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Summary

Networks are used to model real-world phenomena in various domains, including systems
biology. Since proteins carry out biological processes by interacting with other proteins,
it is expected that cellular functions are reflected in the structure of protein-protein inter-
action (PPI) networks. Similarly, the topology of residue interaction graphs (RIGs) that
model proteins’ 3-dimensional structure might provide insights into protein folding, sta-
bility, and function. An important step towards understanding these networks is finding an
adequate network model, since models can be exploited algorithmically as well as used for
predicting missing data. Evaluating the fit of a model network to the data is a formidable
challenge, since network comparisons are computationally infeasible and thus have to rely
on heuristics, or “network properties.” We show that it is difficult to assess the reliability
of the fit of a model using any network property alone. Thus, we present an integrative
approach that feeds a variety of network properties into five machine learning classifiers
to predict the best-fitting network model for PPI networks and RIGs. We confirm that ge-
ometric random graphs (GEO) are the best-fitting model for RIGs. Since GEO networks
model spatial relationships between objects and are thus expected to replicate well the un-
derlying structure of spatially packed residues in a protein, the good fit of GEO to RIGs
validates our approach. Additionally, we apply our approach to PPI networks and confirm
that the structure of merged data sets containing both binary and co-complex data that are
of high coverage and confidence is also consistent with the structure of GEO, while the
structure of less complete and lower confidence data is not. Since PPI data are noisy, we
test the robustness of the five classifiers to noise and show that their robustness levels dif-
fer. We demonstrate that none of the classifiers predicts noisy scale-free (SF) networks as
GEO, whereas noisy GEOs can be classified as SF. Thus, it is unlikely that our approach
would predict a real-world network as GEO if it had a noisy SF structure. However, it
could classify the data as SF if it had a noisy GEO structure. Therefore, the structure of the
PPI networks is the most consistent with the structure of a noisy GEO.

1 Introduction

1.1 Background

Large-scale biological network data are increasingly becoming available due to advances in
experimental biology. We analyze protein-protein interaction (PPI) networks, where proteins
are modeled as network nodes and interactions amongst them as network edges. Since it is
the proteins that carry out almost all biological processes and they do so by interacting with
other proteins, analyzing PPI network structure could lead to new knowledge about complex
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biological mechanisms and disease. Additionally, we analyze network representations of pro-
tein structures, “residue interaction graphs” (RIGs), where residues are modeled as network
nodes and inter-residue interactions as network edges; an inter-residue interaction exists be-
tween residues that are in close spatial proximity. Understanding RIGs might provide deeper
insights into protein structure, binding, and folding mechanisms, as well as into protein stability
and function.

To understand complex biological network data, one must be able to successfully reproduce
them. Finding an adequate network model that generates networks that closely replicate the
structure of real data is one of the first steps in this direction. Only a well-fitting network
model that precisely reproduces the network structure and laws through which the network has
emerged can enable understanding and replication of the biological processes and the underly-
ing complex evolutionary mechanisms in the cell. The hope is that a good network model could
provide insights into understanding of biological function, disease, and evolution.

Additionally, many graph theoretic problems are computationally hard that make the analyses
of large biological networks infeasible. However, special graph classes often have well-known
properties and solving many problems on such classes is feasible even though it is infeasible
for graphs in general. Thus, finding a well-fitting graph class (i.e., network model) for biolog-
ical networks could simplify their computational manipulation and enable easier extraction of
biological knowledge that is encoded in their network topology.

Even though currently the PPI data is noisy and incomplete and the models are quite primitive,
the models have already been used in practical biological applications to address realistic prob-
lems. For example, network motifs (which are believed to represent evolutionary conserved
functional modules) are defined with respect to a random graph model [1, 2]. Similarly, net-
work models are essential when motifs are used to classify real networks into super-families
[3]. Furthermore, we used a well-fitting network model to de-noise PPI network data, i.e., to
assign confidence levels to existing PPIs interactions, as well as to predict new interactions that
were overlooked experimentally [4]. In 2004, a scale-free network model was used to guide bi-
ological experiments in a time- and cost-optimal way, thus minimizing the costs of interactome
detection [5]. Finally, properties of a network model were used to develop computationally
easy algorithms for PPI networks that are computationally intensive on graphs in general [6].
Since discovering PPI and other biological networks is in its infancy, it is expected that practical
application of network models will increase and prove its value in the future.

Several network models have been proposed for biological networks. Starting with Erdös-Rényi
random graphs [7], various network models have been designed to match certain properties of
real-world networks. Early studies published largely incomplete yeast two-hybrid PPI data sets
[8, 9] that were well modeled by scale-free networks [10, 11]. In a scale-free network, the
distribution of degrees follows a power-law [12]. Modeling of the data by scale-free networks
wasbased on the assumption that the degree distribution is one of the most important network
parameters that a good network model should capture. However, networks of vastly different
structures could have the same degree distributions [13]. Additionally, it has been argued that
currently available PPI network data are samples of the full interactomes and thus the observed
power-law degree distributions are artifacts of sampling properties of these networks [14, 15,
16]. As new biological network data becomes available, we need toensure that our models
continue to fit the data well. In the light of new PPI network data, several studies have started
questioning the wellness of fit of scale-free models: an evidence has been presented that the
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structure of PPI networks is closer to geometric random graphs, that model spatial relationships
between objects, than to scale-free networks [17, 18, 19, 20, 21]. Similarly, geometric random
graph model has been identified as an optimal network model for RIGs [22].

