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Summary

We have long moved past the one-gene—one-function concept originally proposed by Bea-
dle and Tatum back in 1941; but the full understanding of genotype—phenotype relations
still largely relies on the analysis of static, snapshot-like, interaction data sets. Here, we
look at what global patterns can be uncovered if we simply trace back the human interac-
tome network over the last decade of protein-protein interaction (PPI) screening. We take
a purely topological approach and find that as the human interactome is getting denser,
it is not only gaining in structure (in terms of now being better fit by structured network
models than before), but also there are patterns in the way in which it is growing: (a) newly
added proteins tend to get linked to existing proteins in the interactome that are not know
to interact; and (b) new proteins tend to link to already well connected proteins. More-
over, the alignment between human and yeast interactomes spanning over 40% of yeast’s
proteins — that are involved in regulation of transcription, RNA splicing and other cell-
cycle-related processes — suggests the existence of a part of the interactome which remains
topologically and functionally unaffected through evolution. Furthermore, we find a small
sub-network, specific to the “core” of the human interactome and involved in regulation
of transcription and cancer development, whose wiring has not changed within the human
interactome over the last 10 years of interacome data acquisition. Finally, we introduce a
generalisation of the clustering coefficient of a network as a new measure called the cycle
coefficient, and use it to show that PPI networks of human and model organisms are wired
in a tight way which forbids the occurrence large cycles.

1 Introduction

The first high-throughput human protein-protein interaction (PPI) network data started appear-
ing shortly after the publication of the first reference sequence of the human genome, over a
decade ago. Subsequently, the torrent of ’-omics’ data has shifted systems biology research
from hypothesis-based data analysis to data-inspired hypothesis generation; but this revolu-
tion introduced by the post-genomics era has not often translated directly into new therapeutic
developments [1]. The dawn of the 218t century began with the achievement of the first big
goal towards understanding the underlying mechanisms of life — the genome sequencing. The
next big challenge that lies ahead is obtaining complete interactomes for a number of species,
including human [2, 3].
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Just over a decade ago, all available individually reported protein-protein interactions were in
the range of hundreds. Since the introduction of high-throughput screening, including yeast
two-hybrid [4] and affinity purification [5], these new technologies have been generating thou-
sands of interactions each year, causing an explosion in available molecular data. Nevertheless,
current high-throughput PPI data are still of low coverage and have high rates of false posi-
tives [6, 7, 8].

As we have been building a rich foundation of molecular interaction data over the years, we
have now reached a point of examining the contribution of interaction data to new biological
insight. For instance, a recent large-scale data fusion study (integrating 11 sources of human
molecular data) showed that it is the set of genetic interactions which has the most influence on
human diseases, despite its small size and sparseness compared to all other available data [9].
On the other hand, proteins do not work in isolation to carry out almost all biological process,
but together, by being wired into a complex network whose properties have given us important
insights over the years. The availability and quality of these data could impact the conclusions
of scientific analyses.

To make sure that data generation is as unbiased as possible and that PPI network collec-
tion progress is on the right track, it was recently shown that different interaction detection
biotechnologies produce consistent PPI topology, i.e., that PPI topology is largely indepen-
dent of biotechnology used for generating it [10]. Currently, we are at a unique point in time
where we can observe PPI network growth as new PPI data become available. In this study,
we examine how human PPI network acquisition has been progressing thus far, and whether its
topological properties changed over time in a way that could provide interesting insights into
the principles that underlie the complex protein interaction machinery.

We examine the human PPI network at its current stage on its path to data collection completion,
and study how its topology has been changing over the past 10 years: we analyse how newly
added proteins get wired into the existing PPI network and if parts of the human and yeast
interactomes gain in topological and functional similarity. We also find a core sub-network in
the human PPI network, which has been topologically conserved since the earliest versions of
the interactome and find that it is involved in some of the most important biological processes
related to the cell’s development and progression, as well as disease formation.

It is well established that conserved PPIs exist between species, even as distant as yeast and
human; this is used for transferring functional annotation of proteins from one species to an-
other, reconstructing phylogenetic relationships between different species (including viruses),
predicting and validating new interactions between proteins, finding cross-species conserved
motifs that correspond to specific cellular machinery (such as amino acid phosphorylation,
DNA replication initiation, protein folding, regulation of cell cycle progression) [11, 12, 13,
14, 15, 16, 17, 18, 19, 20]. Conversely, here we examine how addition of new PPI data affects
the large conserved human—yeast regions of their interactome networks, both topologically and
functionally.

