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Many real-world phenomena have been described in terms of large networks. Networks have
been invaluable models for the understanding of biological systems. Since proteins carry out
most biological processes, we focus on analysing protein–protein interaction (PPI) networks.
Proteins interact to perform a function. Thus, PPI networks reflect the interconnected nature
of biological processes and analysing their structural properties could provide insights into
biological function and disease. We have already demonstrated, by using a sensitive graph
theoretic method for comparing topologies of node neighbourhoods called ‘graphlet degree
signatures’, that proteins with similar surroundings in PPI networks tend to perform the
same functions. Here, we explore whether the involvement of genes in cancer suggests
the similarity of their topological ‘signatures’ as well. By applying a series of clustering
methods to proteins’ topological signature similarities, we demonstrate that the obtained
clusters are significantly enriched with cancer genes. We apply this methodology to identify
novel cancer gene candidates, validating 80 per cent of our predictions in the literature.
We also validate predictions biologically by identifying cancer-related negative regulators
of melanogenesis identified in our siRNA screen. This is encouraging, since we have done
this solely from PPI network topology. We provide clear evidence that PPI network
structure around cancer genes is different from the structure around non-cancer genes. Under-
standing the underlying principles of this phenomenon is an open question, with a potential
for increasing our understanding of complex diseases.

Keywords: biological networks; protein interaction networks; network topology;
cancer gene identification
1. INTRODUCTION

1.1. Background

Large amounts of biological network data have become
available owing to recent advances in experimental
biology. Networks are invaluable models for better
understanding of biological systems (Barabási &
Oltvai 2004). To understand living cells, one needs to
study them as interconnected systems rather than as a
collection of individual parts (Ideker & Sharan 2008).
Whether the constituents of a network are molecules,
cells or living organisms, the network provides a frame-
work to model the complex events that emerge from
interactions among these parts.
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Nodes in biological networks represent biomolecules
such as genes, proteins or metabolites, and edges con-
necting these nodes indicate functional, physical or
chemical interactions between the corresponding
biomolecules. Understanding these complex biological
systems has become an important problem that has
led to intensive research in network analyses, modelling,
and function and disease gene identification and predic-
tion. The hope is that using such systems-level
approaches to analysing and modelling complex biologi-
cal systems will provide insights into the inner working
of the cell, biological function and disease.

Because it is the proteins that execute the genetic
code and carry out most biological processes, we focus
on protein–protein interaction (PPI) networks. In
these networks, nodes correspond to proteins and undir-
ected edges represent physical interactions among
them. As proteins are essential macromolecules of life,
This journal is q 2009 The Royal Society
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understanding their function and role in disease is of
great importance.

Methods for protein function detection have shifted
their focus from targeting individual proteins based
solely on sequence homology to systems-level analyses
of entire proteomes based on PPI network topology
(Sharan et al. 2007; Milenković & Pržulj 2008). Since
proteins interact to perform a certain function rather
than functioning in isolation, these networks of protein
interactions by definition reflect the interconnected
nature of biological processes. Therefore, analysing
structural properties of PPI networks may provide
useful clues about the biological function of individual
proteins, protein complexes, pathways they participate
in and larger subcellular machines. For example,
proteins that are closer in a network are more likely
to perform the same function (Sharan et al. 2007). In
the most simple form, this assumption has been used
to investigate the direct neighbourhood of an unanno-
tated protein, and annotate it with the most common
functions among its annotated neighbours
(Schwikowski & Fields 2000). Other examples include
more recent studies demonstrating that proteins with
similar topological neighbourhoods have similar biologi-
cal characteristics (Guerrero et al. 2008; Milenković &
Pržulj 2008).

Similarly, owing to the increase in availability of
human protein interaction data, the focus of bioin-
formatics in general has shifted from understanding the
networks of model species, such as yeast, to understand-
ing the networks responsible for human disease (Ideker &
Sharan 2008). These studies have been trying to address
several challenges: investigating network properties of
disease genes, identifying gene–disease or drug–drug
target associations and predicting novel disease genes.

There is an open debate as to whether genes involved
in serious diseases such as cancer can be distinguished
based on their properties and position in a PPI
network. For example, cancer genes have been shown
to have greater connectivities and centralities compared
with non-cancer genes (Jonsson & Bates 2006).
However, the relationship between disease genes and
their network degrees might need a more careful
consideration, as most of the disease genes do not
show a tendency to code for proteins that are hubs
(Goh et al. 2007).

Radivojac et al. (2008) have tried to identify gene–
disease associations by encoding each gene in a PPI
network based on the distribution of shortest path
lengths to all genes associated with disease or having
known functional annotation. Moreover, PPI networks
have recently been combined with the networks describ-
ing the relationships between diseases and genes
causing them (Goh et al. 2007), as well as between
drugs and their protein targets (Yidirim et al. 2007),
thus giving new insights into pharmacology.

Finally, studies trying to predict involvement of
genes in diseases such as cancer have been relying on
the key assumption that a neighbour of a disease-
causing gene in a PPI network is likely to cause either
the same or a similar disease (Ideker & Sharan 2008).
For example, Aragues et al. (2008) started from the
hypothesis that proteins whose partners have been
J. R. Soc. Interface
annotated as cancer genes are likely to be cancer
genes as well, constructed a cancer protein interaction
network composed of known cancer genes and their
direct interacting partners and demonstrated that the
‘cancer linker degree’ of a protein, i.e. the number of
its cancer-related neighbours in this network, is a
good indicator of the probability that the gene is a
cancer gene.
1.2. Our study

Defining the relationship between PPI network top-
ology and protein function and disease has been one
of the major challenges in the post-genomic era. Here,
we further explore this relationship, focusing on
cancer in particular. We investigate if topological
properties of PPI networks can be used to imply invol-
vement of proteins in cancer. Unlike other approaches
that have been relying on the assumption that network
neighbours of cancer genes are also involved in cancer
(Aragues et al. 2008), we test a different hypothesis:
do the genes that are involved in cancer have similar
‘topological signatures’ (defined below) without necess-
arily being adjacent in the network? Furthermore,
other studies rely only on global network properties,
such as high node degrees, to characterize cancer
genes and they generalize this to the entire set of
cancer genes in a network (Jonsson & Bates 2006).
In contrast, we rely on a highly constraining local
network measure that describes network interconnect-
edness of up to ‘4-deep neighbourhood’ of a node (see
below). Furthermore, we do not assume that all
cancer genes should have similar topological signatures.
Instead, we allow for a possibility that proteins involved
in different cancers might have different network
neighbourhoods.

We have already used a sensitive graph theoretic
method for comparing local structures of node neigh-
bourhoods to demonstrate that in PPI networks,
biological function of a node and its local network struc-
ture are closely related (Milenković & Pržulj 2008). The
method summarizes a protein’s local topology in a PPI
network into its ‘signature’. Then, signature similarities
between all protein pairs are computed, measuring
topological resemblance of their neighbourhoods. It
has been shown that clusters obtained by grouping
topologically similar proteins under the signature
similarity measure are statistically significantly
enriched in biological function, membership in protein
complexes, subcellular localization and tissue expression
(Milenković & Pržulj 2008; Pržulj & Milenković in
press). Owing to similarity in biochemical manifes-
tations of different diseases and various types of
cancer in particular, here we apply our approach to
explore whether cancer genes share similar topological
signatures as well. More specifically, we apply a series
of clustering methods to proteins based on their topolo-
gical signature similarities and analyse whether the
obtained clusters are statistically significantly enriched
with cancer genes. Thus, the novelty of our approach
is the evaluation of different clustering algorithms and
application of our method to cancer. Based on this
approach, we predict novel cancer gene candidates,

http://rsif.royalsocietypublishing.org/
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validating about 80 per cent of our predictions in the
literature.

