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Abstract—The recent explosion in biological and other real-
world network data has created the need for improved tools for
large network analyses. Several new mathematical techniques
for analyzing local structural properties of large networks have
recently been developed. Our work introduces small induced
subgraphs of large networks, called graphlets. We use graphlets
to develop “network signatures” that quantify local structural
properties of a network. Based on these network signatures, we
design two novel “network agreement” measures. These measures
lead us to new, well-fitting geometric graph models of biological
networks. Models are in turn used to design efficient heuristics.

I. INTRODUCTION

Recent technological advances in experimental biology have
yielded large amounts of biological network data. Examples
span the range from biochemical networks, such as metabolic
[48], transcriptional regulation [58], [26], [13], [35], [14], and
protein-protein interaction [10] networks, to protein-structure
[8] and neuronal wiring networks [69]. Many other real-
world phenomena have also been described in terms of large
networks, such as various types of social [43], [22] and tech-
nological [18] networks. Thus, understanding these complex
phenomena has become an important scientific problem that
has opened up a vibrant research area in the analysis and
modeling of large, real networks.

Understanding the complex wiring of protein-protein in-
teraction networks is a central problem of systems biology.
In a protein-protein interaction (PPI) network (or a graph),
proteins are modeled as nodes and two proteins are joined by
an undirected edge (link) in the network if they can physically
interact. Various biotechnologies have already produced large
amounts of PPI network data for a number of organisms [62],
[27], [19], [25], [21], [37], [20], [34], including human [61],
[57], with hundreds of labs throughout the world continuously
contributing to this pool of data. However, these networks are
still largely incomplete, i.e., false negatives is the dominant
type of noise in these data. They also contain false-positives
produced by the noisy experimental techniques used to detect
PPIs. In this paper we focus on studying PPI networks.
However, the same types of analyses apply to other biological
networks.

The amount of PPI data is expected to rapidly increase in
the near future, paralleling the earlier explosion of genetic
sequence data. For example, the PPI network of baker’s
yeast, Saccharomyces cerevisiae, has around 6, 000 nodes and
currently over 78, 000 interactions between the proteins have
been identified [65], with most of the interactions still being
unknown. PPI networks of higher organisms, such as primates
or plants, will be much larger. Therefore, understanding the

complex wiring in PPI networks relies on advances in compu-
tational sciences. Algorithmic and modeling advances in this
area will contribute directly to biological understanding and
therapeutics.

II. BACKGROUND: GRAPH MODELS AND COMPARISONS

Analogous to genetic sequence comparison, comparing
large cellular networks will bring insights into biological
understanding, evolution, and disease. However, exhaustively
comparing large networks is computationally infeasible, since
it involves an NP-complete subgraph isomorphism problem
[12]. Subsequently, such comparisons rely on heuristics com-
monly called network properties. Also, models are an im-
portant part of our understanding, since our ability to model
real-world phenomena enables us to reproduce them and thus
understand them. Various network models have been proposed
and their fit to the real networks has been evaluated with
respect to different network properties.

A. Network Properties
Easily computable macroscopic statistical global properties

of large networks have extensively been examined. Based
on these properties, network models have been proposed for
cellular (and other real) networks if their global properties
fit the global properties of real networks. The most widely
used global network properties are the degree distribution, the
clustering coefficient, the clustering spectrum, and the network
average diameter [44]. The degree of a node is the number
of edges touching the node and the degree distribution is
the distribution of degrees of all nodes in the network, or
equivalently, the probability that a randomly selected node
of a network has degree k (commonly denoted by P (k)).
Many large real-world networks have non-Poisson degree
distributions with a power-law tail, P (k) ∼ k−γ , γ > 0; such
networks have been termed scale-free [5]. However, networks
with exactly the same power-law degree distributions can have
vastly different structure affecting their function [55], [36].
The same holds for other global network properties [55].
Furthermore, global network properties of largely incomplete
cellular networks do not tell us much about the true structure of
the real networks; instead, they describe the network structure
produced by the experimental sampling techniques used to
obtain these networks (e.g. see [24]).