Finally, we introduce a new network topology measure, which we call the cycle coefficient. It is
a generalisation of the clustering coefficient and represents the likelihood of any two nodes with
a common interactor to be connected through cycles within the network. Using this measure,
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we find that large cycles are not common in the interactomes, i.e., that PPI networks are tightly
wired with short cycles between their proteins.

2 Methods

2.1 Data

We obtained all protein-protein interaction (PPI) data sets from the Center for Cancer Systems
Biology (CCSB) Interactome Database'. We used the following yeast-two-hybrid (Y2H) hu-
man interactomes: HI-2005, the data set from Rual et al. (2005) [21]; HI-2011, the union of
Yu el al. (2011) [8], Vankatesan et al. (2009) [6] and Rual et al. (2005) [21] data sets; HI-
2013, the latest human PPI data set (Marc Vidal’s pre-publication human PPI data available at
http://interactome.dfci.harvard.edu/H_sapiens/index.php).

We also used Y2H protein-protein interaction (PPI) networks of model organisms to compare
the human interactome with interactomes of other species (also downloaded from CCSB Inter-
actome Database). The PPI network of A. thaliana (Al-1) is constructed from data published
by the Arabidopsis Interactome Mapping Consortium (2011) [22]. To increase coverage, we
constructed the worm, yeast and fly PPI networks as unions of multiple data sets: the worm (C.
elegans) PPI network (WI-2) is constructed as the union of WI-2004 [23] and WI-2007 [24]
data; the yeast (S. cerevisiae) PPI network (YI-2) is constructed as the union of data provided
by Yu et al. (2008) [7], Ito et al. (2001) [25] and Uetz et al. (2000) [26]; and the fly (D.
melanogaster) PPI network (FI-2) is constructed as the union of data by Stanyon et al. (2004,
Finley Lab) [27], Formstecher et al. (2005, Hybrigenics) [28] and Giot et al. (2003, CuraGen)
[29]. Table 1 summarises the basic network properties of all used data sets.

Table 1: Basic network properties of the analysed PPI networks. The column labels are as fol-
lows: | N |, number of nodes; | E'|, number of edges; C'C, clustering coefficient; AP L, avarage path
length; AN N, average number of neighbours; d, diameter; and r, radius.

PPINetwork | [N| [ [E] [ CC [APL][ANN | d |r
HI-2005 1,523 | 2,549 | 0.033 | 4.35 377 | 12| 6
HI-2011 2,163 | 3,718 | 0.027 | 4.57 373 | 12| 6
HI-2013 4228 | 13,427 | 0.054 | 406 | 652 |11 |6

Al-1 2,634 | 5,529 | 0.050 | 4.75 448 |16 | 8
WI-2 2,235 | 3,232 | 0.023 | 529 | 313 | 15|38
YI-2 1,966 | 2,705 | 0.056 | 5.61 | 3.05 | 14 | 8
FI-2 8,023 | 27,795 | 0.011 | 428 | 699 | 10 |6

2.2 Graphlets and graphlet degree distribution agreement

Graphlets are small, connected, induced sub-graphs of a large network [30, 31] that describe
the wiring patterns around nodes in the network [32]: all 30 graphlets with 2 to 5 nodes and
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all 73 symmetries in them (called orbits) are illustrated in Figure 3 (graphlets are labelled G
to Go9, while orbits are labelled from 0 to 72). Previously, orbits were used to provide a more
constraining measure of a node’s position within a network [32]. Here, we use orbits to show
exactly how the new proteins were added and how they impacted the topology of the human
interactome.

Graphlet degree distribution (GDD) agreement is thus far the most sensitive measure which
shows how similar the structure of two networks is. It works by generalising the degree dis-
tribution so that instead of comparing only the degree distributions of two networks, it also
compares how similar the two networks are in terms of sub-structures such as triangles or
squares (see [31] and [32] for extensive details).

