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Abstract—In many application domains, data are represented
using large graphs involving millions of vertices and edges. Graph
analysis algorithms, such as finding short paths and isomorphic
subgraphs, are largely dominated by memory latency. Large
cluster-based computing platforms can process graphs efficiently
if the graph data can be partitioned, and on a smaller scale
partitioning can be used to allocate graphs to low-latency on-
chip RAMs in reconfigurable devices. However, there are many
graph classes, such as scale-free social networks, which lack the
locality to make partitioning graph data an efficient solution
to the latency problem and are far too large to fit in on-
chip RAMs and caches. In this paper, we present a framework
for reconfigurable hardware acceleration of these large-scale
graph problems that are difficult to partition and require high-
latency off-chip memory storage. Our reconfigurable architecture
tolerates off-chip memory latency by using a memory crossbar
that connects many parallel identical processing elements to
shared off-chip memory, without a traditional cached memory
hierarchy. Quantitative comparison between the software and
hardware performance of a graphlet counting case-study shows
that our hardware implementation outperforms a quad-core
software implementation by 10 times for large graphs. This speed-
up includes all software and IO overhead required, and reduces
execution time for this common bioinformatics algorithm from
about 2 hours to just 12 minutes. These results demonstrate that
our methodology for accelerating graph algorithms is a promising
approach for efficient parallel graph processing.

I. INTRODUCTION

Many real-world problems, such as various types of social
networks and biological interactions, have been represented
as large graphs or networks involving millions of vertices. In
bioinformatics, for instance protein-protein interactions (PPIs)
are commonly represented by graphs, where vertices represent
proteins and edges represent physical interactions between
the corresponding proteins [1]. As graph problems grow in
size, efficient parallel graph processing becomes important as
computational and memory requirements increase. Unfortu-
nately, traditional software and hardware solutions that are
used to parallelise mainstream parallel applications do not
necessarily work well for large-scale graph problems. Graph
problems have a number of properties that make them poorly
matched to computational methods applied in mainstream
parallel applications. In particular, the following properties
of graph problems present significant challenges for efficient
parallel processing of graph problems [2]:

• Data-driven computations. Generally, graph computa-
tions are dictated by the vertex and edge structure of
the graph, and the execution paths are difficult to analyse
and predict using static analysis of the source code. Paral-
lelism based on partitioning computations is a challenging
task due to lack of knowledge about the structure of the
computations.

• Unstructured problems. Often, the data in graph prob-
lems are unstructured and highly irregular. This irregular
structure of the graph data makes it difficult to partition
the graph data to take advantage of small and fast on-
chip memories, such as cache memories in cache-based
microprocessors and on-chip RAMs in FPGAs.

• Poor locality. Data-driven computations coupled with
irregular data structures results in low memory access lo-
cality. This often leads to suboptimal performance levels
on conventional cache-based microprocessors, which rely
on high spatial and temporal locality of memory accesses.

• High data access to computation ratio. Many graph
algorithms tend to explore the structure of the graph while
performing a relatively small amount of computations.
This results in a higher ratio of data access to computa-
tion compared to mainstream scientific and engineering
applications, and combined with poor locality leads to
execution times dominated by memory latency.

Previous work has shown that FPGA-based reconfigurable
computing machines can achieve order of magnitude speed-
ups compared to microprocessors for many important com-
puting applications [3], [4], [5]. However, one limitation
of FPGAs that has prevented widespread usage is the re-
quirement for regular or predictable memory access patterns
(i.e., sequential streaming of data from memory) due to the
heavily pipelined circuits in FPGA implementations. Applica-
tions with irregular memory access patterns, such as graph-
based algorithms, achieve much lower memory bandwidth
due to the increased the number of page misses in DRAM
memories. Consequently, this low memory bandwidth incurs
many pipeline stalls, resulting in little acceleration from the
FPGA, and possibly even deceleration.