The clustering coefficient, C, is defined as the average
probability that two neighbors of a given node are adjacent
[67]. The clustering spectrum, C(k), of a network is the
distribution of average clustering coefficients of degree k
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nodes. Cellular networks have large clustering coefficients
[67]. The shortest path between nodes x and y in a network
is a path with the smallest number of links that have to be
traversed to get from node x to node y [68]. The average
diameter is defined as the average of shortest path lengths
between all pairs of nodes in a network. Despite their large
sizes, most cellular networks have small average diameters;
this property is often referred to as the small-world property
[67]. Clearly, the diameter of an incomplete network can be
substantially different than that of the real network; this is
another example of how global network properties can be
misleading.

To overcome the above mentioned problems in modeling
cellular networks based on their global properties, bottom-up
local approaches to studying microscopic network structure
have been proposed [40], [59], [55], [54]. Analogous to se-
quence motifs, network motifs have been defined as subgraphs
that recur in a network at frequencies much higher than those
found in randomized networks [40], [59], [39]. A subgraph of
a network G with the set of nodes V (G) and the set of edges
E(G) is a network whose nodes and edges belong to G. An
induced subgraph H of G is a subgraph of G on V (H) ⊆
V (G) set of nodes, such that edges E(H) of H consists of
all edges of G that connect nodes of V (H). We introduced
graphlets to denote small connected non-isomorphic induced
subgraphs of large networks [55] and used their properties to
compare large networks [55], [54] (see section III).

The main advantage of the local properties is evident when
we study networks with incomplete node and edge sets. While
the local structures of these networks are more likely to be
complete, the global properties are more likely to be biased.
The most studied eucaryotic PPI network is that of the model
organism baker’s yeast, S. cerevisiae, for which we know
all the nodes, since we know the genome, but only a small
fraction of the edges is currently known and these edges are
heavily clustered around proteins important for human disease.
Furthermore, the biological experiments used to detect PPIs
are of local nature. This is why we base our analysis of PPI
networks on a variant of the local approach (see section III).
It has been argued that global structural features of networks,
such as the clustering coefficient, are intertwined with local
structural properties [63]. In section III-B and in [54], we
show that the degree distribution, commonly regarded as a
global network property, is a part of a more complex new
measure of local network structure.

B. Network Models
Various network models have been developed attempting

to model real networks. The earliest such models are Erdos-
Renyi (“ER”) random graphs in which the probability p of
an edge between any pair of nodes is distributed uniformly
at random [15], [16], [17]. Random graphs have served as
idealized models of gene networks [31], ecosystems [38], and
the spread of infectious diseases [30] and computer viruses
[33]. However, they fail to model power-law degree distribu-
tions and large clustering coefficients of real networks. Thus,

generalized random graphs (“ER-DD”) in which the edges are
randomly chosen as in Erdos-Renyi random graphs, but the
degree distribution is constrained to be the degree distribution
of a real-world network at study, have been introduced and
their properties studied [7], [41], [42], [45], [2]. Since these
networks have the same low clustering coefficients as the ER
graphs, other network models have been introduced. The most
prominent such models are small-world networks [67], [46],
[47], characterized by small diameters and large clustering
coefficients, and scale-free (“SF”) networks [60], [5], [6], [9],
[36], that include an additional condition of scale-freeness of
the degree distribution.

The degree distributions of metabolic reaction networks
[28], the Internet backbone [18], the telephone call graph [1],
the World Wide Web [11] and many other real networks decay
as a power law. Thus, many variants of SF network growth
models have been proposed. The most notable such models for
PPI networks are those based on biologically motivated gene
duplication and mutation network growth principles [23], [66],
[49], [64]. In these models, networks grow by duplication of
nodes (genes), and as a node gets duplicated, it inherits most
of the neighbors (interactions) of the parent node, but gains
some new neighbors as well.