2.3 Random network models

We construct random model networks, with the same number of nodes and edges as the origi-
nal data, coming from five network models most commonly used for modelling PPI networks:
Erdos-Rényi random graphs (ER), Erdos-Rényi random graphs with the same degree distri-
bution as the data (ER-DD), Geometric random graphs (constructed using 3-dimensional Eu-
clidean space, denoted by GEO), Scale Free Barabasi-Albert type networks (SF) and stickiness-
index based networks (STICKY) (described in [31] and [33]). To increase confidence, for each
of these five random network models corresponding to each of the three data networks (HI-
2005, HI-2011 and HI-2013), we generate 30 network instances. This produces 450 random
model networks (30 instances for 5 models for each of the 3 data networks; 150 model in-
stances per data network). To see which model fits the data, we measure the similarity between
the three human PPI networks and each of the 150 generated networks by computing the GDD
agreement between them (see section 2.2 for introduction to GDD). We compute the average
and standard deviation of the GDD agreement between the data network and all of the 30 gen-
erated instances of one model, and we do so for each of the five random models. We report
average and standard deviations of GDD agreement between data and model networks for each
of the five models.

2.4 Network alignment

Aligning networks is a process of mapping nodes of one network onto the nodes of another
with the goal of maximising the number of aligned edges between the aligned nodes. The
problem is computationally intractable due to the underlying sub-graph isomorphism problem
that is NP-complete [34]. Hence, approximate solutions are sought. Analogous to sequence
alignment, network alignment algorithms can be local and global. There exists a number of
network alignment algorithms [11, 12, 13, 14, 15, 16, 17, 18, 19]. The topological quality of
alignment is usually measured by edge correctness (EC), which is the percentage of edges of
the smaller network that are correctly aligned to edges of the larger network [17].

Since in Section 3.3 we look at the similarity in “wiring” between the human PPI network
and PPI networks of model organisms, we use a network alignment algorithm that would align
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interactomes based purely on topology. Hence, we use MI-GRAAL [19] restricted to using
only topological similarities to find similar nodes to align.

2.5 Cycle coefficient

We generalise the notion of the clustering coefficient to cycle coefficient (defined below) and
compare cycle coefficients of the PPI data and random network models. Note that the stan-
dard clustering coefficient can be interpreted as the likelihood of two nodes being neighbours
(connected by a path of length 1, i.e., an edge) given that they share a common neighbour. We
generalise this as follows.

Definition — A cycle coefficient of order k of a node v, denoted as Cj(v), is a fraction of all
pairs of neighbours of v connected by some path of length < k£ — 2 not going through v. By
definition, we put C(v) = 0 for any k, if the degree of node v < 1. Analogous to the standard
average clustering coefficient of a network, the average cycle coefficient of a network is the
average of cycle coefficients of all nodes in the network. In other words, it is the likelihood of
two nodes being connected by some path of length < k — 2, given that they share a common
neighbour. Equivalently, the cycle coefficient of order £ of network G, Cy(G), is the fraction
of all node pairs in the network that belong to some cycle of length < k, given that they share
a common neighbour (note the importance of < here and also see the example below). Thus,
C3(G) is the standard clustering coefficient of network G.

Example 1 — We compute C5(v), Cy(v) and C5(v) of node v in the graph presented in Fig-
ure 1A. Node v has 4 neighbours and therefore there are 6 possible pairs of its neighbours.
None of the neighbours of v are connected by an edge and therefore, the standard clustering
coefficient of this node is C5(v) = % = 0. Next, one pair of neighbours of v is connected by a
path of length 2 not passing through v and therefore, Cy(v) = %. To calculate C5(v), notice that
there are two pairs of neighbours of v that are connected by paths of length < 3 and therefore

05(1)) = % = %

Example 2 — We compute C3(u), Cy(u) and C5(u) of node u in the graph presented in Fig-
ure 1B. Node v has 4 neighbours and therefore there are 6 possible pairs of its neighbours. Its
Cs(u) =0, C4(u) = 0 and Vk > 5 its Ci(u) = . Therefore even though node v in Figure 1B
is a member of many more cycles of length 5 than node v in Figure 1A, its C5(u) is less than
C5(v) of node v in the Figure 1A. This is because the cycle coefficient of order k is concerned

with the presence or absence of the cycles between node pairs, not the number of cycles.

Note that the cycle coefficient is always less than 1. Also, V k1 < ko, the average cycle
coefficients of network G satisfy Cy, (G) < Cj,(G). In particular, the cycle coefficient is
always greater than or equal to the clustering coefficient.