In this paper, we present a novel framework for recon-
figurable hardware acceleration of graph algorithms. Our
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approach is evaluated on a high-performance reconfigurable
computing platform, using a case study to compare it with a
software implementation. Our key contributions are:

• A framework for reconfigurable hardware acceleration
of large graph problems that require access to off-chip
memory storage.

• A demonstration of our framework on a High-
Performance Reconfigurable Computing (HPRC) system
using a graphlet counting case-study from bioinformatics.

• A comparison of the software and hardware graphlet
counting implementations, including all hardware over-
head and IO costs, showing that up to 10 times perfor-
mance speed-up can be achieved using our reconfigurable
computing framework.

II. FRAMEWORK FOR RECONFIGURABLE GRAPH
PROCESSORS

As we have discussed earlier, the computational and mem-
ory access requirements of large-scale graph algorithms are
significantly different from mainstream parallel applications,
requiring new architectural solutions for efficient parallel
graph processing. In this section we propose a framework
for reconfigurable acceleration of large graph problems. Due
to the wide variety of graph algorithms, we limit ourselves
to a large class of common but demanding graph problems.
In particular, we are interested in graphs problems with the
following properties:

• Large-scale sparse graphs involving millions of vertices
and edges. The graph data are too large to fit onto small
and fast memories such as cache memory in commodity
microprocessors and on-chip RAMs in FPGAs.

• Static graphs. The graphs are static at run-time, and
hence, can be treated as read-only objects. There are
many algorithms that takes graph datasets as input and
output statistics about the graph. Examples include net-
work alignment and comparison used in bio-informatics.

• Highly Parallel. Generally, graph problems have paral-
lelism in abundance, where a task is performed inde-
pendently on all vertices of the graph. The shortest path
algorithm is an example, where for a given graph the
shortest path problem for each vertex can be solved in
parallel as an independent task.

• Simple compute operations. In addition to memory access
requests, the compute operations performed by graph
algorithms (e.g. integer addition, logical operations, etc.)
are relatively simple compared to more complex opera-
tions such as floating-point computations.

Algorithm 1 shows a general template for the graph al-
gorithms targeted by our framework. In terms of algorithm
coding, this property translates into a loop that iterates through
all the vertices in the graph. Each iteration can be performed
as a separate kernel. The outer-loop (line #2) represents the
coarse-grained parallelism required for our framework, while
further fine-grained parallelism may be available within the
graph kernel itself (line #2).

Algorithm 1 graph algorithm template
1: INPUT: a graph G(V,E)
2: for each vertex v of G in do
3: {perform a graph kernel}
4: end for
5: OUTPUT: statistical data of G(V,E)

A. Hardware Architecture

Before we discuss the reconfigurable architecture, we first
define the required characteristics of the target HPRC systems:

1) a high-bandwidth network between the FPGA devices
and memory banks.

2) allow efficient word-level memory accesses.
3) multiple memory banks that can be accessed concur-

rently.
The hardware architecture used in our framework is illus-

trated in Figure 1. The architecture consist of three different
components:

1) Graph Processing Elements (GPEs). A collection of
replicated and parallel processing elements that are
application-specific. Each GPE can independently exe-
cute a graph kernel (see Algorithm 1, line #3).

2) The memory interconnect network. This links the GPEs
to off-chip memory. In its basic form, it provides a
point-to-point connection between each GPE and all
memory banks through a memory crossbar. Through
customisation, the memory interconnect can be opti-
mised to improve the overall performance of the GPEs
and memory bandwidth. For example, atomic counters
can be implemented at the memory interconnect level
instead of within the GPEs. Dynamic reordering of
memory requests is another optimisation to improve the
effective memory bandwidth.

3) The run-time management unit. This unit provides task
assignment to the GPEs, as well as interfacing the
FPGA-based coprocessor with the host processor. This
unit can also provide dynamic load balancing, which is
very important for a large class of graph problems such
as scale-free networks.