A well-fitting network model should generate graphs that closely resemble the structure of
real-world networks. To evaluate the fit of a model to the data, one needs to compare model
networks with real-world networks. However, network comparisons are computationally in-
feasible due to NP-completeness of the underlying subgraph isomorphism problem. Therefore,
large network comparisons rely on heuristics, commonly called “network properties.” These
properties belong to two major classes: global and local. Global properties include the degree
distribution, average clustering coefficient, clustering spectrum, average diameter, and the spec-
trum of shortest path lengths. Local properties include network motifs, small overrepresented
subgraphs [2], and graphlets, small connected induced subgraphs of real-world networks (see
Figure S1(a) in Supplementary Information (SI)) [17]. Based on graphlets, two highly sensitive
measures of network local structural similarities were designed: the relative graphlet frequency
distance (“RGF-distance”) [17] and graphlet-based generalization of the degree distribution,
called graphlet degree distribution agreement (“GDD-agreement”) [18]. The choice of a net-
work property for evaluating the fit of a network model to the data is non-trivial, since different
models might be identified as optimal with respect to different properties. In general, global
properties might not be constraining enough to capture complex topological characteristics of
biological networks. For example, two networks with exactly the same degree distributions can
have completely different underlying topologies (Figure S1(b) in SI). On the other hand, lo-
cal properties, RGF-distance and GDD-agreement, impose a larger number of constraints, thus
reducing degrees of freedom in which networks being compared can differ. The fit of model
networks to real-world data can also be evaluated by using principal component analysis of
the vector space whose coordinates are the statistics of network properties [23], as well as by
counting the number of random walks of a given length in the network and feeding these counts
into a machine learning classifier [24, 25].

1.2 Our Contribution

Previous studies evaluated the fit of a network model to the data with respect to a single network
property [17, 18]. In this paper, we demonstrate that it might be difficult to assess the reliability
of the fit of any particular network model to the data with respect to a single network property,
since different models might be identified as optimal with respect to different properties (Fig-
ures S2(a) and S2(b) in SI). We also show that two networks with exactly the same value of one
network property can have completely different network topologies (Figure S1(b) in SI). Thus,
we introduce a novel approach that finds a consensus between network properties about the
best fitting network model by integrating a variety of global and local network properties into
the “network fingerprint.” A “network fingerprint” is a vector whose coordinates are the fol-
lowing network properties: the average degree, the average clustering coefficient, the average
diameter, and the frequencies of appearance of all 31 graphlets with 1 to 5 nodes (see Section
1 in SI). As such, our method imposes a large number of constraints on the networks being
compared and reduces the number of degrees of freedom in which they can differ. The hope
is that such an integrated approach will increase our confidence in the fit of a network model
compared to when an individual network property is used for that purpose. Additionally, unlike
previous studies [17, 18], our approach applies a series of machine learning classifiers (or just
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“classifiers,” for brevity) to network fingerprints to predict the best-fitting network model.

Our method proceeds through the following steps. First, we represent each real-world and
model network with its fingerprint. Second, we use fingerprints of model networks as input
into classifiers to train them. Third, we validate the prediction accuracy of each classifier.
Next, we use network fingerprints of real-world networks as input into trained classifiers to
predict their best-fitting network models. Finally, we provide several validations of our model
predictions.

2 Methods

2.1 Data Sets

We need to distinguish between two different types of PPIs: binary interactions obtained by
yeast two-hybrid (Y2H) technique and co-complex data obtained by mass spectrometry of pu-
rified complexes. Since in co-complex data interactions are defined by using either the “spoke”
or the “matrix” model, binary interaction networks are believed to have fewer false positives
than co-complex data [26]; in the spoke model, edges exist between the bait and each of the
preys in a pull-down experiment, but not between the preys, while in the matrix model, addi-
tional edges are formed between all preys. However, due to technological limitations of Y2H,
binary interaction networks still contain many false negatives and are thus incomplete [26].
Networks from large databases contain both binary and co-complex PPIs; this makes them
more complete, but at the same time, they have high levels of false positives. Also, they seem
to contain a larger fraction of interactions supported by a single publication [27].

We analyze physical PPI networks of four eukaryotic organisms: yeastSaccharomyces cere-
visiae, fruitfly Drosophila melanogaster, worm Caenorhabditis elegans, and humanHomo
sapiens. We analyze the total of 12 PPI networks, 5 of which are yeast, 3 of which are fruitfly, 1
of which is worm, and 3 of which are human. We denote PPI networks as follows. “YH1” and
“YE1” are the high-confidence and the entire yeast PPI networks by Collins et al. [28], respec-
tively. “YH2” is the yeast high confidence PPI network described by von Mering et al. [29].
“YE2” is the yeast PPI network containing top 11,000 high-, medium-, and low-confidence
interactions from the same study [29]. “YE3” is the entire physical yeast protein interaction
network from BioGRID1. “FH1” and “FE1” are the high-confidence and the entire fruitfly PPI
networks by Giot et al. [30], respectively. “FE2” is the entire physical fruitfly protein interac-
tion network from BioGRID. “WE1” is the entire worm PPI network from BioGRID. Finally,
“HE1” is the entire human PPI network by Rual et al. [31], while “HE2” and “HE3” are entire
human PPI networks from BioGRID and HPRD2, respectively. All five yeast PPI networks, as
well as FE2, WE1, HE2, and HE3, contain both binary and co-complex data. The remaining
networks, i.e., FH1, FE1, and HE1, contain solely binary interactions.