3 Results

We focus on human protein-protein interaction (PPI) data made available over the last 10 years
through yeast two-hybrid (Y2H) high-throughput interaction detection technology. We find
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Figure 1: Cycle coefficient computation example.

that, from 2005 to 2013, the average number of neighbours increased and both the average path
length and the diameter decreased, suggesting that the human PPI network is becoming more
compact and less sparse (Table 1). Also, the degree distributions of HI-2005, HI-2011 and HI-
2013 roughly follow a power-law (Figure 2), possibly meaning that Y2H screening of human
protein interactions has been progressing in a consistent manner. A non-quantitative change
in the degree distribution (e.g. a shift away from the power-law distribution to, say, a random
distribution) would indicate a major change in the global topological properties of the human
PPI network. As this is not the case, and the distributions differ only in the number of proteins
having a certain degree, this suggests that new screening experiments are adding proteins and
interactions to the human PPI network in a topologically consistent way.

[ o HI-2005 o HI-2011 = HI-2013|

Frequency

Degree

Figure 2: Degree distributions for HI-2005, HI-2011 and HI-2013 (log-log scale).

3.1 Changes in network topology: new proteins as mediators

The HI-2013 data set has 2,525 newly added proteins compared to the previous HI-2011 in-
teractome version; (note that 460 proteins from HI-2011 are absent from HI-2013). We asked
what the impact of the addition of these 2,525 proteins on HI-2013 network topology was and
how the new proteins got “wired” into the human PPI network. To answer this, we analyse
HI-2013 using graphlets (for details see Methods, section 2.2).

The degree distribution of the 2,525 newly added proteins again follows a power-law, with
1,233 of them being linked to only one other protein in HI-2013, 473 of them being linked to
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two other proteins, 235 to three, etc., but there are 16 new proteins with over 70 interacting
partners in HI-2013 (four of which have over 200 interacting partners, and one of them has 313
interacting partners — KRT40 is the most connected protein of HI-2013). We see this in detail
in Figure 3, where we colored red all orbits 7 such that when we count all proteins in HI-2013
with non-empty ‘" orbit, we find that the newly added proteins contribute over 50% to these
counts.

2-node  3-node graphlets 4-node graphlets 2-node  3-node graphlets 4-node graphlets
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5- node graphletﬁ 5- node graphlel%
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Figure 3: Left panel — Orbits coloured red are the most frequent ones in the newly added proteins
(i.e., in the 2,525 proteins that exist in HI-2013, but not in HI-2011). Right panel — Presence of
specific topological wirings (i.e., graphlets) in the full HI-2013 network. Circled graphlets are
those for which a large portion of their counts in HI-2013 come from proteins added to HI-2013.

a8
S

To gain further insight into the wiring patterns (i.e. topology) of HI-2013 caused by added
proteins, we analyse graphlet counts (note, the higher the number of occurrences of a graphlet,
the more prominent that wiring pattern within the network) and find several surprisingly spe-
cific topological wirings in HI-2013 caused by the 2,525 newly added proteins (Figure 3, right
panel). We look for graphlets such that over 50% of their counts in HI-2013 come from at least
one of the newly added proteins: in Figure 3 (right panel), if 50%-59% of graphlet GG; counts
(€ {0,1,...,29}) in HI-2013 include at least one newly added protein, we circle graphlet G;
in blue; if 60%—69% of graphlet GG; counts in HI-2013 include at least one newly added protein,
we circle graphlet GG; in green; if over 70% of graphlet GG; counts in HI-2013 include at least
one newly added protein, we circle that graphlet in orange; finally, graphlet Gos is circled in red
since 94% of its counts in HI-2013 include at least one newly added protein. What does this
mean? For instance, graphlet Gos is present 2,454,886 times in HI-2013 and 2,302,331 of these
counts include newly added proteins. This means that the newly added proteins are responsible
for 94% of HI-2013 wiring patterns described by graphlet (55, and being able to visualise the
change in wiring in this way (i.e. by observing graphlet (G5, and other prominent grphalets)
facilitates the analysis of these newly introduced topological features.