Furthermore, we provide biological application and
validation of our predictions. RNAi-based functional
genomics is an unbiased approach to identify genes
that specifically regulate cellular phenotypes
(Whitehurst et al. 2007; Krishnan et al. 2008; Silva
et al. 2008). We have previously used this approach to
identify novel regulators of melanogenesis in human
cells, a differentiated cellular phenotype (Ganesan
et al. 2008). Previous studies have postulated that
oncogenes negatively regulate melanin production and
cellular differentiation (Halaban 2002). We use our
network topology-based approach to identify negative
regulators of melanogenesis identified in our siRNA
screen that are also cancer genes. Twenty-seven
putative cancer genes were identified in this dataset,
85 per cent of which are linked to cancer through
literature search. Among these genes are known nega-
tive regulators of melanogenesis, further demonstrating
the power of network topological signatures to specifi-
cally identify cancer genes in biologically relevant
datasets.

We compare the performance of our method with
that of Aragues et al. (2008), which also predicts from
PPI networks the involvement of genes in cancer.
While Aragues et al. (2008) focus only on direct
network neighbours of cancer genes, we account for
complex wirings of their up to 4-deep neighbourhoods,
as depicted in figure 1a; we demonstrate that out of
all known cancer gene pairs that have similar topologi-
cal signatures, 96 per cent are not direct neighbours in
the PPI network. Moreover, in addition to network
topology, Aragues et al. (2008) also use gene expression
data and structural and functional properties of cancer
proteins, while we use the network topology only. Even
though we do not use any information external to PPI
network topology, our approach is superior, as it results
in higher prediction accuracy. Thus, graphlet degree
signatures provide a better prediction accuracy than
less constraining network properties such as
nodes’ direct neighbours, even when nodes’ direct
neighbourhoods are integrated with other data types.
1http://ncicb.nci.nih.gov/projects/cgdcp.
2http://www.sanger.ac.uk/genetics/CGP/Census/.
3http://www.genecards.org/.
4http://www.genome.jp/kegg/disease/.
5http://www.ncbi.nlm.nih.gov/sites/entrez?db=omim.
2. APPROACH

We use ‘graphlet degree signatures’ (Milenković &
Pržulj 2008) of proteins in a PPI network to predict
their involvement in cancer. Graphlets are small con-
nected induced subgraphs of a large network
(figure 1a; Pržulj et al. 2004a). The method generalizes
the degree of a node, which counts how many edges the
node touches, into the ‘vector of graphlet degrees’, or
the ‘node signature’ (or just ‘signature’ for brevity),
which counts how many graphlets of a given type,
such as a triangle or a square, the node touches
(figure 1b). All two- to five-node graphlets, presented
in figure 1a, are taken into account. Thus, the signature
of a node describes the topology of its neighbourhood
and captures the node’s interconnectivities with its up
to four-neighbours. Next, ‘signature similarities’ are
computed for each pair of proteins in a PPI network
J. R. Soc. Interface
(see §3); higher signature similarity corresponds to
higher topological similarity of neighbourhoods of two
nodes (Milenković & Pržulj 2008).

To increase the coverage of PPIs, the human PPI
network that we analyse is the union of the human
PPI networks from HPRD (Peri et al. 2003), BIOGRID
(Stark et al. 2006) and Radivojac et al. (2008), consist-
ing of 47 303 physical interactions among 10 282
proteins. When protein signatures are computed, all
proteins are taken into consideration. However, in all
of our subsequent analyses, we focus only on proteins
with more than three interacting partners, because
poorly connected proteins are more likely to be involved
in noisy interactions. Similar was done by Brun et al.
(2004) and Milenković & Pržulj (2008). In the human
PPI network, there are 5423 proteins with degrees
higher than 3.

Using signature similarities as the distance measure,
we cluster proteins in the human PPI network and
analyse the enrichment of cancer genes in these clusters.
If the cluster containing a gene that is currently not
reported to be involved in cancer contains many
known cancer genes, it is likely that the gene is also
involved in cancer. We denote as ‘known cancer
genes’ the set of genes implicated in cancer that is
available from the following databases: Cancer Gene
Database,1 Cancer Genome Project—the Cancer Gene
Census (Futreal et al. 2004),2 GeneCards (Safran et al.
2002),3 Kyoto Encyclopedia of Genes and Genomes
(KEGG; Kanehisa & Goto 2000)4 and Online
Mendelian Inheritance in Man (OMIM; Hamosh et al.
2002).5 Cancer Gene Database contains a list of genes
involved in diseases derived from Medline abstracts by
mixture of automatic text mining, semi-automatic ver-
ification and manual validation/scoring of results; out
of all disease genes, we extract those described as
being involved in cancer. Cancer Gene Census contains
those genes from the literature for which mutations
have been causally implicated in cancer. GeneCards
provides the list of genes that are related to cancer in
any of the following databases: SWISS-PROT, Gena-
tlas, GeneTests, GAD, GDPInfo, bioalma, Leiden,
Atlas, BCGD, TGDB and HGMD. Out of all disease
genes in OMIM, we extract those described as being
involved in cancer by at least two studies. Cancer
genes from KEGG are those that are members of
known cancer pathways originating from the literature.
There are 1688 unique known cancer genes in the
merged dataset, out of which 1205 are found in the
PPI network and 679 out of these 1205 genes have
degrees higher than 3, representing our final list of
‘known cancer genes’.

There is no clustering algorithm that can be univer-
sally used to solve all problems. Various clustering
algorithms have been proposed, originating from differ-
ent research communities and aiming to solve different
problems, each with its own advantages and disadvan-
tages (Xu & Wunsch 2005). Therefore, we test the

http://ncicb.nci.nih.gov/projects/cgdcp
http://ncicb.nci.nih.gov/projects/cgdcp
http://www.sanger.ac.uk/genetics/CGP/Census/
http://www.sanger.ac.uk/genetics/CGP/Census/
http://www.genecards.org/
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Figure 1. (a) Automorphism orbits 0, 1, 2, . . . , 72 for the 30 two-, three-, four- and five-node graphlets G0, G1, . . . , G29. In a
graphlet Gi, i [ 0, 1, . . . , 29, nodes belonging to the same orbit are of the same shade. Adapted from Pržulj (2007). (b) An
illustration of how the degree of the large black node in the leftmost panel is generalized into its signature that counts the
number of different graphlets that the node touches, such as triangles (the middle panel) or squares (the rightmost panel).
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performance of different clustering algorithms applied
to our signature similarity measure. We evaluate four
different clustering methods: hierarchical (HIE),
K-medoids (KM), K-nearest neighbours (KNN) and
signature threshold-based clustering (ST). Each
method differs in the way clusters are formed (see §3).
For example, whereas KNN and ST allow for overlap
between clusters, HIE and KM do not. HIE and KM
methods require the number of clusters to be prespeci-
fied, KNN requires the size of clusters as the input
parameter and ST depends on the choice of the
signature similarity threshold (SST). For each of the
clustering methods, we use different parameters to
test how the accuracy of the method changes with the
parameter choice (see §3).