Typically, mapping an algorithm onto a custom hardware
accelerator requires extracting parallelism from algorithm to
take advantage of the hardware resources. In the case of
FPGAs, designers usually rely on heavily pipelined designs
to compensate for the relatively slow operating frequencies on
these devices. However, as we highlighted in section I, the
irregular memory access pattern requirements of large graph
problems result in many pipeline stalls, leading to limited
or no FPGA performance speed-up. Instead of attempting to
increase throughput using pipelining techniques, we aim to
tolerate off-chip memory latency. In particular, we incorporate
the following architectural design features into our solution to
achieve efficient parallel processing of large graph problems:

• High parallelism. This is achieved by having a large
number of GPEs operating in parallel in a massively



multi-threaded machine fashion. Having a large number
of GPEs allows us to take advantage of the abundant
parallelism that is often available in graph algorithms.

• Custom processing element. Designing application-
specific GPEs will result in efficient utilisation of hard-
ware resources in contrast to general-purpose micro-
processors. Given that operations performed in graph
algorithms are simple compute operations that map to
relatively simple hardware implementations, high-level
synthesis tools should be able to generate efficient imple-
mentations of a GPEs while achieving high parallelism
by replicating GPE cores.

• Tolerating memory latency. Instead of using cache mem-
ories to hide memory latency, we tolerate memory latency
by connecting the GPEs to a shared memory system via
a memory interconnect. Given a large number of parallel
GPEs, multiple concurrent memory requests can be issued
to parallel memory banks in the shared memory system,
leading to superior memory access performance.

• Decoupling access and execution units. This will benefit
the hardware synthesis process while improve the pro-
ductivity of the framework user. For example, a GPE
(the execution unit) can be generated using a high-
level language or a domain-specific language, while the
memory interconnect network (the access unit ) can be
obtained from a library of pre-compiled hand-crafted
hardware components.

B. Design Flow

Figure 2 shows a high-level diagram of the design flow of
the framework, from input specification through to hardware
generation. A completely automated implementation of the
proposed framework is currently under development. So for
this paper, we provide the performance results of a manual
execution of the design flow. Automating the flow used in

Fig. 1. System architecture for reconfigurable graph processing

Fig. 2. High-level design flow from input specification to hardware bitfile
generation. The dotted box shows the design tools under development.

this paper should mainly be an engineering problem, requiring
only existing tools and compiler technology; however, further
important optimisations such as auto-tuning and providing
graph algorithm-specific memory units will require additional
research.

The input specification consists of the graph problem de-
scription, as well as information about the configuration of
the platform to use. After reading the input specifications, the
design flow can then proceed with three different processes
in parallel: (1) extracting the graph kernel and synthesising
it onto a GPE hardware component; (2) creating or selecting
a pre-synthesised memory interconnect component that will
connect the GPEs to the memory sub-system; (3) assembling
the run-time management unit component that will schedule
tasks for execution on the GPEs, as well as connect the GPEs
with the platform interface. The three components are then
combined and compiled to produce the final hardware bit-file
and associated meta-data. At run-time the software running
on a host processor can load the bit-file onto an FPGA-based
coprocessor, and then execute the graph kernel on the FPGAs.

III. CASE STUDY : GRAPHLET COUNTING ALGORITHM

Our proposed framework is evaluated in this section using a
case-study that involves the acceleration of a graph algorithm,
called the graphlet counting algorithm. For this paper, we
report results on one graph algorithm only. Therefore, we do
not claim this to be a thorough experimental study. Rather
this paper serves as a case study for the applicability of our
reconfigurable architecture to unstructured graphs, and as an
introduction to a design framework for graph processors.