In addition to PPI networks, we apply our approach to network representations of protein struc-
tures, residue interaction graphs (RIGs). In RIGs, nodes represent amino acids and edges exist
between residues that are close in space. We analyze RIGs constructed for nine structurally

1http://www.thebiogrid.org/
2http://www.hprd.org/
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and functionally different proteins [22]. For each of the nine proteins, multiple RIGs are con-
structed as undirected and unweighted graphs, with residuesi and j interacting if any heavy
atom of residuei is within a given distance cut-off of any heavy atom of residuej. Various
distance cut-offs in [4.0, 9.0]̊A are used, as well as three different representations of residues:
(1) RIGs that contain as edges only residue pairs that have heavybackboneatoms within a
given distance cut-off (“BB”), (2) RIGs that contain as edges only residue pairs that have heavy
side-chainatoms within a given distance cut-off (“SC”), and (3) the most commonly used RIG
model, in whichall heavy atoms of every residue are taken into account when determining
residue interactions (“ALL”). In total, these different RIG definitions result in 513 RIGs corre-
sponding to nine different proteins (see [22] for details).

2.2 Techniques

We apply five commonly used classifiers: backpropagation method (“BP”), probabilistic neu-
ral networks (“PNN”), decision tree (“DT”), multinomial naı̈ve Bayes classifier (“MNB”), and
support vector machine (“SVM”) (see Section 1 in SI). We evaluate the fit of three different
network models to the real-world networks: Erdös-Rényi random graphs (“ER”) [7], preferen-
tial attachment scale-free networks (“SF”) [12], and 3-dimensional geometric random graphs
(“GEO”) [32, 17] (see Section 1 in SI). In an ER network, edges are placed betweenpairs of
nodes uniformly at random with the same probabilityp [7]. The version of SF networks that
we use are generated by Barabási-Albert peripheral attachment method [12]. In a GEO net-
work, nodes correspond to points in a metric space that are distributed uniformly at random and
edges are created between pairs of nodes if the corresponding points in space are close enough
according to a chosen distance norm [32]. We construct geometric random graphs by using
3-dimensional Euclidean boxes and the Euclidean distance norm [17]. We choose the distance
cut-off for the existence of edges so that the resulting GEO graph is of the same size as the data
set that it is modeling. We do not consider other commonly used network models, such as ran-
dom graphs with the same degree distribution as the data, or the stickiness index-based network
model [33], because generating these models requires as input the degree distribution of real-
world networks, while the training and testing sets of random networks need to be generated
without any data input.

We start by generating the set of 8,220 random networks of different sizes belonging to the three
network models: ER, SF, and GEO (see Section 1 in SI). We divide these random networks
into two sets: the “training set,” containing 20% of them, and the “testing set,” containing the
remaining 80% of them. We choose this ratio for the training and the testing sets to achieve
good training and generalization of classifiers, as well as to avoid data over-fitting. Next, we
find fingerprints for these model networks and provide them as input into classifiers. We train
the five classifiers on random networks from the training set, so that classifiers could learn to
distinguish between fingerprints of random networks belonging to different models. Then, we
validate prediction accuracies of classifiers on the testing set. That is, we examine how well
classifiers work on new, yet unseen data, by analyzing whether they classify random networks
from the testing set into their correct models. We define the validation rate of a classifier as
the percentage of random networks from the testing set that are correctly classified. Thus, the
validation rate can be interpreted as the likelihood that a classifier will classify a network to its
correct model. The validation rates over the entire testing data set for BP, PNN, DT, MNB, and
SVM are 99.98%, 99.97%, 99.41%, 98.48%, and 94.72%, respectively (column 2 of Table S1
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in SI). Model-specific validation rates are presented in columns 3-5 of Table S1 in SI. These
high validation rates indicate that all five classifiers are able to successfully classify random
networks into their correct models. We also verify that the classifiers are robust to noise (see
below), which is important since we are dealing with noisy PPI data. For these reasons, we
believe that our approach correctly classifies biological networks into their best-fitting network
models.

3 Results and Discussion

3.1 Results

The best-fitting network models for RIGs identified by each of the five classifiers are presented
in Figure S3 in SI. For more than 94% of all analyzed RIGs, all five classifiers predict GEO as
the best-fitting network model. This result is encouraging, since GEO models spatial relation-
ships between objects, and therefore, it is expected to replicate well the underlying nature of
spatially packed residues in a protein. Our result is consistent with a recent study that demon-
strated, by using a variety of individual network properties, that GEO is the optimal network
model for RIGs [22]. The RIGs that are better modeled by SF and ER networks are those that
were constructed by using the lowest distance cut-offs for “SC” contact type and the highest
distance cut-offs for “ALL” contact type (Section “Data Sets”). This is consistent with our
previous results [22], therefore additionally validating the correctness of this study.

Next, we apply our approach to PPI networks, which are, unlike RIGs, noisy and incomplete,
and therefore the identification of their optimal network model could be more challenging.
The best-fitting network models for PPI networks predicted by each of the five classifiers are
presented in Table 1. Classifiers predict GEO as the best-fitting network model for most of the
analyzed yeast PPI networks: YH1, YE1, YH2, and YE2 (Table 1). This is encouraging, since
yeast has the most complete interactome, as indicated by high edge densities and clustering
coefficients of its PPI networks (Table 1). Additionally, yeast PPI networks that are fitted the
best by GEO were obtained by merging and de-noising multiple PPI networks that contained
both binary and co-complex interaction data [28, 29]. Moreover, all five classifiers predict
GEO as the best-fitting network model for YH1 network, that is comparable to small-scale
experiments by the quality of its interactions [28]. These results are consistent with studies that
demonstrated the superiority of the fit of GEO to PPI networks of various organisms obtained
by various biological techniques [17, 18, 19, 20, 21].