III. APPROACH: GEOMETRICITY OF PPI NETWORKS

The focus of our attention is PPI networks. Thus, all net-
works that we study here have unweighted undirected edges.
However, the same types of analyses can be generalized to
other real-world networks with undirected or directed weighted
edges. To provide meaningful comparisons between the data
and model networks, all model networks used here have the
same number of nodes and edges as the PPI network that they
model.

A. Relative “Graphlet” Frequencies
We made the first step towards a detailed network com-

parison tool by introducing graphlets, small connected non-
isomorphic induced subgraphs of a large network, and de-
signing a new measure of local structural similarity between
two networks based on graphlet frequency distributions [55].
Graphlets do not need to be over-represented in a network
and this, along with being induced, distinguishes them from
network motifs [40], [59]. The number of graphlets increases
exponentially with the number of nodes, and thus, we restrict
our attention to 2-, 3-, 4-, and 5-node graphlets. All 29 3-5-
node graphlets are presented in Figure 1 Left (note that an
edge is the only 2-node graphlet). Thus, our new measure
of network similarity imposes 30 similarity constraints on
networks being compared corresponding to the distribution
of frequencies of 2-, 3-, 4- and 5-node graphlets. We define
the new measure of distance between networks G and H as
the sum over all 30 graphlets of the absolute values of the
difference of logarithms of normalized graphlet frequencies;
logarithms are used to even out the influences of frequent and
infrequent graphlets onto the distance measure (see [55] for
details). This new measure has been used to discover a new,
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Fig. 1. Left. All 3-, 4-, and 5-node graphlets, ordered within groups from the least to the most dense with respect to the number of edges when compared
to the maximum possible number of edges in the graphlet and numbered from 1 to 29 [55]. Right. Automorphism orbits 0, 1, 2, . . . , 72 for the thirty 2-, 3-,
4-, and 5-node graphlets G0, G1, . . . , G29. In a graphlet Gi, i ∈ {0, 1, . . . 29}, nodes belonging to the same orbit are of the same shade [54].

better fitting, geometric random graph model for PPI networks
(see section III-C below).

B. “Graphlet Degree Distribution (GDD)”–Based Network
Comparison

In the next step, we introduce a new, more demanding,
systematic measure of a network’s local structure that imposes
73 similarity constraints on networks being compared. In par-
ticular, we generalize the degree distribution, which measures
the number of nodes “touching” k edges, into distributions
measuring the number of nodes “touching” k graphlets. Note
that an edge is the only graphlet with two nodes (graphlet
denoted by G0 in Figure 1 Right). Thus, the degree distribution
measures the following: how many nodes “touch” one G0, how
many nodes “touch” two G0s, . . ., how many nodes “touch” k
G0s. Note that there is nothing special about graphlet G0 and
that there is no reason not to apply the same measurement to
other graphlets. Thus, in addition to applying this measurement
to an edge, i.e., graphlet G0, as in the degree distribution, we
also apply it to the 29 graphlets G1, G2, . . . G29 presented in
Figure 1 Right.

When we apply this measurement to graphlets G0, . . . , G29,
certain topological issues arise. For example, for graphlet
G1, we ask how many nodes touch a G1; note that it is
topologically relevant to distinguish between nodes touching
a G1 at an end or at the middle node. This is due to a G1

admitting an automorphism (defined below) that maps its end
nodes to each other and the middle node to itself. Formally,
an isomorphism g from a graph X to a graph Y is a bijection
of nodes of X to nodes of Y such that xy is an edge of X
if and only if g(x)g(y) is an edge of Y ; an automorphism
is an isomorphism from a graph to itself. The automorphisms
of a graph X form a group, called the automorphism group
of X , and commonly denoted by Aut(X). If x is a node
of graph X , then the automorphism orbit of x is Orb(x) =
{y ∈ V (X)|y = g(x) for some g ∈ Aut(X)}, where V (X)
is the set of nodes of graph X . Thus, end nodes of a G1

belong to one automorphism orbit, while the mid-node of
a G1 belongs to another. Note that graphlet G0 (i.e., an