A. Algorithm Description

The graphlet counting algorithm enumerates all connected
graphlets with size k ∈ {3, 4, 5} in an undirected, unweighted
graph G(V,E). A graphlet is a small connected induced
subgraph of a network [6]. Figure 3 shows 3-, 4-, and 5-
node connected graplets. Enumerating all the graphlets in



Algorithm 2 The graphlet counting algorithm for k-node
graphlets, with k ∈ 3, 4, 5

1: for all nodes a of G do
2: for all adjacent nodes b of a do
3: for all adjacent nodes c of b do
4: {*finding 3-node graphlets*}
5: for all adjacent nodes d of c do
6: {*finding 4-node graphlets*}
7: for all adjacent nodes e of d do
8: {*finding 5-node graphlets*}
9: end for

10: end for
11: end for
12: end for
13: end for

network has proved to be extremely useful in many network
analysis algorithms such as GRAph ALigner (GRAAL) [7],
and graphlet degree signatures (GDS) [8] but is also a compu-
tational bottleneck. The pseudo code of the graphlet counting
algorithm is shown in the code snippet Algorithm 1.

The basic operations of this algorithm can be described as
follows. For each node a of G (outer loop in line #1), list all
adjacent nodes b of a (line #2). Then for each node b, list all
adjacent nodes c of node b, such that the c nodes are different
from the a node (line #3). At this stage all 3-node graphlets
(graphlets G1 and G2 in Figure 3) can be enumerated using
an adjacency test of nodes c and a. If node c is connected
to node a, then we have a triangle (graphlet G2); otherwise,
we have a path (graphlet G1). To enumerate 4-node graphlets,
all adjacent nodes d to node c are listed (line #11). Similarly,
using the adjacency tests, we can deduce the different 4-node
and 5-node graphlets in the subsequent inner for loops.

In terms of computational complexity, counting all graphlets
in a graph G has a time complexity of O(|V |5). However, for
very sparse graphs, such as PPI networks, the computational
cost is much less prohibitive than in dense graphs. In terms
of memory access time, the graph data are often represented
in software using pointer-based data structures, which requires
un-predictable fine-grained memory access operations to per-
form node adjacency tests and update graphlet counters. For

Fig. 3. 3-, 4- and 5-node connected graphlets

large-scale graphs, the performance of the graphlet counting
kernel is dominated by the wait for memory fetches.

B. Graph data representation

There are several ways to represent graph data using dif-
ferent data structures. Efficiency of a given representation is
dependent on the type of operations the algorithm perform
on the graph data. In our work, graphs are represented in a
compact adjacency list form, and the adjacency lists of all
vertices are packed into a single array as illustrated in Figure
4. Each vertex points to the first vertex of its own adjacency
list in this large single array of adjacency lists. The vertices
are represented as an array that stores the vertex name and a
pointer to its own adjacency lists. Another array of adjacency
lists stores the adjacent vertices with neighbouring vertices of
vertex i immediately following the neighbouring vertices of
vertex i−1. In addition to adjacency lists, adjacency matrices
are often used to perform adjacency tests between the vertices
of a graph. We use an adjacency matrix that requires |V |2 bits
of memory storage, which limits the size of the graph that we
can process, while wasting a significant amount of bits since
only a small portion of these bits is needed in sparse graphs.
In the future, we will adopt more efficient storage schemes
of the adjacency matrix such as using a hardware-accelerated
hash-table.

C. Design Considerations

In section I, we outlined the main challenges in paral-
lel graph processing. We briefly present instances of these
challenges in mapping the graphlet counting algorithm onto
hardware:

• Unstructured problem:. This is demonstrated by the
variable number of iterations of the inner loops, which
strongly depends on the degree of the graph nodes:
typically only two or three iterations will occur, but
occasionally 10 or 100 iterations will be needed. As a
result, it is not obvious where to introduce parallelism in
the inner loops.

• Poor data locality: The graphlet counting algorithm
explores the structure of a graph by performing fine-
grained and random memory accesses such as retrieval
of neighbouring vertices, or adjacency tests. These mem-
ory operations often exhibit poor temporal and spatial
memory access locality characteristics.