Out of the remaining PPI networks in Table 1, three are binary interaction data sets (FH1,
FE1, and HE1), and five originate from large PPI databases, BioGRID and HPRD, that con-
tain both binary and co-complex data (YE3, FE2, WE1, HE2, and HE3). Binary PPI networks
are less complete than networks from large databases (Section “Data Sets”) [26]. However,
large databases contain a large fraction of interactions obtained by literature curation (LC). It
has recently been argued that LC can be error-prone and possibly of lower quality than com-
monly believed [27, 26]. Given that more than 75% (85%) of the LC yeast (human) PPIs in
BioGRID are supported by a single publication [27], the quality of these interactions might
be questionable [26]. Moreover, a considerably low overlap between high-throughput experi-
mental and LC PPIs in BioGRID, as well as a surprisingly low overlap of interactions across
different databases [27], might suggest that many interactions still remain to be validated and
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Data |V| |E| Diam CC BP PNN DT NBM SVM

YH1 1,622 9,074 5.53 0.55 GEO GEO GEO GEO GEO
YE1 2,390 16,127 4.82 0.44 GEO ER GEO GEO GEO
YH2 988 2,455 5.19 0.34 GEO GEO SF GEO GEO
YE2 2,401 11,000 4.93 0.30 GEO ER SF GEO GEO
YE3 4,961 39,434 3.48 0.18 SF ER SF SF ER
FH1 4,602 4,637 9.44 0.02 SF ER ER SF ER
FE1 6,985 20,007 4.47 0.01 SF SF SF SF SF
FE2 7,040 22,265 4.34 0.01 SF SF SF SF SF
WE1 3,524 6,541 4.32 0.05 SF SF SF SF SF
HE1 1,873 3,463 4.34 0.03 SF SF SF SF ER
HE2 7,941 23,555 4.69 0.11 SF SF SF SF SF
HE3 9,182 34,119 4.26 0.10 SF SF SF SF SF

Table 1: The best-fitting network models (out of ER, GEO, and SF) predicted by the five classifiers
(BP, PNN, DT, NBM, and SVM) for the 12 PPI networks. The PPI networks are presented in the
first column, denoted by “Data.” Columns two to five contain the number of nodes (“|V|”), the
number of edges (“|E|”), the average diameter (“Diam”), and the average clustering coefficient of
a network (“CC”), respectively. Columns six to ten contain network models predicted by the five
classifiers for each of the PPI networks.

discovered [27, 26]. For these reasons, it is not surprising that SF and ER are the best-fitting
models for binary Y2H PPI networks and for PPI networks from large databases (Table 1).
Since PPI networks are unlikely to be organized completely at random, the best fit of ER to
some of them additionally verifies the presence of noise. A good fit of SF to networks that are
smaller samples of complete interactomes (obtained only by Y2H) is consistent with previous
studies arguing that power-law degree distributions in PPI networks are an artefact of sampling
[14, 15, 16].

3.2 Robustness and Validation

To test the robustness of our approach to noise, we randomly add, remove, and rewire 10%,
20%, and 30% of edges in YH1 network and its corresponding model networks and exam-
ine how the classifiers classify them (Table 2). We test the robustness on YH1, since it has
been argued that the quality of its interactions is comparable to that of interactions produced by
small-scale experiments [28]. Clearly, there is no need to introduce noise in ER networks, since
they cannot be made more random. Note that random edge rewirings of ER networks would
result in ER networks of the same densities, while random edge deletions and additions of ER
networks would result in ER networks of lower and higher densities, respectively. Nonetheless,
since we train and test our classifiers on ER networks of different densities (see Section “Tech-
niques” above and Section 1 in SI), and since their validation rates do not depend on densities
of ER networks, there is no need to test the robustness of our method on “randomized” ER
networks.

It is expected that with the introduction of more noise of ER type into the data and SF and GEO
model networks, noisier networks will increasingly be classified as ER. Indeed, SVM classifies
SF networks with 20-30% of edges deleted and rewired as ER (Table 2). At lower levels of
noise, all classifiers predict noisy SF to still be SF (Table 2). Thus, noisy SF (and clearly, ER)
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Network Classifier add10 add20 add30 del10 del20 del30 rew10 rew20 rew30

YH1

BP GEO GEO GEO GEO SF SF SF SF SF
PNN GEO GEO GEO GEO GEO GEO GEO GEO GEO
DT GEO GEO SF GEO GEO GEO GEO SF SF
MNB GEO GEO GEO GEO GEO GEO GEO GEO GEO
SVM GEO GEO ER GEO GEO GEO GEO GEO ER

GEOYH1

BP GEO GEO GEO GEO GEO GEO GEO GEO SF
PNN GEO GEO GEO GEO GEO SF GEO GEO SF
DT SF SF SF ER ER ER SF SF SF
MNB GEO GEO GEO GEO GEO GEO GEO GEO GEO
SVM GEO GEO SF SF SF SF GEO SF SF

SFYH1

BP SF SF SF SF SF SF SF SF SF
PNN SF SF SF SF SF SF SF SF SF
DT SF SF SF SF SF SF SF SF SF
MNB SF SF SF SF SF SF SF SF SF
SVM SF SF SF SF ER ER SF ER ER