For each of the four clustering methods and their
corresponding parameters, we do the following. After
clustering the network, for each protein, we compute
the enrichment of known cancer genes in the cluster
the protein belongs to and assess the statistical signifi-
cance of observing the given enrichment (see §3). We
discard the cluster from further analysis if the
probability of observing the enrichment purely by
J. R. Soc. Interface
chance is higher than 0.08. Otherwise, we predict
whether the protein for which the cluster was formed
is involved in cancer or not. We define a protein to be
a cancer gene if the known cancer gene enrichment in
its cluster is both statistically significant and above a
given enrichment threshold (also called hit-rate
threshold, or HRT; see §3 for details). We vary
HRT from 10 to 90 per cent, in increments of 10 per
cent. We repeat the above procedure for each protein
in the network.

For each clustering method, each corresponding
parameter and each HRT, we evaluate the prediction
accuracy of the method by using leave-one-out cross-
validation and standard measures of precision and
recall (see §3). The leave-one-out cross-validation that
hides the knowledge about a single protein at a time
and predicts it using the PPI network and the knowl-
edge about all other proteins is commonly used to
evaluate the prediction accuracy of methods for cancer
gene prediction (Aragues et al. 2008) or protein
function prediction (Sharan et al. 2007). Intuitively,
precision can be seen as a measure of exactness of a
prediction method, whereas recall is a measure of

http://rsif.royalsocietypublishing.org/
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completeness of the method. To simplify the compari-
son of different clustering methods, precision and
recall are combined into a commonly used F-score (see
§3). We compute F-scores for all clustering methods,
their corresponding parameters and HRTs. We report
F-scores only for the best parameter choice for a given
method, across all HRTs.

To assess the significance of observing given F-scores,
we compare F-scores obtained when predictions are
made from real data with F-scores obtained when predic-
tions are made from randomized data (see §3). Thus, if
protein signatures and signature similarities indeed
capture true biological signal, it is expected that
F-scores for randomized data will be lower than those
for real data.

We provide the resulting list of cancer gene predic-
tions (see §4). To further demonstrate the correctness
and validity of these predictions, we perform a litera-
ture search and identify studies that have linked our
predictions to cancer. We also validate our predictions
biologically by finding among negative regulators of
melanogenesis identified in our siRNA screen those
genes that are also involved in cancer. Finally, we
compare our results with those of related studies to
demonstrate the superiority of our approach.
3. METHODS

3.1. Graphlet degree signatures and
signature similarities

To predict the involvement of genes in cancer, we apply
the similarity measure of nodes’ local neighbourhoods,
as described by Milenković & Pržulj (2008). This
measure of node topological similarity generalizes the
degree of a node, which counts the number of edges
that the node touches, into the vector of graphlet
degrees, counting the number of graphlets that the
node touches; graphlets are small connected non-
isomorphic induced subgraphs of a large network
(Pržulj et al. 2004a). The method counts the number
of graphlets touching a node for all two- to five-node
graphlets, denoted by G0, G1, . . . , G29 in figure 1a.
Clearly, the degree of a node is the first coordinate in
this vector, since an edge (graphlet G0) is the only
two-node graphlet. This vector is called the signature
of a node. To take into account the symmetry
groups within a graphlet, the notion of automorphism
orbits (or just orbits, for brevity) is used for all graphlets
with two to five nodes. For example, it is topologically
relevant to distinguish between nodes touching a
three-node linear path (graphlet G1) at an end or at
the middle node. By taking into account these
symmetries between nodes of a graphlet, there are 73
different orbits for two- to five-node graphlets, numer-
ated from 0 to 72 in figure 1a (see Pržulj (2007) for
details). Thus, the signature vector of a node, describing
its up to 4-neighbourhood, has 73 coordinates.

The node signature similarities are computed as follows
(Milenković & Pržulj 2008). For a node u, ui denotes the
ith coordinate of its signature vector, i.e. ui is the number
of times node u touches an orbit i. The distance
Di(u, v) between the ith orbits of nodes u and v is
J. R. Soc. Interface
defined as: Diðu; vÞ ¼ wi � ðj logðui þ 1Þ � logðvi þ 1ÞjÞ=
logðmaxfui; vig þ 2Þ, where wi is a weight of orbit
i signifying its ‘importance’ (see Milenković &
Pržulj (2008) for details). The total distance D(u, v)
between nodes u and v is defined as:
Dðu; vÞ ¼

P72
i¼0 Di=

P72
i¼0 wi: The distance D(u, v) is in

[0, 1), where distance 0 means that signatures of nodes u
and v are identical. Finally, the signature similarity,
S(u, v), between nodes u and v is: S(u, v) ¼ 1 2 D(u, v)
(see Milenković & Pržulj (2008) for details).

Obviously, higher signature similarity corresponds
to higher topological similarity of neighbourhoods of
two nodes. In figure 2a, we illustrate neighbourhoods
of two known cancer genes, ZNF384 and DDX6,
that have a high signature similarity of 0.97; note
that the shortest path distance in the PPI network
between these proteins is 4. Additionally, in figure 2b,
we present signatures of four known cancer genes,
where pairs of genes (ZNF384, DDX6) and (TP53,
BRCA1) have high signature similarities of 0.97 and
0.96, respectively, as clearly indicated by their very
similar signature vectors in the figure; however, all
remaining protein pairs in the figure {(ZNF384,
TP53), (ZNF384, BRCA1), (DDX6, TP53), (DDX6,
BRCA1)} have very low signature similarities of
below 0.25, as indicated by their very different signature
vectors.

3.2. Clustering methods

We cluster proteins based on their signature
similarities. Intuitively, proteins with high signature
similarities should be clustered together, whereas
proteins with lower signature similarities should not.
To calculate signature vectors of proteins, the entire
PPI network with all interactions is taken into account.
However, for clustering, poorly connected proteins with
fewer than four interacting partners are discarded.
Moreover, only clusters with three or more proteins
are taken into consideration. Four different clustering
methods have been used: hierarchical (HIE), K-medoids
(KM), K-nearest neighbours (KNN) and signature
threshold-based clustering (ST).

3.2.1. Hierarchical clustering (HIE). With this method,
a cluster tree, or dendrogram, is created. The tree is not
a single set of clusters, but a multi-level hierarchy,
where clusters at one level are joined as clusters at the
next level. Leaves of the tree are proteins in the PPI
network and an interior node in the tree represents a
cluster made up of all children of the node. The
algorithm steps are as follows: (1) assign each protein
to its own cluster, (2) find the ‘closest’ pair of clusters
and merge them into a single cluster; in the initial
step, the closest pair of clusters will be the pair of
proteins with the highest signature similarity; in case
there is more than one such pair, a pair is selected
randomly from all of the closest pairs, (3) compute
the ‘closeness’ between the newly formed cluster and
each of the old clusters; the closeness between the new
cluster and an old cluster is the average of signature
similarities between proteins of the new cluster and
proteins of the old cluster, and (4) repeat the