Fig. 4. Graph representation with vertex list pointing to adjacent vertex list



• Synchronisation issues: In the graphlet counting algo-
rithm, we require 72 counters per vertex to enumerate
all the 3-, 4-, 5-node graphlets (see Figure 3) for a given
graph. These counters must be stored in off-chip memory
for large graphs. A counter may be incremented by two
or more processing elements simultaneously requiring a
synchronisation mechanism. In the case of a system with
a large number of parallel threads or processing elements,
synchronisation due to high-contention situations can be-
come a performance bottleneck because of the additional
delays introduced by contention.

Having mentioned the main design issues of the graphlet
counting algorithm, we now present how we can address these
issues.

• Parallelising graphlet counting kernel. This issue is ad-
dressed by a combination of a parallel implementation
of the outer loop (line #1 in Algorithm 2), and a serial
implementation of all the inner loops (lines #2,3,5, and
7 in Algorithm 2). The serial implementation takes the
form of a GPE, while the parallel implementation comes
from the replication of this GPE. In other words, several
GPEs operate in parallel, and each GPE processes a graph
node at a time; i.e. an iteration of the outer-loop. Imple-
menting the inner loops sequentially on hardware would
most likely result in slower execution times compared
to software implementations. These slow execution times
can be overcome by having the number of processing
units large enough so that the overall execution time
of all processing elements is smaller than the software
execution time.

• Hiding memory latency. The issue of poor memory access
locality of the algorithm can be addressed by directly
connecting the GPEs to a parallel memory subsystem,
omitting general purpose cache memories. We use a
memory interconnect network to route memory requests
between the GPEs and multiple memory banks for paral-
lel access. Latency is tolerated by instantiating a large
number of GPEs that can issue multiple outstanding
memory requests.

• Synchronising graph counters. Finally for the synchro-
nisation of the counter updates, an atomic increment
module can be implemented within the switching in-
terconnect network to prevent read-after-write (RAW)
hazards that may be caused by two GPEs trying to
update the same counter. Using the atomic increment
operations to update counters will not only prevent RAW
hazards, but it will also improve the performance too,
as an atomic increment operation will avoid GPE stalls
while waiting for counter data to be read from memory. In
addition moving the incrementation unit out of GPEs to
the memory interconnect network allows GPEs to share
this unit, and hence improve the overall device utilisation.

D. Hardware Design

In this section, we describe the implementation details of
the three main components in our graphlet counting hardware

accelerator: the GPEs, the memory interconnect component,
and the run-time management unit. We explained in Sec-
tion II-B how these three components are generated by the
framework. A completely automated implementation of the
proposed framework is under development, and so we generate
hardware through manual execution of the framework. When
designing the three components, we avoid any sophisticated
optimisations to allow for the characterisation of the perfor-
mance that can be expected from the final automated version
of the framework.

1) Graph Processing Elements: . The graph processing
element implements the graphlet counting kernel. It consists
of a control unit, address function units, address and data
registers, scalar functional units, and ROM tables to store
hashing tables. The control unit includes a single finite-state
machine (FSM) that implements serially all the inner loops in
the graphlet counting algorithm. This FSM can be generated
automatically by a high-level synthesis tool such as Handel-C.

The address function units include multipliers and adders
with custom bit-width to compute memory addresses. In the
case of the graphlet counters (72 counter per vertex), we
combine logical shifts with addition instead of multiplication
(since 72 = 64 + 8 or 72 = 26 + 23). The scalar functional
units include adders and logical comparison operators that
are customised for data bit-width, and adders with constant
operands such as 1-unit increment operations performed on
graphlet counters. Again, all these optimisations use existing
static analysis techniques that can be captured by a high-level
synthesis tool.