Table 2: The best-fitting network models (ER, GEO, SF) predicted by the five classifiers (BP, PNN,
DT, NBM, and SVM) for noisy networks. The networks to which the noise is added are: YH1
network, as well as a GEO and an SF network of the same size as YH1, denoted by “GEOYH1”
and “SFYH1”, respectively (listed in column 1). We obtained noisy networks by randomly adding,
deleting, and rewiring 10%, 20%, and 30% of edges (columns 3-11, respectively). For each of YH1,
GEOYH1 and SFYH1 and for each of the randomization schemes, we constructed 10 instances of
noisy (randomized) networks, resulting in the total of3 × 9 × 10 = 270 noisy networks. For each
of YH1, GEOYH1 and SFYH1, the classifiers predicted the same model for all instances of noisy
networks in the same randomization scheme; predicted models are reported in columns 3-11.

are never classified as GEO. Similarly, increasing levels of noise in GEO networks cause their
increasing miss-classification into ER or SF models. Thus, noisy GEO can be classified as
either GEO, SF, or ER. This demonstrates that our approach is unlikely to classify a real-world
network that has a noisy SF or ER topology as GEO. On the other hand, it might classify a real-
world network that has a noisy GEO topology either as GEO, SF, or ER. Thus, the yeast PPI
networks that are classified as GEO are unlikely to have SF or ER network structure. However,
PPI networks of any organism that are classified as SF or ER could have noisy GEO structure.

The classifier that is the most robust to noise is MNB, since it always correctly predicts the
model irrespective of the level of noise (Table 2). The least robust classifier seems to be DT,
since it always predicts noisy GEO networks as SF or ER. Note however, that this is not sur-
prising, since small changes in the input of a decision tree may cause large changes in its output
due to a relative sensitivity of branching to the input values. For this reason, it is not surprising
that DT incorrectly classifies YH2 and YE2 networks that are predicted to be GEO by most
other classifiers (Table 1).

We take a step further towards validating our results. We apply an algorithm that directly
tests whether PPI networks have a geometric structure by embedding the proteins into a low-
dimensional space given only their PPI network connectivity information [19]. We embed in
3-dimensional (3D) Euclidian space, simply as a proof of concept. The algorithm is based on
multidimensional scaling, with shortest path lengths between protein pairs in a PPI network
playing the role of Euclidean distances in space. After proteins are embedded in space, a
radiusr is chosen so that each node is connected to the nodes that are at most at distancer
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from it; this procedure results in construction of a geometric graph (as defined in Section 1
in SI). Each choice of a radius thus corresponds to a different geometric graph. By varying
the radius, specificity and sensitivity are measured to quantify the ability of each constructed
geometric graph to recover the original PPI network. Then, the overall goodness of fit is judged
by computing the areas under the Receiver Operator Characteristic (ROC) curves, with higher
values indicating a better fit. For details, see [19].

We apply this algorithm to YH1 PPI network, as well as to ER, GEO, and SF model networks
of the same size as YH1. As expected, the resulting areas under the ROC curve (AUCs) are
low for ER and SF, with values of 0.65 and 0.56, respectively, since these networks do not
have a geometric structure (Figure S4(a) in SI). On the other hand, AUCs are high for the data
and GEO, with values of 0.89 and 0.98, respectively, suggesting that the data has a geometric
structure (Figure S4(a) in SI). For each of the network models, the reported AUC is the average
over 10 random graphs.

Since PPI networks are noisy, we test how robust the embedding algorithm is to noise in the
data and model networks. We add noise to YH1 and its corresponding ER, SF, and GEO model
networks by randomly deleting, adding, and rewiring 10%–50% of their edges. We embed
these randomized networks into 3D Euclidian space and compute their AUCs. Noise barely
improves the embedding of SF or ER (Figure S4(b) in SI) suggesting that the data is unlikely
to have a noisy SF or ER structure; note that with edge deletions and additions the size of the
networks changes affecting the quality of the embedding and thus, unlike above, we analyze
“randomized” ER. However, noise has different effects on the embedding of GEO. Random
edge deletions do not disturb the quality of the geometric embedding, since edge deletions have
little effect on shortest path lengths in GEO networks. Therefore, AUCs for GEO networks
obtained by random edge deletions are almost the same as AUCs for non-randomized GEO
networks (Figure S4(b) in SI). On the other hand, shortest path lengths decrease with random
edge additions and rewirings in GEO networks, resulting in worse embeddings and lower AUCs
(Figure S4(b) in SI). Similar is observed for YH1: random edge deletions do not affect the
quality of the embedding, whereas random edge additions and rewirings result in lower AUCs
(Figure S4(b) in SI). The comparable behaviors of GEO and YH1 suggest that they have similar
structures, thus additionally validating our network model predictions. Moreover, AUC value
of 0.87 for GEO with 10% of randomly rewired edges is very close to AUC value of 0.89 for
YH1 (Figure S4 in SI). Thus, the structure of the PPI data appears to be consistent with the
structure of a noisy GEO.