Next, in order to distinguish the precise topological position of newly added proteins within,
we look whether newly added proteins tend to touch (G5, at orbit 54 or orbit 55. This will
tell us the exact orbit within graphlet (G5, which describes how the new proteins interact with
the rest of the network. We find that about 94% of orbit 55 counts in HI-2013 come from the
newly added proteins, while about 58% of orbit 54 counts come from them. Hence, one of
the topological patterns by which newly added proteins got wired into HI-2013 is described by
orbit 55, indicating that the new proteins tend to link to existing proteins in the interactome that
were not interacting between themselves. Similarly, we look at orbits of graphlet G54 and find
that about 78% of orbit 61 counts in HI-2013 come from the newly added proteins, about 64%
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of orbit 60 counts come from the new proteins, and about 48% of orbit 59 counts come from the
new proteins — again, this indicates that the newly added proteins are more likely to get linked
to existing proteins that do not interact between themselves. We conclude the same when we
analyse orbits of GG14. In GG11, new proteins contributed 73% to the count of orbit 23 and 53%
to the count of orbit 22, again confirming the above conclusion. The same can be concluded
from similar analyses of orbits of the remaining circled graphlets.

3.2 The human interactome is getting more complete

We have seen how newly added proteins and interactions tend to get wired into the human PPI
network. Now, we look at the topology of the entire HI-2013 interactome and how it evolves
as more PPI data becomes available. For each of the three human PPI networks (HI-2005, HI-
2011 and HI-2013), we generate random network models of their size to see which one best fits
the data (see Methods section 2.3 for details on constructing random models).

We see that the best fitting network model for the human interactome is the stickyness-index
based model (STICKY), followed by the geometric model (GEO). This is consistent across all
three instances of the human interactome data (Figure 4). However, we find that the relative rise
in the fit of GEO over time (HI-2005 — HI-2013) is 6.31% and the relative drop in the fit of
ER is 2.16%, pointing to the fact that the human interactome is getting more complete. This is
because geometric graphs have already been shown to model well higher-confidence and more
complete PPI data [30, 31, 10].

We also examine the fit of random network models to the interactomes of model organisms
worm, plant, yeast and fly (Figure 5). YI-2 is best modelled by GEO (yeast is currently con-
sidered to have the most complete interactome), AT-1 by GEO and STICKY (Figure 5), and
we have seen in Figure 4 that the topology of the human interactome has been approaching
GEO over the years as well. The interactomes of worm and fly are currently best modelled by
STICKY, with GEO being the second best fitting model.
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Figure 4: The fit of random network mod- Figure 5: The fit of random network mod-
els (ER, ER-DD, GEO, SF, and STICKY) els (ER, ER-DD, GEO, SF, and STICKY)
to the three versions of the human PPI net- to the PPI networks of human and model
works. organisms.
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3.3 Alignment of interactomes across species

We perform a topological network alignment (see Methods, section 2.4) of the three human PPI
networks with PPI networks of plant, worm, yeast and fly. The results show that as the human
interactome is getting more complete over time, the correctly aligned network region with yeast
and worm increase, while with the plant and fly decrease (Figure 6 and Table 2). The aligned
sub-network of HI-2005 and YI-2 contains 783 proteins and 644 interactions with the largest
connected component (LCC) in the alignment containing 318 proteins and 318 interactions
(so it has only one cycle); the alignment of HI-2011 and YI-2 has 1,014 proteins and 866
interactions with its LCC containing 514 proteins and 514 interactions (again, almost a tree,
i.e., it contains only one cycle); and the alignment of HI-2013 and YI-2 has 1,306 proteins and
1,152 interactions with its LCC containing 844 proteins and 845 interactions (again, almost a
tree, with only two cycles).
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15% T I L
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Figure 6: Alignment between human and non-human PPI networks. The y-axis shows the per-
centage of aligned interactions (edges) between PPI networks (numbers of correctly aligned inter-
actions are given in Table 2).

Table 2: Alignment between human PPI networks and PPI networks of A. thaliana, C. elegans,
S. cerevisiae and D. melanogaster: edge correctness values are given as percentages with respect
to the perfect alignment of all edges of the smaller network to the edges of the bigger network.
In brackets are the numbers of correctly aligned edges, meaning that if protein A in network 1 is
aligned to protein A’ in network 2 and protein B in network 1 is aligned to protein B’ in network
2, then if AB is an edge in network 1, A’B’ is an edge in network 2.