edge) has only one automorphism orbit, as does graphlet G2;
graphlet G3 has two automorphism orbits, as does graphlet
G4, graphlet G5 has one automorphism orbit, graphlet G6

has three automorphism orbits etc. (see Figure 1 Right). In
Figure 1 Right, we illustrate the partition of nodes of graphlets
G0, G1, . . . , G29 into automorphism orbits (or just orbits for
brevity); henceforth, we number the 73 different orbits of
graphlets G0, G1, . . . , G29 from 0 to 72, as illustrated in Figure
1 Right. Analogous to the degree distribution, for each of these
73 orbits, we count the number of nodes touching a particular
graphlet at a node belonging to a particular orbit. For example,
we count how many nodes touch one triangle (i.e., graphlet
G2), how many nodes touch two triangles, how many nodes
touch three triangles etc. We need to separate nodes touching
a G1 at an end-node from those touching it at a mid-node;
thus we count how many nodes touch one G1 at an end-node
(i.e., at orbit 1), how many nodes touch two G1s at an end-
node, how many nodes touch three G1s at an end-node etc.
and also how many nodes touch one G1 at a mid-node (i.e., at
orbit 2), how many nodes touch two G1s at a mid-node, how
many nodes touch three G1s at a mid-node etc. In this way,
we obtain 73 distributions analogous to the degree distribution
(actually, the degree distribution is the distribution for the
0th orbit, i.e., for graphlet G0). Thus, the degree distribution,
which has been considered to be a global network property,
is one in the spectrum of 73 “graphlet degree distributions
(GDDs)” measuring local structural properties of a network.
Note that GDDs are measuring local structure, since they are
based on small local network neighborhoods. The distributions
are unlikely to be statistically independent of each other,
although we have not yet worked out the details of their inter-
dependence.

There are many ways to “reduce” the large quantity of
numbers representing 73 sample distributions. In [54], we
describe a way that is based on the observed GDDs in the
data and model networks, termed network GDD agreement;
there may be better ways and finding them is an obvious
future direction. To compare two networks G and H , we
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Fig. 2. Agreements between the fourteen PPI networks and their corre-
sponding model networks. Labels on the horizontal axes represent the 14
PPI networks. Averages of agreements between 25 model networks and the
corresponding PPI network are presented for each random graph model and
each PPI network, i.e., at each point in the Figure; the error bar around a
point is one standard deviation below and above the point (in some cases,
error bars are barely visible, since they are of the size of the point) [54].

first compute all 73 GDDs of each. We normalize the 2 × 73
distributions each to have a total area of unity, to meaningfully
compare distributions with different areas. We compute aj ,
the agreement in distribution j, for j = 0, . . . , 72, where
aj = 1 means that the networks have identical normalized
distributions, and aj = 0 means the networks are very
different. Finally, the average agreement across all aj provides
one number that compares two networks’ GDD agreement; it
is a number between 0 and 1, where 1 means that that G and
H have identical GDDs, and 0 means that their GDDs are far
away (see [54] for details).

C. A Geometric Random Graph Model of PPI Networks
In a geometric random graph, nodes correspond to uni-

formly randomly distributed points in a metric space and
there is an edge between two nodes, if the corresponding
points in the metric space are close enough according to some
distance norm [50]. Note that biological entities, such as genes,
and proteins as gene products, exist in a multi-dimensional
(likely metric) biochemical space. This space does not only
include the 3-dimensional Euclidean space of protein folds
with time being the additional 4th dimension; it is likely to
be very high-dimensional including protein binding domains,
post-translational modifications, small molecules etc. as di-
mensions. It has been widely accepted and recently verified
that genomes evolve through a series of gene duplication and
mutation events [32]. Gene duplications and mutations are
naturally modeled in the above mentioned currently unknown
biochemical space. As the first approximation and a proof of
principle, we use 2-, 3-, and 4-dimensional Euclidean boxes
with Euclidean distance norm to construct geometric random
graphs corresponding to the PPI networks (denoted by “GEO-
2D”, “GEO-3D”, and “GEO-4D”, respectively) [55].