3.3 Comparison with Other Studies

Filkov et al. use seven network properties to describe a real-world network and compare it with
model networks [23]. In comparison, we use 34 properties, therefore decreasing the number of
degrees of freedom in which networks being compared can vary. Also, the methodology used
by Filkov et al. is different than ours. First, they evaluate the fit of a model to the data by
using principal component analysis of the vector space whose coordinates are the statistics of
the seven network properties that they analyzed. Second, they evaluate the fit of two scale-free
network models to the data: SF and their new scale-free model of network growth via sequential
attachment of linked node groups. In comparison, we use three network models that have very
different network structure: ER, SF, and GEO.
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Middendorf et al. measure the topological structure of a network by counting the number
of random walks of a given length [24, 25] and giving those counts as input into classifiers.
Random walks are different than graphlets in several ways. First, graphlets are induced and
random walks are not. Second, nodes and edges can be repeated in a random walk, while a
graphlet consists of a unique set of nodes and edges. Middendorfet al. use two classifiers,
SVM [24] and DT [25] to discriminate different network models. That is, in each study, they
use a single classifier to predict the best fitting network model for a real-world network. In
comparison, in this study we use five different classifiers, all supporting GEO as the best-fitting
model. We show that DT and SVM are the least robust out of the five classifiers that we
analyzed (see Section “Robustness and Validation” and Table 2). Moreover, the training set of
Middendorfet al. contains model networks of the size of the data only and thus it could be
biased by the model properties that are enforced by the chosen network size. In comparison,
we train our classifiers on random networks of different sizes (Section “Techniques” above and
Section 1 in SI) to allow for a possibility to predict the best fitting network model for any yet
unseen real-world network, independent of its size. Middendorfet al. consider SF, ER, and
small-world networks and identify SF-based duplication-mutation models as the best-fitting
models for biological networks. Given that Middendorfet al. did not consider GEO in their
studies, and given a low robustness of DT and SVM that they used, their reported best fit of
SF-based models to the data could be questioned.

3.4 Discussion

We further elaborate on the power of integration of different network properties as opposed to
using individual ones to asses the fit of a network model to the data. We use our GraphCrunch
software package [34] to evaluate the fit of ER, GEO, and SF models to all PPI networks
described in Section “Data Sets.” GraphCrunch evaluates the fit of the models to the data with
respect to seven local and global network properties. When we evaluate the fit of the data to
the models with respect to each of the seven properties, we obtain inconclusive results, because
each of the properties favors a different model. For example, as illustrated in Figure S2(a)
in SI, SF fits YH1 the best with respect to the degree distribution, but GEO is the best-fitting
network model with respect to the clustering spectrum (Figure S2(b) in SI). This demonstrates
the need for a method that finds a consensus between models suggested by different network
properties. We propose such a method in this study. Since our method integrates a variety of
network properties, it imposes a large number of constraints on the networks being compared
and reduces the number of degrees of freedom in which they can differ, thus increasing the
confidence in the fit of a network model. Inclusion of additional network properties could
further increase the confidence at the expense of an increased computational complexity.

Although several studies proposed GEO as a well-fitting null model for PPI networks [17, 18,
19, 20, 21], a recent study questioned this [35]. Note however, that this conclusion was based
onanalyzing only one eukaryotic and one prokaryotic PPI network [35], each from DIP3. Thus,
in the light of low quality and incompleteness of the data from large databases [27] (Section
“Results”), no conclusions about the fit of GEO should have been made. The authors argued
that low-dimensional geometric random graphs might not be able to capture high abundance
of dense graphlets and bipartite subgraphs observed in real-world networks, neglecting two
obvious alternatives for reconciling the differences in the abundance of subgraphs in the data

3http://dip.doe-mbi.ucla.edu/dip/Main.cgi
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and in GEO: (1) they based their conclusion on the observation that bipartite graphlet 20 cannot
exist in 2-dimensional (2D) GEO, even though it exists in 3D GEO as well as in all higher
dimensions (Figure S2(c) in SI); and (2) GEO graphs with the same number of nodes, but2.5

times more edges than the data have very similar abundance of all graphlets as the data (Figure
S2(d) in SI). These observations are important since: (1) the optimal dimension for the space
of PPI networks is unknown and finding it is a non-trivial research problem, but it is highly
unlikely that PPI networks exist in a 2D space; and (2) the density of real-world data will
continue to increase [36, 37], most likely in accordance with its network model. Also note
that over-abundance of graphlets in the currently available PPI networks could be an artefact
of the “matrix” and “spoke” models used to determine PPIs in affinity purification followed
by mass spectrometry (AP/MS) pull-down experiments. In the matrix model, interactions are
defined between all proteins in a purified complex, clearly resulting in over-abundance of dense
graphlets. In the spoke model, interactions are defined between a bait and each of its preys,
but not between the preys, clearly resulting in over-abundance of sparse graphlets; an overlap
between preys in different purifications results in over-abundance of complete bipartite graphs.

Finally, it is possible that PPI networks are not completely geometric and that another random
graph model would provide a better fit. Examining the fit of various other random network
models to the data is the subject of future research. Additionally, it is possible that different
parts of PPI networks have different structure. The two most commonly used high-throughput
PPI detection methods, AP/MS and Y2H, are fundamentally different: AP/MS detects mostly
stable protein complexes, whereas Y2H detects mostly transient signalling interactions [37].
Thus, the two methods examine different, complementary subspaces within the interactome,
resulting in networks with different topological and biological properties [37]. Since proteins
within a protein complex are close in the cell, it is possible that protein complexes have a
geometric structure. In contrast, transient interactions in signalling pathways might have a
different structure, such as that of bipartite graphs or scale-free networks.
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1 Methods

1.1 Network fingerprint

We summarize the structure of a complex network by the notion of the “network fingerprint” (or
just “fingerprint,” for brevity). We define thefingerprint to be a 34-dimensional vector whose
coordinates contain the following network properties: the average degree, average clustering
coefficient, average diameter, and frequencies of the appearance of all 31 1-5-node graphlets.
The degreeof a node is the number of edges incident to the node; theaverage degreeof a
network is the average of degrees over all nodes in the network. Theclustering coefficientof
a node is defined as the probability that two neighbors of the node are themselves connected.
The average of clustering coefficients over all nodes in a network is theaverage clustering
coefficientof the network. The smallest number of links that have to be traversed in a network to
get from one node to another is called thedistancebetween the two nodes and a path through the
network that achieves this distance is called theshortest pathbetween the nodes; the average of
shortest path lengths over all pairs of nodes in a network is called theaverage network diameter.
Graphletsare small connected non-isomorphic induced subgraphs of a large network [1]; we
count the occurrences of the only 1-node graphlet, a node, the only 2-node graphlet, an edge,
and all 29 3-5-node graphlets (shown in Figure S1(a)). Because different coordinates of a
network fingerprint can differ by several orders of magnitude, we normalize each coordinate to
avoid domination of coordinates having large values. We normalize thei

th coordinatex
i
of the

network fingerprintx as log(x
i
+ 1), for i = 1, ..., 34; we add 1 tox

i
to avoid the logarithm

function to go to infinity whenx
i
= 0.