The bit-width of both data and address registers is cus-
tomised for the data that will be handled in these registers.
For example, if all memory accesses are 8-byte long, than we
can ignore the 3 least significant bits from the address registers
and increment the address register by 1 instead of 8. Finally,
the graphlet counting algorithm uses two hash tables in the
inner-most loop to find 5-node graphlets; these hash tables are
stored locally in the GPE using ROM memories.

2) Memory Interconnect Network: . The memory inter-
connect network provides each GPE with access to all off-
chip memory banks via a memory crossbar. The memory
crossbar consists of two main parts: one for memory access
requests, and the other for memory access responses. Each
part consists of three different component: FIFOs, an arbiter,
and multiplexer. For memory requests, each GPE has its own
FIFO to queue up memory requests. The arbiter controls the
multiplexer using an N-way round robin scheduler, where N
is the number of GPEs. For the memory responses, FIFOs
are also used to queue up memory responses before being
transferred to GPE through a multiplexer that is controlled
by an round-robin arbiter. In order to achieve timing closure
for large numbers of GPEs, the memory crossbar is organised
into two or three pipelined stages, which results in a reduced
critical path in exchange for a negligible increase in memory
access latency.

3) Run-time Management Unit: .This unit manages the
execution of the GPEs at run-time by using a static scheduler,



TABLE I
DEVICE UTILISATION ON A SINGLE VIRTEX5 LX330

Number of GPEs Slices BRAM
1 stand-alone GPE 2,919/207,360 (1%) 1/288 (1%)

16 GPE per AE 86,008/207,360 (41%) 60/288 (20%)
32 GPE per AE 124,822/207,360 (60%) 68/288 (23%)

that assigns an equal number of nodes for each GPE to process.
This involves some simple control logic that can be easily
generated by a high-level synthesis tool.

IV. PERFORMANCE EVALUATION

A. Software Implementation

We compare the performance of the hardware graphlet
counting architecture with a software implementation. The
source code of the graphlet counting algorithm was extracted
from the GraphCrunch tool [9], an open source tool for biolog-
ical network analysis developed at UC Irvine. We optimised
the original code and used GCC compiler 4.1.2 with -O3
option flag to compile the code. The resulting executable is
tested on an Intel Xeon E5420 CPU which has four cores,
each core running at 2.5 GHz with access to 12MB of L2
cache and 16GB of DDR2-SDRAM.

B. Hardware Implementation

For the high performance reconfigurable computing system,
we use the Convey HC-1 server [10] which has Virtex-5
FPGAs. The coprocessor board is housed in a 1U chassis
that is fused to the top of another 1U chassis containing
the host motherboard. The coprocessor board has four user-
programmable Virtex-5 LX330s, which Convey calls applica-
tion engines (AEs). Each AE is connected to eight independent
memory controllers through a full crossbar. Each memory
controller is implemented on its own FPGA and is connected
to two Convey-designed scatter-gather DIMM modules. Each
AE has a 2.5 GB/s link to its corresponding memory controller,
giving a theoretical aggregate peak memory bandwidth of 80
GB/s. However, the effective memory bandwidth of the AEs
varies according to their memory access pattern. To develop
for Convey HC-1, we use the Convey Personality Development
Kit (PDK), which is a set of makefiles to support simulation
and synthesis design flows. Convey provides a wrapper that
allows the user to interface the FPGA design with both the
host CPU and the memory controllers. The wrapper requires
a fixed amount of resource overhead: 22% of BRAMS and
about 10% of slices for each FPGA device.

Our hardware design is expressed in RTL using Verilog
HDL and was compiled using ISE v13.1. The design runs at
150 MHz and resource utilisation of both stand-alone single
GPE and in-system GPEs is shown in Table I.