http://rsif.royalsocietypublishing.org/
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Figure 2. Illustration of node signatures and signature similarity measure. (a) 2-deep network neighbourhoods of proteins ZNF384
(large grey node) and DDX6 (large black node) that have a signature similarity of 0.97. (b) Signature vectors of protein pairs
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two previous steps until all proteins are clustered into a
single cluster. Hierarchical clustering does not explicitly
require an a priori specified number of clusters.
However, to perform any analysis, it is necessary to
create partition of KH disjoint clusters, cutting the
hierarchical tree at some point. We cut the
hierarchical tree at different points to produce a
different number of clusters. We use the following
values for KH: 100, 250, 500, 750, 1000, 1250, 1500,
1750, 2000, 2250 and 2500.
J. R. Soc. Interface
3.2.2. K-medoids clustering (KM). KM is a
modification of the classic K-means algorithm that
chooses actual data points as centres, i.e. medoids; a
medoid is the ‘central’ data point of a cluster whose
average distance to all other data points in the cluster
is minimal. The algorithm steps are as follows: (1)
pick KKM proteins as centres of KKM clusters and
assign all the remaining proteins in the PPI network
to these centres; each protein will be assigned to the
centre that has minimal signature ‘distance’ to it;
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signature distance is equal to 1 2 signature similarity;
solve any ties randomly, (2) in each cluster C, pick
protein X as the new centre of the cluster, so as to
minimize the total sum of signature distances between
protein X and all other proteins in cluster C, (3)
reassign all proteins to new centres as explained in
step (1), and (4) repeat the previous two steps until
the algorithm converges, i.e. until the same set of
centres is being chosen from one iteration to the next.
We tried the following values for KKM: 100, 250, 500,
750, 1000, 1250, 1500, 1750, 2000, 2250 and 2500.
However, the algorithm could not converge for values
of KKM of 1500 or higher. Additionally, the set of
clusters obtained with KM depends drastically on
the choice of initial centres. Thus, for each KKM, we
repeated the algorithm 10 times, and we accepted the
value of KKM as valid only if the same set of clusters
was obtained in at least 50 per cent of runs. All KKMs
of 750 or lower did not produce consistent sets of
clusters in more than 50 per cent of runs. Thus, we
further analysed only clusters obtained with KKMs of
1000 and 1250; more specifically, we analysed the set
of clusters that was obtained in more than 50 per cent
of runs for a given KKM.

3.2.3. K-nearest neighbours clustering (KNN). For each
protein in the PPI network (with degree higher than 3),
we create the cluster containing that protein and its
KKNN 2 1 closest neighbours, i.e. KKNN 2 1 proteins
that have the highest signature similarities with the
protein; ties are broken randomly. Thus, for each
protein, the resulting cluster will contain KKNN

proteins, including the protein of interest itself. We
used the following KKNN values: 3, 5, 8, 13, 21, 34, 55,
89, 144 and 233. Clearly, unlike HIE and KM, KNN
allows for overlap between clusters.

3.2.4. Signature threshold-based clustering (ST). For
each protein, we identify the cluster containing that
protein and all other proteins in the network that have
signature similarities with it above a certain threshold.
We use the following SSTs: 0.7, 0.8, 0.85, 0.9, 0.925,
0.95, 0.975 and 1. Note that by approximating the
distribution of signature similarities between all protein
pairs in the PPI network with the normal distribution,
and by finding Z-scores and their corresponding
p-values for different SSTs, we find that the statistically
significant SST is 0.85, with p-value of 0.045. For this
reason, we do not find it necessary to analyse SSTs
below 0.7.

3.3. Statistical significance and prediction
accuracy

For a given clustering method and a given parameter,
we measure the prediction accuracy of the method by
using leave-one-out cross-validation: a single gene for
which the prediction is made is used as the validation
data, and all remaining genes based on which we
make the prediction are used as the training data;
we repeat the procedure for each gene. For each gene,
we identify the cluster formed for that gene (for KNN
and ST), or we identify the cluster containing that
J. R. Soc. Interface
gene (for KNN and KM). We compute ‘hit-rate’ of
each cluster, where hit-rate is defined as the percentage
of cancer genes in the cluster out of all genes in the clus-
ter, excluding the protein of interest. We predict a gene
to be cancer-related if the hit-rate in its cluster is above
a given threshold; in this process, we hide the infor-
mation whether the gene of interest is cancer-related
or not, and we do not count this gene towards cancer
gene enrichment in its cluster. By repeating this
procedure for each gene, and by varying the enrichment
threshold, we measure how many of the genes were
correctly classified. We do so by using standard
precision and recall measures, as explained below.

We also compute the statistical significance
( p-value) of observing a given hit-rate in the cluster,
measuring the probability that the cluster was enriched
by a given number of cancer genes purely by chance.
This probability is computed as follows: the total
number of proteins in the PPI network with degrees
higher than 3 is 5423; the size of a cluster of interest,
C, is jCj; the number of proteins in cluster C that are
known cancer genes, excluding the protein of interest,
is k; there are 679 known cancer genes with degrees
higher than 3 in the entire PPI network. Then, the
hit-rate of cluster C is k/(jCj2 1), and the p-value for
cluster C, i.e. the probability of observing the same or
higher hit-rate purely by chance, is

p ¼ 1�
Xk�1

i¼0

679
i

� �
5423� 679
jC j � i

� �

5423
jC j

� � :

Depending on a method and its application, sensible
cut-offs for p-values were reported to range from 1022 to
1028 (King et al. 2004). We continue our analysis only
for proteins for which cancer gene enrichment in their
corresponding clusters is 0.08 or lower. For these
proteins, we predict them as being cancer-related if
the hit-rate in their corresponding clusters is above a
given HRT. We vary HRTs from 10 per cent to 90
per cent in increments of 10 per cent. Thus, we make
a different set of predictions for each clustering
method, each parameter and each HRT.

Given a set of predictions, we measure the prediction
accuracy of the method by using standard measures of
precision and recall, combined into a commonly used
F-score. Precision can be seen as a measure of exactness,
whereas recall is a measure of completeness. Given that
we produce n cancer gene predictions for a given
method, parameter and HRT, precision is the number
of known cancer genes that are in our n predictions
divided by n. Thus, it measures the number of true
positives (tp) out of both true positives (tp) and false
positives (fp). Precision ¼ tp=ðtpþ fpÞ. Recall, on the
other hand, is the number of known cancer genes in
our n predictions divided by the total number of
known cancer genes in the PPI network (with degrees
higher than 3). Thus, it measures the number of true
positives divided by the sum of the number of true posi-
tives and false negatives (fn). Recall ¼ tp=ðtpþ fnÞ.
Note that we assume that currently unreported
cancer genes are indeed non-related to cancer; this
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assumption will certainly not hold as new cancer genes
are being identified. Once precision and recall are
computed for a given clustering method, parameter
and HRT, F-score is computed as follows:
F-score ¼ 2 � Precision � Recall=ðPrecisionþ RecallÞ. We
use F-score since this combined measure of precision
and recall makes it easier to evaluate different cluster-
ing methods against each other compared with using
precision and recall measures individually.

Finally, to asses the significance of observing given
F-scores, we compare F-scores obtained for real data
with F-scores obtained when randomized data are
used. By randomized data, we mean that we randomly
shift labels of proteins in the PPI network before we
compute signature similarities and perform any cluster-
ing; it is equivalent to say that we randomly permute
signature similarities between all protein pairs in the
network. Then, we repeat the whole procedure for clus-
ters formed from this randomized data: we compute
their hit-rates and p-values, make cancer gene
predictions and measure F-scores.
4. RESULTS AND DISCUSSION

4.1. Results

Topological properties of PPI networks have already
been linked to biology. For example, it has been
proposed that the phenotypic consequence of a single
gene deletion is correlated with the degree of its protein
product in the PPI network (Jeong et al. 2001),
although the subsequent studies questioned the
observed correlation (He & Zhang 2006; Zotenko et al.
2008). If we accept the lethality–centrality hypothesis,
then the topology around essential genes in a PPI net-
work can be described by orbits 0, 2, 7, 21, 23 and 33 in
figure 1a. Another example are protein complexes,
which are believed to correspond to dense subgraphs
in a PPI network (Pržulj et al. 2004b; Sharan and
Ideker 2006; Sharan et al. 2007). Thus, the topology
of protein complexes in PPI networks can be described
by orbits 3, 12–14 and 65–72 in figure 1a. Biochemical
pathways have also been linked to PPI network
topology and are believed to correspond to sparse net-
work regions (Pržulj et al. 2004b; Sharan and Ideker
2006). Thus, they can be described by orbits 1, 2, 4–7
and 15–23 in figure 1a. Note that the complex wiring
of cellular networks implies the existence of an overlap
between orbits involved in lethal proteins, protein
complexes and pathways.

