins for human and 114 proteins for yeast) and response
to stimulus process (176 proteins for human and 46 proteins
for yeast). Proteins that are involved in these processes act as
“universal adapters” by binding to multiple ligands and connecting
otherwise disconnected ligands to each other. For example, when
the human proteins are ranked based on the similarity of their
wiring patterns to the topological profile identified for cellular
localization, the two highest ranking proteins, PLXNA2 and RAMP3,
are transmembrane proteins (McLatchie et al., 1998; Pasterkamp,
2012). Transmembrane proteins tend to interact with many different
cytoplasmic proteins as well as with their extra-cellular ligands,
while they rarely interact with each other as illustrated in Fig. 4
(Pinkert et al., 2010). Similarly, the highest ranked proteins of yeast,
YEL1 and AFI1, act as polarization-specific docking domains for
AFR3 protein that regulate the budding mechanisms in yeast. These
proteins function in different steps in regulating the localization of
ARF3 to the plasma membrane (Tsai et al., 2008). AFI1 is also
involved in intra-golgi and golgi-endoplasmic reticulum trafficking.
When performing their functions, these proteins bind to ligands at
different cellular localizations, or at different time points, and hence,
they form the observed brokerage patterns.

4 CONCLUSION
We propose a three-step method that is able to find topology-
function relationships that persist across the PINs of different
species, even if these topological patterns are not formed by
the same sets of proteins. With our method, we identify that 7
biological process and 2 cellular component GO terms have non-
redundant topology-function relationships for yeast and human.
Our case studies on the patterns of “DNA-dependent Transcrip-
tion Initiation,” “Cellular Localization” and “Proteasome Complex”
validate that our results are in agreement with the underlying
biological mechanisms.

Our analysis uncovers conserved topology-function relationships
on a relatively small number of high-level GO terms. This is due
to the fact that GO terms that are annotated with small sets of
proteins are less likely to appear as significant. Furthermore, while
we mainly focus on conserved topology-function relationships, our
method also uncovers many species-specific ones. For example, a
highly specific GO term, “Maturation of SSU-rRNA”, is linked with
the orbits of dense graphlets (i.e., orbits 3, 14, 58, 67, 69, 70, 71, 72)
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in yeast while the same patterns are not observed in human. Analysis
of such species-specific topology-function relationships can shed
light on the wiring patterns of a wider range of functions and
raise interesting questions about the underlying reasons for different
wiring patterns of proteins annotated with the same GO terms in
different species. This could further improve our understanding of
the evolution of those functions.

Although the association matrix can be used for predicting the
GO term annotations of the proteins from their wiring patterns in
PINs, our results show that not all topology-function relationships
are conserved across species, which is likely to negatively impact
the quality of predictions. However, if prediction is the objective,
graphlet degree statistics can be further supported with other types
of features (e.g., protein sequence, or structure). Our methodology
can easily accommodate such additional features to derive more
accurate linear transformations for predicting biological function.

Our method is applicable to any number of species, although
the incompleteness of the PINs limits it to yeast and human for
the time being. When more complete protein-protein interaction
datasets become available, we will be able to apply our method
without modification. By replacing the functional annotations with
other biological information about proteins, our method would
further uncover conserved wiring patterns in different phenomena,
including those in disease, or KEGG pathway annotations of
proteins.
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