Al-1/ plant WI-2 / worm YI-2 / yeast FI-2 / fly
HI-2005 | 29.18% (744) | 24.16% (616) | 25.26% (644) | 38.87% (991)
HI-2011 | 24.79% (922) | 20.60% (766) | 32.01% (866) | 35.55% (1322)
HI-2013 | 23.53% (1301) | 35.30% (1141) | 42.59% (1152) | 18.02% (2420)

We examine the biological function of yeast—-human alignments by computing the enrichment
of Gene Ontology? (GO) terms in each of the three human—yeast aligned sets of proteins and
find that the enriched biological process (BP) and molecular function (MF) terms include reg-
ulation of transcription, DNA repair, cell cycle and apoptosis as some of the top statistically
significantly enriched GO terms (p-value < 0.01, all p-values were adjusted using Benjamini-
Hochberg multiple hypothesis testing procedure). Also, we compute GO term overlap for each

2 http://www.geneontology.org/
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human-yeast aligned protein pair in each of the three alignments. Shared GO terms between a
pair of inter-species aligned proteins are indicative of their similar biological functions, there-
fore providing a link between topological analysis and biological function. We find that in
each of the three human—yeast alignments, over 40% of aligned proteins have at least one GO
term in common (42.83% in HI-2005-yeast alignment, 44.77% in HI-2011-yeast alignment,
and 40.59% in HI-2013—yeast alignment). This indicates that, since the alignments are ob-
tained purely from the topology of the interactomes and since biological function is conserved
(through both enriched and shared GO terms in the inter-species alignments), the human inter-
actome has been growing so that its topology is reflective of biological function. We did not
analyse the alignment of the human interactome with those of other model organisms because
their interactomes are less complete and contain more noise than interactomes of yeast and
human.

3.4 There are no “large cycles” in PPl networks

To examine the change of cycle content in the human interactome over time, as well as to com-
pare the cycle content of human interactome and the interactomes of other organisms, we gen-
eralise the clustering coefficient, which corresponds to triangles (3-node cycles), to analogous
coefficients that correspond to larger cycles (4-node, 5-node, 6-node cycles etc.; as described in
section 2.5). The results are presented in Figure 7 (left panel): while HI-2005 and HI-2011 had
similar content of cycles, HI-2013 has many more cycles; also, for all versions of the human
interactome, there are practically no cycles with more than 7 proteins; similar holds for PPI
networks of model organisms. This indicates that the interactomes are “tightly wired” in the
way that forbids large cycles. Examining causes and implications of this is a subject of further
research.

We compared cycle coefficients of the human interactome with those of model networks and
found that the all three versions of the human interactome are much closer to STICKY and
GEO than to ER graphs with respect to cycle coefficients (Figure 7, right panel).
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Figure 7: Left panel — Cycle coefficients for PPI networks. Numbers on the horizontal axis

correspond to cycle size, i.e., 3 stands for the cycle coefficient for 3-node cycles, C5 (this is the

clustering coefficient), 4 for the cycle coefficient for 4-node cycles etc. The vertical axis gives

the value of the i*" cycle coefficient of a network, for i = 1,2,3,...,10. Right panel — Cycle

coefficients for HI-2013 and model networks.
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3.5 The topologically conserved core of the human interactome

It was previously found that by applying k-core decomposition (see [35] and [36] for method-
ological details) to the human PPI network from BioGRID * and HPRD*, a unique topological
structure emerges — namely, the “core” sub-network of the human interactome — which is
enriched in disease genes, drug targets and contains genes that are known to drive disease for-
mation. Hence, we examine how this core changed through the three versions of the human
interaction networks, HI-2005, HI-2011, and HI-2013.

We find that the core of the interactome gets larger and denser with time (Table 3), and that
a part of it remains topologically conserved (i.e., not altered by addition of new proteins and
interactions over time) across all three networks: it consists of 20 proteins and 59 interactions
(Tables 3, 4 and Figure 8). This set of 20 proteins is statistically significantly enriched with GO
terms of cellular localisation, in particular, with non-membrane-bounded organelles, which are
known to govern cellular structure and morphology and include organelles such as ribosomes,
the cytoskeleton and chromosomes. The 20 proteins are also enriched in coiled coil domains,
which are usually present on transcription factors, proteins involved in cell proliferation and
growth, regulation of gene expression, and HIV related proteins. Many of them are, indeed,
involved in regulation of transcription and cancer development (Table 4). For example, keratin
protein family is statistically significantly enriched in the core of HI-2013: tumor tissues have
been shown to strongly express keratines [37, 38], and also solid epithelial tumors (both primary
carcinomas and their metastases) have been shown to exclusively contain keratin intermediate-
sized filaments [39, 40].