We further explore the link of PPI network topology
and biology. We do not focus on any particular graphlet
or orbit alone, since in isolation they can give insight
into only a slice of biological information. Instead, we
integrate all possible two- to five-node graphlets and
all of their orbits into a highly constraining measure
of network structural similarity between nodes, graph-
let degree vectors. We show that such a detailed
measure of network topology provides an insight into
complex biological mechanisms, such as protein
function and involvement in disease, that could
not have been inferred from weaker measures of
network topology, or biological information external
J. R. Soc. Interface
to PPI network topology, such as protein sequence
(Milenković & Pržulj 2008; Kuchaiev et al. 2009).
We also demonstrate that this measure of network
topology is capable of successfully identifying novel
cancer gene candidates from PPI network topology
alone.

Comparison of the prediction accuracy of the four
clustering methods with respect to F-scores is presented
in figure 3a. F-scores are shown only for the best
parameter choice for each of the methods. These
parameters are KH ¼ 1250, KKM ¼ 1000, KKNN ¼ 8
and SST ¼ 0.95 for HIE, KM, KNN and ST, respect-
ively (see §3). Other parameters that we tested for a
given clustering method produced lower F-scores over
the entire HRT range. Overall, KNN is the best out of
the four clustering methods, followed by KM, ST and
HIE, respectively.

The superiority of KNN over KM is not surprising.
With KNN, a protein of interest is clustered with the
top K most signature-similar proteins in the network.
With KM, a protein of interest is clustered with a
signature-closest centre protein, i.e. with the centre
protein having the highest signature similarity with it
(see §3). However, the signature-closest centre protein
is not necessarily the most signature-similar protein in
the network. Additionally, KNN allows for overlap
between clusters, whereas KM does not. Thus, with
KNN, known cancer genes can be positioned in multiple
clusters, and therefore the number of possible clusters
that are significantly enriched with cancer genes
might be higher for KNN than for KM. Additionally,
proteins perform the function or participate in a disease
by interacting with other proteins within a functional
module, but also with proteins across modules. Thus,
it might be biologically relevant to allow for the overlap
between clusters. The better performance of KNN over
ST could be explained as follows. With ST, proteins
with signature similarities above a given threshold are
clustered with a protein of interest. However, a fixed
threshold is used for all proteins in the network.
A fixed threshold might be too stringent for proteins
with complex and dense neighbourhoods, not allowing
biologically relevant proteins to be clustered together
just because their similarities are below the threshold.
On the other hand, it might be too flexible for proteins
with sparse neighbourhoods, allowing for too many
potentially biologically unrelated proteins to be clus-
tered together. Finally, the worst performance of HIE
over all other methods could also be explained by its
lack of overlap between clusters. Moreover, when the
total signature similarity between two clusters is
computed (see §3), the average of signature similarities
between all pairs of proteins across the two clusters
is used, thus potentially damaging the quality of
clustering.

Each clustering method has its advantages and
disadvantages. We compared the performance of differ-
ent algorithms with respect to F-score. However, the
choice of the most appropriate clustering strategy is
far from being simple and is an important research
problem (Xu & Wunsch 2005). Therefore, it is difficult
to determine which of the four clustering methods is
indeed the best for our application. Thus, we produce
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Figure 3. Comparison of different clustering methods.
(a) F-scores for the four clustering methods (HIE (diamonds),
KM (squares), KNN (triangles) and ST (crosses)) and their
corresponding best-choice parameters (KH ¼ 1250, KKM ¼

1000, KKNN ¼ 8 and SST ¼ 0.95), over all HRTs in [10%,
90%]. (b) The number of predictions produced by the three
clustering methods (KM, KNN and ST) for their correspond-
ing best-parameter choices (KKM ¼ 1000, KKNN ¼ 8 and
SST ¼ 0.95) at an HRT of 40 per cent.
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a set of predictions for each of the four clustering
methods. Since we predict a gene as cancer-related if a
hit-rate (i.e. known cancer gene enrichment) of its clus-
ter is above a given threshold, the critical factor is
determining which HRT to use to make predictions.
Currently, we do not know the entire set of cancer
genes. Therefore, we expect that hit-rates of clusters
will increase as new cancer genes are identified. Thus,
we want to use a lower HRT to avoid too high strin-
gency, but still large enough to make as many correct
predictions as possible. Subsequently, we use HRT of
40 per cent, giving F-scores of 24.46 per cent, 16.16
per cent, 10.6 per cent and 0.8 per cent for KNN,
KM, ST and HIE, respectively. These translate into
precision of 31 per cent at recall of 20 per cent for
KNN, precision of 31 per cent at recall of 11 per cent
for KM, precision of 37 per cent at recall of 6 per cent
for ST, and precision of 12.5 per cent at recall of
0.4 per cent for HIE (this is why we do not make
predictions using HIE; also see below, and electronic
supplementary material, figure S1). Note that relatively
lower F-scores are not surprising for the following
reasons. Since the number of known cancer genes
will increase in the future, it is expected that
precision, recall and F-scores will increase as well.
Additionally, all of our predictions are already
J. R. Soc. Interface
statistically significant; since we removed clusters for
which cancer gene enrichment was likely to occur
purely by chance, the number of possible predictions
is automatically decreased, thus decreasing the F-
scores. Finally, we are dealing with noisy and incom-
plete protein interaction datasets based on which we
computed protein signatures.

Next, we assess the significance of the observed
F-scores. We compare F-scores of real data with
F-scores of randomized data (see §3), and we demon-
strate that those for randomized data are much lower
than those for real data. More specifically, real data
F-scores of 24.46 per cent, 16.16 per cent, 10.6 per
cent and 0.8 per cent for KNN, KM, ST and HIE,
respectively, are higher than those of 8.39 per cent,
4.39 per cent, 5.71 per cent and 0.8 per cent for random-
ized data, respectively. Thus, we are confident in the
accuracy of all clustering methods apart from HIE, for
which F-scores for the real and randomized data are
the same. Additionally, the performance of HIE drops
dramatically at HRT of 30 per cent (figure 3a). For
these reasons, we do not report our predictions for
HIE. Instead, we report our predictions only for KNN,
KM and ST.