C. Performance results

For our experimental work, we generate synthetic graphs
using the LEDA library [11]. We restrict our experimental
graph data to undirected and unlabelled sparse graphs based
on the Erdos-Renyi random graph model. We vary graph

size, |V |, and the average degree d. Table II compares the
performance of the software and hardware implementations
in terms of execution time. We use three configurations for
the hardware implementation: 16, 64, and 128 GPEs. For the
software implementation, we measure the performance of the
quad-core CPU using both single and multiple CPU cores.

A first observation that can be made from the performance
results, is the long execution times of the graphlet counting
algorithm for large graph problems. This can be explained by
the increasing number of last level cache misses in the CPU as
the size of graph data increases, due to poor memory access
locality characteristics that are exhibited by graph algorithms
in general. These long execution times, which can be as long
as several hours, highlights the importance of accelerating
such algorithms. Fortunately, the hardware implementation
outperforms the software implementation for large graphs.
As the size of the graph and edge density increases the
speed-up of the hardware implementation over the software
implementation increases too, reaching a performance speed-
up of about 10 times for graphs with more than 100,000
vertices. In a computing grid, this means that 10 CPU servers
can be replaced with one Convey HC-1 server to perform the
same computing task, resulting in significant savings on both
power consumption and rack space.

In terms of scalability of parallel resources, the HC-1
is more scalable that CPU as shown in Figure 5. HC-1’s
performance seems to scale almost linearly from 16 GPEs to
64 GPEs with an efficiency greater than 95%, which suggests
that the memory subsystem has not been saturated, and hence
adding more GPEs will likely increase the performance of
the HC-1 implementation. As the number of GPEs is doubled
from 64 to 128, the efficiency of HC-1 starts dropping to
around 90% as the effects of memory bank contention become
more significant for 128 GPEs. For the CPU, adding more
CPU cores doesn’t scale-up accordingly for large graphs
as it achieves an efficiency of less than 80%. This non-
linear performance scale-up is caused by the cache protocol
overhead, and possibly an increased rate of last level cache
misses.

V. PLANNED IMPROVEMENTS

The performance and scalability of our reconfigurable hard-
ware architecture are already satisfactory compared to general-
purpose processors. Having said that, we are investigating
the following techniques to improve the performance and
efficiency of our reconfigurable architecture:

• Multi-threaded GPEs. We have shown that the perfor-
mance of our hardware solution scales almost linearly as
the number of GPEs is increased, suggesting we have yet
to saturate all available memory bandwidth. The next step
is to increase the number of concurrent memory requests,
or the number of parallel requesters. This can be achieved
by increasing the number of GPEs, but this number will
be limited by the size of the reconfigurable device. A bet-
ter approach is to enable support of multiple concurrent
threads within a single GPE, which offers better device



TABLE II
EXPERIMENTAL RESULTS, GRAPHLET COUNTING KERNEL ON CPU VS. CONVEY HC-1

number of number of average size in CPU execution time HC-1 speed-up over 4-core CPU
vertices edges degree memory 1 core 4 cores 16 GPE 64 GPE 128 GPE
10,000 40,000 ∼8 18.17 MB 8.65s 2.57s 0.5x 1.2x 1.05x
10,000 50,000 ∼10 18.32 MB. 20.95s 6.23s 0.5x 1.6x 2.5x
50,000 200,000 ∼8 329.3 MB 1m2s 19.09s 0.8x 2.8x 4.7x
50,000 250,000 ∼10 330 MB 2m31s 46.1s 0.8x 3.2x 5.5x
100,000 400,000 ∼8 1.225 GB 1m36s 48.1s 1.0x 3.8x 6.7x
100,000 500,000 ∼10 1.226 GB 6m8s 1m53s 1.1x 4.0x 7.4x
300,000 1.5 million ∼10 10.665 GB 17m23s 7m32s 1.4x 5.6x 10.4x
10,000 100,000 ∼20 19.1 MB 5m15s 1m33s 0.6x 2.3x 4.2x
50,000 500,000 ∼20 333.88 MB 36m39s 11m20s 0.9x 3.4x 6.4x
100,000 1 million ∼20 1.234 GB 1h30m26s 27m50s 1.1x 4.2x 8.0x
300,000 3 million ∼20 10.687 GB 6h1m46s 1h52m46s 1.5x 5.7x 10.8x

resource utilisation while reducing the number of stall
cycles in GPEs caused by long waits for memory fetches.