1.2 Random network models

We consider three random network models: Erdös-Rényi (ER) random graphs [2], scale-free
Barabási-Albert (SF) networks [3], and geometric (GEO) random graphs [4]. In Erdös-Ŕenyi
random graphs, edges between pairs of nodes are distributed uniformly at random with the
same probabilityp [2]. Scale-free networksare networks that have power-law degree distri-
butions. The version of SF networks that we use are generated by Barabási-Albert peripheral
attachment method [3], in which newly added nodes preferentially attach to existingnodes with
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probabilities proportional to their degrees. Ingeometric random graphs, nodes correspond to
uniformly distributed points in a metric space and edges are created between pairs of nodes if
the corresponding points are close enough in the metric space according to some distance norm
[4]. We construct geometric random graphs by using 3-dimensionalEuclidean boxes and the
Euclidean distance norm [1].

For each of the three random network models, we generate 10 instances of random networks
per model. We generate random networks of different sizes, both in terms of the number of
nodes (n) and the number of edges (m). We use the following28 values forn: 100, 200, 300,
400, 500, 600, 700, 800, 900, 1,000, 1,100, 1,200, 1,300, 1,400, 1,600, 2,100, 2,600, 3,100,
3,600, 4,100, 4,600, 5,000, 6,000, 7,000, 8,000, 9,000, 10,000, and 11,000. For each of the
26 values ofn below 10,000, we varyk = m/n from 1 to 10, in increments of 1. Due to the
increase in computational complexity with the increase in the number of nodes and edges, for
the 2 largest values ofn, n = 10, 000 andn = 11, 000, we only usek = 1, ..., 7. Thus, we
analyze26 × 10 + 2 × 7 = 274 different network sizes. In total, for the 3 network models, 10
random network instances per model, and 274 network sizes, we create3 × 10 × 274 = 8, 220

model networks.

1.3 Machine learning classifiers

We use five well-known machine learning classifiers: backpropagation method (BP), proba-
bilistic neural networks (PNN), decision tree (DT), multinomial naı̈ve Bayes classifier (MNB),
and support vector machine (SVM).

BothBP [5] andPNN [6] are based on artificial neural networks (ANNs). ANNs are simplified
mathematical models of biological nervous systems built of processing units called neurons.
Neurons in ANNs have many input signals and they produce one output signal. They are
organized into the following layers: the input layer, one or more hidden layers, and the output
layer. Neurons in the input layer do not perform any processing; instead, they only distribute
the input data to all neurons in the first hidden layer. The number of hidden layers depends on
implementation of an ANN. We use the standard implementations of BP and PNN from Neural-
Network Toolbox in Matlab1. For the completeness of the manuscript, we briefly outline them
below.

In our implementation ofBP [5], the input layer consists of 34 neurons corresponding to the
34 coordinates of the network fingerprint input vector. To match the length of our input vector,
we implement one hidden layer with 15 neurons; varying the number of neurons in the hidden
layer between 10 and 20 had marginal effect on the results. The output layer contains three
neurons, according to the “1-of-N encoding of the output classes” principle [7]: the number
of neurons in the output layer matches the number of possible “output classes,” i.e., random
network models (ER, SF, and GEO). Thus, for a given output class, the neuron corresponding
to the class is set to 1, whereas the remaining two neurons are set to -1. After BP computes the
values on the three output neurons for an input vector, it classifies the input into an output class
that corresponds to the neuron with the largest value.

All neurons in the input layer are connected with all neurons in the hidden layer. Similarly,
all neurons in the hidden layer are connected with all neurons in the output layer. All of these

1http://www.mathworks.com/access/helpdesk/help/toolbox/nnet/
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connections are weighted. Each neuron in the hidden and the output layer produces output
by applying a non-linear “transfer function” to calculate a weighted sum of its inputs. We
uselogsigandtansigtransfer functions in the hidden layer and the output layer, respectively.
Initially, all weights are assigned randomly. Weights are adjusted gradually trough a training
(learning) process: BP keeps adjusting the weights until the error between the value of each
output neuron and its desired value (i.e., the value of the class that the input that we are training
BP on belongs to) is≤ 10

−5. We usetrainscg “training function” and set the learning rate
to 0.01. Given these parameters, BP is successfully trained on the training set (defined in
Techniques section above) in 588 epochs.

PNN that we use consists of the radial basis layer and the competitive layer. The radial basis
layer further consists of the input and pattern sublayers. Similarly, the competitive layer con-
sists of the summation and the output sublayers. The number of neurons in the input sublayer
corresponds to the 34 dimensions of the input vector. The pattern sublayer consists of three
pools of “pattern” neurons, where each pool corresponds to one of the three output classes. The
number of neurons in each pool is determined as follows. As each network fingerprint from the
training set is provided as input vector into PNN during the training process, a new neuron is
added to the pool that corresponds to the output class (i.e., network model) of the input vector.
After the training phase, when an input vector is presented to the trained PNN, the pattern sub-
layer computes how close the input vector is to each of the vectors from the training set in each
pool. This information is sent to the summation sublayer. The summation sublayer consists
of three neurons, where each neuron corresponds to one of the three output classes. Input into
each neuron in the summation sublayer is the collection of outputs from the corresponding pool
in the pattern sublayer. The output of each summation sublayer neuron is a weighted sum of
all its inputs. Each of the three sums represents the probability that the input vector belongs to
the corresponding class. Given these probabilities, the output sublayer, consisting of a single
neuron, outputs the class having the highest probability.