With KNN, we produce 441 predictions, out of which
304 are ‘new predictions’ still unreported as known
cancer genes in any of the databases and 137 are
known cancer genes. With KM, we produce 237 predic-
tions, out of which 163 are new predictions and 74 are
known cancer genes. With ST, we produce 114 predic-
tions, out of which 72 are new predictions and 42 are
known cancer genes. The three clustering methods
together make the total of 557 unique cancer gene
predictions, out of which 399 are new predictions and
158 are known cancer genes. Thus, in total, we success-
fully recover 158 out of 679 known cancer genes; i.e.
23.3 per cent of them. Note that this relatively low
recovery rate is expected and is the state of the art
due to incompleteness and noise in the protein inter-
action network and known cancer gene dataset. Also
note that our results outperform those reported by simi-
lar studies (Aragues et al. 2008), additionally verifying
the superiority of our approach. In addition, we provide
predictions confirmed by all three of these clustering
methods, since these predictions could be considered
of higher confidence. There are 51 such predictions,
out of which 31 are new predictions and 20 are known
cancer genes. The number of our cancer gene predic-
tions for each of the three clustering methods, as well
as their overlap, is presented in figure 3b. The existence
of an overlap between different clustering methods
demonstrates that it is difficult to choose a single
‘best’ clustering method. This further justifies our
decision to report predictions produced by all three
methods.

In table 1, we provide the list of 31 new predictions
(as explained above) supported by all three clustering
methods, together with p-values and hit-rates for their
corresponding clusters. For a given prediction, the
p-value (hit-rate) is the minimum p-value (maximum
hit-rate) over all three clustering methods. The full
list of predictions is available at http://www.ics.uci.
edu/~bio-nets/predictions.xls.

http://www.ics.uci.edu/~bio-nets/predictions.xls
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Table 1. New cancer gene predictions supported by all three
clustering methods and the p-values and hit-rates for their
corresponding clusters. The predictions are sorted
alphabetically with respect to gene names. If a gene is
validated in the literature, the corresponding reference is
shown (‘PMID’ denotes the PubMed ID).

gene p-value
hit-rate
(%) reference (PMID)

ADRBK1 0.00051 83.33 18451066
ATF2 0.00001 57.14 18348191
CCL3L1 0.00248 62.50 15662971
CD247 0.00694 100.00 —
CD5 0.00014 83.33 19041428
CDC25B 0.03902 42.86 18635965; 17934831;

19028102
CRKL 0.00001 71.43 —
CSNK2A1 0.0003 71.43 15355908; 7513612
CSNK2B 0.01125 57.14 —
DAXX 0.00114 57.14 17952115; 17306074
HNF4A 0.001 71.43 18925631
KHDRBS1 0.00033 60.00 18394557; 17927519;

17621265
MAML3 0.00123 71.43 —
MAP3K14 0.01125 66.67 18434448
NCF1 0.00123 71.43 16753344
NR3C1 0.00001 57.14 18519667; 17167179;

14580768
PECAM1 0.00123 66.67 17875702; 17429142
PIK3R2 0.00022 71.43 15375573
PLCG1 0.00002 64.29 —
PLCG2 0.00183 57.14 —
POU2F1 0.00003 71.43 17273778; 15672409
PRKC1 0.01125 66.67 17990328; 17690741
PTPRC 0.00005 57.14 16818275; 16175399
PXN 0.00001 52.17 18990162; 18380937;

16040804
RAF1 0.00001 57.14 2018353; 18561318;

11389083
RAPIGA1 0.00248 62.50 —
RBL1 0.00114 44.44 17486638; 14666683
RUNX2 0.00292 43.75 18829534; 18755791
SHC1 0.00017 80.00 19055724; 18604176;

18273058
SQSTM1 0.01125 66.67 18931699; 17395976;

12700667
VDR 0.00051 83.33 19008093; 18849534;

18719092

6http://www.pubmed.gov.
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4.2. Validation of our cancer gene predictions

4.2.1. Literature validation. To further demonstrate the
correctness of our predictions, we perform literature
validation. Owing to a large number of our new
predictions, we perform manual literature validation
only on 31 new predictions supported by all three
clustering methods, successfully validating 24/31¼ 77.4
per cent of these predictions. Additionally, for all of our
new predictions, we perform literature validation by
automatic text mining using CiteXplore (Labarga et al.
2007). For 336/399 ¼ 84.2 per cent of them, this tool
finds at least one article mentioning the protein of
interest in the context of human cancer, thus further
demonstrating the high prediction accuracy of
our approach. Below, we provide our manually
J. R. Soc. Interface
literature-validated predictions and the evidence of their
involvement in cancer. The PubMed6 IDs of references
documenting each gene–cancer association are shown in
table 1.

ADRBK1 (i.e. GRK2) plays a role in the growth of
thyroid cancers reducing cell proliferation. ATF2 is
involved in prostate cancer, breast cancer cell lines,
hepatic and lung cancer, as well as melanoma and
tumours of the nervous system. CCL3L1 is involved in
brain tumorigenesis, and especially in the progression
of glioblastoma. Expression of CD5 plays a role in the
fate of tumour-specific T cells, making them unable to
recognize and eliminate malignant cells. CDC25B over-
expression has been observed in a significant number of
human cancer cells, and in particular in early stages of
development of intestinal and gastric cancers.
CSNK2A1 plays a role in malignant progression and
it encodes the catalytic subunit alpha of protein
kinase CK2, where elevated CK2 activity is associated
with malignant transformation of several tissue types,
including lung. An inverse correlation is observed
between proteins DAXX and c-Met in cancer cell lines
and in metastatic breast cancer specimens; moreover,
abnormal DAXX expression is observed in acute
leukaemia.

Similarly, a role of HNF4A has been suggested in
tumorigenesis and tumour development of hepatocellu-
lar carcinomas in mice. KHDRBS1 (i.e. P62 or SAM68)
is overexpressed in human tumours and it is necessary
for the survival of human lung adenocarcinoma cells;
moreover, its pro-oncogenic role has been suggested
and it has been identified as a modulator of tyrosine
kinase activity and signalling requirement for mam-
mary tumorigenesis and metastasis. An association
has been identified between polymorphisms of
MAP3K14 and rheumatoid arthritis, an inflammatory
disease of the immune system associated with increased
occurrence of cancers of the lymphatic system. Murine
NCF1 gene has been linked to a pathway responsible
for autoimmune disease and cancer. Expression of
NR3C1 is linked to MT1-MMP in multiple tumour
types, where invasion-promoting MT1-MMP is directly
linked to tumorigenesis and metastasis; also, it has been
identified as a gene with cancer-specific hypermethyla-
tion in colorectal tumours and as a cancer-associated
gene with decreased expression. Bone marrow retention
of acute myelogenous leukaemia cells depends on
PECAM1 (CD31) coexpression level; also, its immuno-
reactivity closely parallels the different morphological
steps of melanocytic tumour progression and the
presence of histological parameters related to the
aggressive behaviour.

Moreover, genetic alterations of ARHGAP family
genes, including PIK3R2, lead to carcinogenesis
through the dysregulation of Rho/Rac/Cdc42-like
GTPases. POU2F subfamily members, including
POU2F1, play a pivotal role for the FZD5 expression
in undifferentiated human ES cells, foetal liver/spleen,
adult colon, pancreatic islet and diffuse-type gastric
cancer; also, a potential role of POU2AF1 in the
deletion of 11q23 in chronic lymphocytic leukaemia

http://www.pubmed.gov
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has been examined. PRKCI may serve as a molecular
marker for metastasis and occult advanced tumour
stages in oesophageal squamous cell carcinomas and it
may represent novel tissue marker helpful in the differ-
entiation of ductal and lobular breast cancers. PTPRC
(CD45) antibodies may be candidates for immunother-
apeutic approaches to the treatment of human NK and
T cell lymphoma and its low expression and the poor
response to CD3 have been recognized as markers that
are able to identify rapid progress of gastric adenocarci-
noma and the need for more aggressive therapeutic
strategies. FYN and its related signalling partners,
including PXN, are upregulated in prostate cancer;
moreover, PXN plays an important role in controlling
cell spread and migration and its overexpression corre-
lates with the prognosis of some types of cancers, such
as oesophageal cancer; furthermore, it functions as
effector of GD3-mediated signalling, leading to malig-
nant properties such as rapid cell growth and invasion.