DR CCDC33 Core of the Human Interactome

HI-2013 PPI

KIAA1267 c:p17600 RIEI‘R"?AP4-12
LNX1 7NF581 ZTs2
ZNF250 USHBP1 LDOC

CALCOCO2  NECAB2
PLSCR1 RT15

PSMA1
- regulation of cell survival and apoptosis
- regulation of transcription
- regulation of cytokinesis
- cancer development
- Wnt signaling
- role in HIV
- signal transduction
- cytoskeleton organization
- regulation of gene expression
- cell growth, proliferation and differentiation

Topologically conservéed core

Figure 8: The core of the human interactome is conserved (i.e., remains topologically unchanged)
as the interactome grows.

3 http://www.thebiogrid.org
4 http://www.hprd.org
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Table 3: Network properties of core sub-networks of HI-2005, HI-2011, HI-2013, and the inter-
section of the core sub-networks (i.e., the conserved core sub-graph). The column labels are as
follows: |N|, number of nodes; |E|, number of edges; CC, clustering coefficient; AP L, avarage
path length; AN N, average number of neighbours; d, diameter; and r, radius.

|N| |E| CC | APL | ANN |d | r

HI-2005-Core | 62 | 284 | 0.109 | 2.14 9.16 |4 |3
HI-2011-Core | 91 449 | 0.105 | 2.26 986 | 4|3
HI-2013-Core | 138 | 1722 | 0.210 | 194 | 2495 | 3 | 2
Intersection | 20 59 0.240 | 1.80 590 |32

Table 4: The biological function of the 20 proteins from the conserved core across the three ver-

sions of the human interactome.

Gene name Function
1 | PSMALI proteasome subunit
2 | LZTS2 regulation of cytokinesis and Wnt signaling
3 | MDHI regulation of transcription and Wnt signaling
4 | ZNF250 potential regulator of transcription
5 | TRAF2 regulation of cell survival and apoptosis
6 | LNX1 signal transduction and potential role in tumorgenesis
7 | CALCOCO?2 | cytoskeleton organization
8 | PLSCRI cell proliferation and differentiation
9 | ZNF581 regulation of transcription
10 | KRT15 keratin (intermediate filament) protein family (KAP)
11 | KRTAP4-12 | keratin (intermediate filament) protein family (KAP)
12 | CCDC33 coiled-coil domain protein
13 | FBFI keratin cell polarity
14 | CEP70 mitotic spindle organization
15 | LDOC1 role in cancer development
16 | CCDC85B repressor of transcription; cell growth
17 | KIAA1267 regulation of transcription
18 | NECAB2 binding partner of adenosine A2A receptor
19 | USHBPI1 unknown
20 | C160RF48 unknown

doi:10.2390/biecoll-jib-2014-238
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4 Discussion

We performed a network analysis of the human protein-protein interaction (PPI) data sets pub-
lished over the past decade to study the topological evolution of the human interactome. We
found that the human PPI network is becoming more compact and less sparse. It is interesting
that while mostly the same proteins were hubs in HI-2005 and HI-2011, that is not the case in
HI-2013, where other proteins took over the role of hubs — mainly keratin-type proteins. Note
that some proteins that were hubs in HI-2011 lost edges in HI-2013. This may be due to the
fact that HI-2011 has 460 proteins that HI-2013 does not have. So perhaps a union of HI-2011
and HI-2013 would provide a more complete version of the interactome.

We found a topological pattern of interactome growth process: the newly screened proteins and
interactions tend to link existing proteins in the interactome that were not interacting between
themselves; and these newly added topological features are contributing to the more complete
topology of the interactome. For instance, we find that the human interactome is losing the
random, Erdos-Rényi-like structure, while at the same time gaining a more geometric (GEO)
structure, which is characteristic to well studied and more complete interactomes, such as that of
baker’s yeast. Also, by aligning the human interactome to the interactomes of model organisms,
we see an increasing functional and topological overlap with the yeast’s interactome, and a
divergence from the plant’s interactome.

This led us to search for a conserved part of the interactome, which we found: we identified
a topologically and functionally conserved “core sub-structure” (preserved from the 2005 ver-
sion of the interactome), enriched in biological processes related to transcription and cancer
development.

We conclude that the human interactome is evolving in principled, non-random ways. The
search for mechanisms driving its data acquisition is far from complete, however, as more data
becomes available we are beginning to gain insights into global trends which govern the growth
of the “protein interactome space”.
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