Using the above described new distance measure of network

similarity (see section III-A), we find that the high-confidence
PPI networks of yeast S. cerevisiae [65] and fruitfly D.
melanogaster [21] are more accurately modeled by geometric
random graphs than by scale-free models [55], [53], including
a random scale-free model [7], a preferential attachment scale-
free model [5], and a gene duplication-mutation scale-free
model [64]. The extent of the improvement of the fit of
geometric random networks is such that even perturbing the
yeast PPI network [65] by random additions, deletions and re-
wiring of 30% of the edges introduces a much smaller error
when compared to the error from modeling the network by
scale-free, or other random graph models [55]. In addition,
we show that three out of four global network parameters
(degree distribution, average diameter, clustering coefficient,
and clustering spectrum) also show an improved fit between
the experimentally-determined PPI networks and the geometric
random graphs than between the PPI networks and the scale-
free networks [55], [53].

Next, we undertake a large-scale scientific computing task
by implementing the above described new method of com-
puting network agreement (see section III-B) and using it to
compare agreements across the four random graph models
of fourteen real PPI networks. We analyze a total of 1, 414
networks: fourteen eucaryotic PPI networks of varying confi-
dence levels and 25 model networks per random graph model
corresponding to each of the fourteen PPI networks, where ran-
dom graph models are ER, ER-DD, SF, and GEO-3D and the
PPI networks analyzed are those of the eucaryotic organisms
yeast S. cerevisiae [62], [27], [65], fruitfly D. melanogaster
[21], nematode worm C. elegans [37], and human [61], [57],
[4], [51], [70]. These PPI networks are obtained by various
experimental techniques and are of varying confidence levels,
including human curation. The largest of these networks have
around 7, 000 nodes and over 20, 000 edges. For each of the
fourteen PPI networks and each of the four random graph
models, we compute averages and standard deviations of GDD
agreements between the PPI and the 25 networks belonging to
the same random graph model. The results show that almost all
of the fourteen eucaryotic PPI networks are better modeled by
geometric random graphs than by Erdos-Renyi [15], random
scale-free, or Barabasi-Albert scale-free [5] networks (denoted
by ER, ER-DD, and SF in Figure 2, respectively). This further
confirms that a biological description of the (possibly metric)
space of PPIs may help us model and understand them.

D. Efficient Estimation of Graphlet Frequency Distributions
in PPI Networks

Inspired by the new geometric network model, we designed
two efficient heuristic algorithms for estimating the graphlet
frequency distribution in PPI networks [56]. These algorithms,
along with the heuristic method of Kashtan et al. [29], are the
first steps towards scalable tools for reliable estimation of local
network structure. Such heuristic approaches will be necessary
in the future, since exhaustive searches are already becoming
computationally infeasible even for the currently available,
largely incomplete PPI networks. In addition, humans have
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less than 30, 000 genes, each of which can have 4-6 splice
variants; therefore, including more than 200 possible post-
translational protein modifications, humans are expected to
have at least hundreds of thousands of proteins and millions of
interactions between them. Plant genome sizes are much larger
than the genome size of humans [52], [3] and thus, plants
will have even larger proteomes and interactomes. Therefore,
any cellular network comparison tool will need to be based
on reliable and scalable heuristic algorithms that exploit the
network structure of the data. Computing GDDs is scalable
because it is “embarrassingly parallel” (i.e., each step can be
computed independently from every other step, and thus each
step can run on a separate processor to achieve quicker results),
but heuristics are still needed to reduce the total CPU time.

IV. CONCLUDING REMARKS

Research in biological networks is currently in its infancy
and it has already become a vibrant, booming, and exciting
new research area that is likely to flourish and make deep
impacts on biological understanding, disease, and society in
the decades to come. As such, it is rich in open important
problems that we are currently only scratching the surface of
and is promising to remain at the top of scientific endeavor.
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