Furthermore, RAF1 has been linked to human breast
cancer as well as to urinary bladder cancer. The connec-
tion between the Rb family, including RBL1 (i.e. p107),
and the TP53 family in skin carcinogenesis has been
demonstrated; also, RBL1 plays a constitutive role in
the progression of papillary carcinoma. RUNX2, in
addition to being expressed in breast cancer cells, upre-
gulates the cycle of metastatic bone disease, regulates
genes related to progression of tumour metastasis and
is involved in numerous disease processes, including
postmenopausal osteoporosis and breast cancer. SHC1
has a role in endometriosis, a clinical condition that
affects up to 10 per cent of women of reproductive
age, characterized by the presence of endometrial tissues
outside the uterine cavity and can lead to chronic pelvic
pain, infertility and, in some cases, to ovarian cancer;
also, it has been implicated in breast cancer. SQSTM1
(i.e. p62) is downregulated in hypoxia in carcinoma
cells, and thus it might have a role in the regulation of
hypoxic cancer cell survival responses; additionally, it is
overexpressed in breast cancer. A role of polymorphisms
in VDR has been demonstrated in cutaneous malignant
melanoma and non-melanoma skin cancer risk, as well
as in the development of sporadic prostate cancer and
breast cancer.
4.2.2. Biological application and validation. Previous
studies have hypothesized that cancer genes are negative
regulators of melanogenesis in human cells (Halaban
2002). To examine the utility of our topological
signatures for identifying cancer genes within
biologically relevant datasets, we seek to identify cancer
genes that are negative regulators of melanogenesis
within our functional genomics dataset (Ganesan et al.
2008). We focus on our 695 most statistically significant
genes that negatively regulate melanin production (the
full list is available at http://www.ics.uci.edu/~bionets/
mp_regulation.xls). To identify among negative
regulators of melanin production those genes that are
involved in cancer, we search within this dataset for our
predictions produced by any of the three clustering
algorithms. Four per cent of the negative regulators of
melanogenesis, i.e. 27 genes, are identified as cancer gene
J. R. Soc. Interface
candidates, out of which 14 are new predictions and 13
are known cancer genes. Of these 27 genes identified in
this analysis, 85 per cent, i.e. 23 of them, are validated in
the literature as cancer-associated genes (table 2).

Interestingly, 20 of these 27 genes are kinases,
enzymes that are known to dynamically regulate the
process of cellular transformation. Several of these
kinases are known regulators of melanogenesis. BRAF,
the top negative regulator of melanogenesis identified
in our analysis, directly impacts melanin production
by downregulating the transcriptional activity of
MITF (Rotolo et al. 2005). Similarly, both MAPK1
(Yanase et al. 2001) and MAP3K1 (Hemesath et al.
1998) are known to directly impact MITF transcription.
Also, among the cancer gene candidates is MERTK.
Mutations in MERTK are responsible for retinitis pig-
mentosa, a hereditary cause of blindness characterized
by aberrant melanin production in the retinal pigment
epithelium (Gal et al. 2000). In addition to identifying
known negative pigment regulators, our algorithm
also identified several known uveal melanoma genes.
Loss of heterozygosity in THRB is seen in hereditary
uveal melanoma (Kos et al. 1999) while both MET
and IGF1R play a role in uveal melanoma metastasis
(Economou et al. 2008).

To further investigate the biological meaning of our
results, we seek to determine whether our approach
could identify sets of genes that are correlated with a
specific cancer type. Note that complex wiring of cellu-
lar networks implies that the same gene can be involved
in different biological processes and types of cancer
(table 2). We find that 35 per cent of gene pairs from
table 2 have signature similarities higher than the stat-
istically significant threshold of 85 per cent (see §3).
Next, we divide the set of genes from table 2 into sub-
sets based on their involvement in a specific type of
cancer. Interestingly, the percentage of statistically sig-
nificantly signature-similar nodes is 40 per cent, 50 per
cent and 50 per cent for breast, lung and digestive
system cancer, respectively. This indicates that proteins
involved in the same cancer type have more similar
topologies in the PPI network than do the proteins
involved in different cancer types. Finally, we examine
the three uveal melanoma genes discussed above,
THRB, MET and IGF1R. Interestingly, all three of
these genes have very high signature similarities of
above 92 per cent (figure 4), further indicating that
genes involved in the same disease have very similar
network neighbourhoods. The striking similarity of
topological signatures of the three uveal melanoma
genes is unlikely to occur purely by chance ( p �
0.018; see §3). Since the three uveal melanoma proteins
are at distances 2 and 3 in the PPI network from each
other, no conclusion about their common biological
characteristics could have been made from analysing
less-constraining topological properties such as their
direct neighbourhoods. Similarly, no such conclusion
could have been made from comparing their sequences,
since only MET and IGF1R have statistically signifi-
cant BLAST sequence similarity, whereas protein
pairs MET–THRB and IGF1R–THRB do not.

Together, these results demonstrate the utility of our
topological similarity measure to discover new
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Table 2. An siRNA-based screening approach identified 695 siRNAs that significantly stimulated pigment production. The
corresponding genes were identified as negative regulators of melanin production (Ganesan et al. 2008). Twenty-seven out of
these 695 genes, listed in the table, are identified as cancer gene candidates in this study. Z-scores quantify how significantly
these genes stimulate pigment production. Hit-rates and p-values quantify cancer gene enrichments in the clusters formed for
these genes and the statistical significance of observing given enrichments, respectively. Literature search and Gene Ontology
database (The Gene Ontology Consortium 2000) were used to segregate these 27 genes into functional classes. PubMed search
was used to identify known associations between these genes and human cancer. The specific cancer that each gene is
associated with and references documenting each gene–cancer association are shown (‘PMID’ denotes the PubMed ID).

function gene symbol Z-score hit-rate (%) p-value cancer association reference (PMID)

kinases BRAF 25.271 42.86 0.0675 multiple cancers 12068308
MAP3K7 5.257 44.00 0.0001 breast cancer 18316610
MAP2K1 5.243 42.86 0.0675 lung adenocarcinoma 18632602
MST1R 4.193 57.14 0.0112 ovarian cancer 12915129
HSPA1B 3.500 42.86 0.0675 hepatocellular carcinoma 18344806
ABL1 3.479 75.00 0.0161 leukaemia 18704194
ALK 3.300 42.86 0.0675 neuroblastoma, lung cancer, leukaemia 18923524
FGFR1 3.279 42.86 0.0675 lung squamous cell carcinoma 18829480
MAPK1 3.171 71.43 0.0012 breast cancer 18710790
MAP3K1 2.800 66.67 0.0112 breast cancer 18437204
KDR 2.743 42.11 0.00001 gastric adenocarcinoma 18609713
ILK 2.386 57.14 0.0112 colon cancer 12771992
FLT4 2.357 42.86 0.0675 osteosarcomas 18440723
MERTK 2.279 42.86 0.0675 leukaemia 16675557
MAP3K14 2.250 66.67 0.0112 prostate cancer 18752500
IGF1R 2.207 71.43 0.0012 colon cancer 18636198
MET 2.164 71.43 0.0012 multiple cancers 17992475
JAK3 2.064 44.44 0.0.275 leukaemia 18559588
MAP2K4 2.029 42.86 0.0675 pancreatic cancer 15623633
MKNK2 7.657 40.00 0.0390 — —

other CDH5 2.100 45.46 0.0113 breast cancer 18316602
USP2 3.221 66.67 0.0790 prostate cancer 15050917
SMAD7 2.136 66.67 0.0062 leukaemia 18231913
THRB 3.300 85.71 0.00002 pituitary carcinoma 18683837
KPNB1 4.586 57.14 0.0112 — —
IVNSIABP 2.007 42.86 0.0675 — —
U2AF2 3.350 54.55 0.0018 — —
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biological knowledge without using any information
external to PPI networks. Also, they demonstrate the
utility of our approach to specifically identify cancer
genes within phenotype specific, biologically relevant
functional genomic datasets.
4.3. Comparison with other studies