We use a standard implementation ofDT [8, 9] from Statistics Toolbox in Matlab2. Interior
nodes in the decision tree are queries on certain attributes; in our case, attributes are the coor-
dinates of the fingerprint vector. Each leaf in the tree corresponds to one of the three output
classes. Branches in the tree represent conjunctions of attributes that lead to classification into
the output classes. DT recursively splits the training set of input vectors into subsets based on
the values of their coordinates; this corresponds to branching in the tree. DT continues to do so
until the training input vectors are assigned to their correct classes.

We use a standard implementation ofMNB [9] from WEKA [10], a publicly available collec-
tion of machine learning algorithms for data mining. MNB classifies the input data based on
the Bayes’ rule by selecting a class that maximizes the posterior probability of the class, given
the training set. MNB does not use the assumption of a naı̈ve Bayes classifier, that all data
attributes are independent of each other.

We use a standard implementation ofSVM [9, 11] from WEKA. SVM maps our 34-dimensional
input vectors into a high dimensional space; the space dimension is automatically determined
by WEKA. During the training phase, SVM finds an optimized data division within this space
by constructing a hyperplane that optimally separates the data into two classes; since there are
many hyperplanes that might classify the data, the hyperplane is chosen so that the distance
from the hyperplane to the nearest data point is maximized. We generalize this binary classi-

2http://www.mathworks.com/access/helpdesk/help/toolbox/stats/
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fication to the multiclass classification, with three classes corresponding to the three random
network models. We do so by using three binary “one-versus-all” SVMs: for each of the three
classes, its corresponding SVM either classifies the input data as belonging to the class (“pos-
itive classification”), or not belonging to the class (“negative classification”) [9, 11]. Each of
these three binary SVMs produces an output function that gives a relatively large value for a
positive classification and a relatively small value for a negative classification. The input data
is classified into the class with the highest value of the output function.

2 Supplementary figures

Figure S1: (a) All 3-node, 4-node, and 5-node graphlets [1]; (b) an example of two networks of the
same size,G and H , that have the same degree distribution, but very different network structure.
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Figure S2: (a) Degree distributions and (b) clustering spectra for YH1, and an ER, a GEO, and
an SF model network of the same size as YH1. (c) Graphlet frequencies for YH1, a 2-dimensional
GEO (“GEO-2D”), a 3-dimensional GEO (“GEO-3D”), and a 4-dimensional GEO (“GEO-4D”)
network of the same size as YH1. (d) Graphlet frequencies for YH1, a GEO network with the same
number of nodes and edges as YH1 (“GEO1d”), and a GEO network with the same number of
nodes, but 2.5 times as many edges as YH1 (“GEO2.5d”). On horizontal axes in panels c and d,
graphlets are numbered as in Figure S1.

Figure S3: The best-fitting network model out of the three models (ER, GEO, and SF) predicted
by the five classifiers (BP, PNN, DT, NBM, and SVM) for the 513 analyzed RIGs.
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Figure S4: (a) ROC curves illustrating the performance of the embedding algorithm for YH1 PPI
network and one network belonging to each of the following model networks that are of the same
size as YH1: ER, SF, GEO, and randomized GEO network (“GEOR10”) obtained by randomly
rewiring 10% of edges. (b) Areas under the ROC curve (AUCs) for YH1 and its ER, GEO, and
SF model networks (denoted by “0” on x-axis), as well as for their randomized versions obtained
by randomly deleting, adding, and rewiring (denoted by “d”, “a”, and “r” on x-axis, respectively)
10%, 20%, 30%, 40%, and 50% of their edges (denoted by “10”, “20”, “30”, “40”, and “50” on x-
axis, respectively). For each of the network models and each of the randomization schemes, points
in the panel represent averages of AUCs over 10 networks. The error bar around a point is one
standard deviation below and above the point.
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3 Supplementary tables

Classifier VR-Total VR-ER VR-GEO VR-SF

BP 99.98%
(6,575/6,576)

100%
(2,192/2,192)

100%
(2,192/2,192)

99.96%
(2,191/2,192)

PNN 99.97%
(6,574/6,576)

100%
(2,192/2,192)

100%
(2,192/2,192)

99.91%
(2,190/2,192)

DT 99.41%
(6,537/6,576)

99.41%
(2,179/2,192)

99.64%
(2,184/2,192)

99.18%
(2,174/2,192)

MNB 98.48%
(6,476/6,576)

98.18%
(2,152/2,192)

100%
(2,192/2,192)

97.26%
(2,132/2,192)

SVM 94.72%
(6,229/6,576)

94.85%
(2,079/2,192)

100%
(2,192/2,192)

89.33%
(1,958/2,192)

Table S1: The validation rates (“VR”) for the five classifiers, BP, PNN, DT, MNB, and SVM (col-
umn 1), over the entire testing set of 6,576 ER, GEO, and SF networks (column 2), as well as
within each individual testing subset of 2,192 ER, 2,192 GEO, or 2,192 SF networks (columns 3–5,
respectively).

Acknowledgements

This project was supported by the NSF CAREER IIS-0644424 grant.

References
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