Thus far, studies have been mainly focusing on examin-
ing global topological properties of cancer genes. In this
light, Jonsson & Bates (2006) demonstrated greater
connectivities and centralities of cancer genes compared
with non-cancer genes, indicating an increased central
role of cancer genes within the interactome. Unlike
them, Goh et al. (2007) showed that the majority of
disease genes were non-essential and that they did not
show a tendency to code for hub proteins, thus indicat-
ing that the observed correlation between high degrees
and disease genes was entirely due to the existence of
essential genes within the disease gene class. We ana-
lysed several global network properties of both cancer
genes and non-cancer genes in the context of our
human PPI network. These network properties
included the degree distribution, clustering spectrum
and eccentricity. We observed no difference in the
trends for cancer genes and in the trends for
J. R. Soc. Interface
non-cancer genes with respect to these global network
properties (data not shown). This clearly indicates the
need to use more constraining local network properties
such as node signature similarities.

To further demonstrate the strength of our method,
we compare our results to those reported by Aragues
et al. (2008) that also predict involvement of genes in
cancer from protein interaction data. Unlike their
approach that assumes that network neighbours of
cancer genes are also involved in cancer (Aragues
et al. 2008), we examine whether the genes that are
involved in cancer have similar topological signatures
without necessarily being adjacent in the network. We
find that 96 per cent of known cancer gene pairs with
signature similarities above the statistically significant
threshold of 0.85 (see §3) are indeed not direct neigh-
bours in the PPI network; more specifically, 3.88 per
cent, 35.68 per cent, 48.53 per cent, 10.88 per cent,
1.02 per cent and 0.01 per cent of these pairs are at
the shortest path distance of 1, 2, 3, 4, 5 and 6, respect-
ively. Note that in addition to the interaction data
alone, Aragues et al. (2008) also use differential
expression data, as well as structural and functional
properties of cancer genes. We demonstrate that our
method, based solely on network topology, outperforms
the method of Aragues et al. (2008) even when they use

http://rsif.royalsocietypublishing.org/
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Figure 4. Signature vectors of three uveal melanoma genes (THRB (black), MET (grey) and IGF1R (dotted)). Their signature
similarities are very high, above 92 per cent.
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 on 20 August 2009rsif.royalsocietypublishing.orgDownloaded from 
additional biological information. They report that
using solely interaction data results in precision of 54
per cent at recall of 1 per cent, which corresponds to
an F-score of 16.87 per cent. The precision of their inte-
grative approach when multiple data types are used
ranges from 23 per cent at recall of 15 per cent to 73
per cent at recall of 1 per cent, corresponding to the
range of F-scores from 18.15 per cent down to 1.97
per cent. Note that the quality of our predictions com-
pares favourably even with their integrative approach,
since it ranges from precision of 31 per cent at recall
of 20 per cent to precision of 86 per cent at recall of 1
per cent (electronic supplementary material, figure
S1), corresponding to the range of F-scores from 24.46
per cent down to 1.98 per cent.

Thus, using PPI network topology only, we clearly
outperform the best results that they obtained by inte-
gration of PPI network and other data types. A reason
for this could be that Aragues et al. (2008) relied only
on the direct neighbours of genes when implying their
involvement in cancer while the signatures are a more
precise measure of network structure capturing up to
4-deep neighbourhoods of proteins in PPI networks.
Aragues et al. (2008) also performed a literature search
validating 60 per cent of their predictions. We obtain a
higher literature validation hit-rate of 77.4 per cent.
Furthermore, unlike Aragues et al. (2008), we provide
biological application and validation of our approach
to melanogenesis-related functional genomics data.

There are several potential limitations of our
approach. First, the protein interaction network data
from which protein signatures are computed are noisy
and incomplete, thus affecting the resulting signature
similarities, clusters and predictions. However, we
previously tested our method both on high- and low-
confidence PPI networks and showed its robustness to
noise in PPI network data (Milenković & Pržulj
2008). Second, graphlet signature similarity is currently
the most constraining measure of topological similarity
of nodes in a network. Thus, it might be too stringent to
J. R. Soc. Interface
detect weak PPI network similarities between proteins
that share biological function, despite their network
topological differences. However, we still outperform
studies that use less-constraining global network prop-
erties such as direct neighbours of nodes (Aragues
et al. 2008). Third, the set of known cancer genes is
still incomplete, so it might be difficult to identify all
new cancer gene candidates. Note, however, that this
is not a limitation of our method, but of the incomple-
teness of data sets. Also note that we still outperform
other related approaches (Aragues et al. 2008). Finally,
we do not provide explicit experimental validation of
our cancer gene predictions. However, we identify our
cancer gene predictions in the melanoma-related func-
tional genomics data set predicted to contain them.
Additionally, we validate about 80 per cent of our
predictions in the literature. Thus, despite potential
limitations of our method and the fact that we might
miss some cancer gene candidates, we are still confident
in our predictions.
5. CONCLUSION

We address the important challenge of identifying the
relationship between PPI network topology and dis-
ease. Based solely on topological signatures of proteins
in PPI networks, we are able to identify statistically
significant and biologically relevant cancer gene candi-
dates. We determine that this approach can
specifically identify cancer genes within systems-level
functional genomics datasets predicted to contain
them. Thus, our method can be used to probe biologi-
cally relevant datasets and uncover novel relationships
between cancer genes and specific cellular phenotypes.
Interpretation and analysis of the results of systems-
level functional genomics analysis is limited by the
high false-negative rate of this analysis. Using protein
interaction network topology to analyse functional
genomics datasets can potentially uncover specific

http://rsif.royalsocietypublishing.org/
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molecular pathways that regulate a given biological
phenotype.

It would be interesting to examine whether the topo-
logical signatures could be used to further distinguish
between different types of cancer or even between differ-
ent disease classes. A potential improvement of our
approach would be to integrate with proteins’ PPI net-
work topological signatures other types of biological
data such as gene expression, protein structure and
functional information. By validating our predictions,
we provide clear evidence that PPI network structure
around cancer genes is different from the structure
around non-cancer genes. Understanding the fundamen-
tal laws underlying this observation is an open research
problem that represents a promising avenue towards
understanding and eventually treating complex diseases.

We thank Oleksii Kuchaiev for useful discussions and
suggestions. We also thank Michael A. White for his guidance
during the completion of the genome-wide siRNA screen.
This project was supported by the NSF CAREER
IIS-0644424 grant, a UCI CCBS 2008 Opportunity Award
and a grant from Outrun the Sun, Inc.
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