• Dynamic workload balancing. Scheduling of the tasks
assigned to GPEs can be further optimised to improve the
overall performance. Currently we use a static scheduler
that may result in unbalanced workloads for the GPEs.
A dynamic approach should in principle improve the
workload balance amongst the GPEs.

• Specialised cache memories. Although in our current
hardware architecture, there is no memory hierarchy due
to poor memory locality characteristics of graph problems
in general, we plan in the future to explore specialised
caches to exploit locality that may be present in some
algorithms. This can be effective where one portion of
the dataset used by the graph algorithm will benefit from
cache memories, whereas the other part of the dataset is
not suitable for caching. For example it is often useful to
cache node degrees and labels, but not information about
edges.

• Customising the memory interconnect. The current mem-
ory interconnect network connects the GPEs to off-chip
memory without performing any advanced techniques to
improve the overall performance of the system. Through
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Fig. 5. Performance scalability as parallel resources are increased from 1
core to 4 cores for the CPU, and from 16 GPEs to 64 and 128 GPEs for
HC-1. Efficiency is measured as the speed-up over a single core divided by
the number of cores employed, so 100% efficiency is perfect scalability

customisation, the memory interconnect can be optimised
to implement more operations than memory reads and
writes, such as atomic increment operations, leading to
better resource sharing as all GPEs can use the same
increment operator. Dynamic reordering of memory re-
quests to avoid page misses in DRAMs can be another
optimisation to improve the effective memory bandwidth.
Our framework allows such re-ordering to be particularly
aggressive, due to the large number of GPEs generating
requests - potentially individual GPE memory requests
can be stalled for thousands of cycles, as long as it allows
other GPEs to make better use of open memory pages.

• Reducing memory footprint. In our current design, the
size of graphs is limited by the size of memory space
required to store the adjacency matrix, which requires
|V |2 bits of memory storage. Using a hashing table can
reduce greatly the memory footprint of the adjacency
matrix data, given that most of real world graphs are
rather sparse and rarely dense. This hashing can then be
built into the memory interconnect, without increasing
the computational load on the GPEs.

VI. RELATED WORK

The importance of efficient processing of large graph
problems has been increasing as datasets quickly grow past
the capacity of current HPC systems. The authors in [2]
surveys existing hardware architecture of HPC systems that are
currently used to process graph problems. Distributed Memory
computer clusters are a popular choice. Made mainly of com-
modity parts, distributed memory computers can offer good
performance using inexpensive components [12]; However,
they require the graph data to be partitioned which, as we
discussed earlier, is not always a trivial task in unstructured
graphs [13]. Such graphs are quite common in informatics
applications, where the number of local vertices can be much
smaller than the set of adjacent vertices.

Another class of parallel machines used for parallel graph
processing are shared-memory computers. This class of par-
allel machines, where the global memory address space is
accessible to all processors, includes cache-coherent parallel
computers and massively multi-threaded machines (MMT).
Cache-coherent parallel computers can process graphs faster



than distributed memory systems, but have a memory hierar-
chy involving multiple cache memories, and so require cache
coherence protocols for correct operation. Cache coherence
protocols adds overhead which can degrade performance and
introduce scalability issues. Moreover, the poor locality of
memory accesses in graph problems renders memory cache
ineffective, while the performance penalty due to cache coher-
ence protocols cannot be avoided. Another sub-class of cache
coherent parallel computers are MMT machines, such as the
Cray MTA-2 [14]. MMT machines tolerate memory latency
by providing hardware support for many concurrent threads
that are able to issue multiple outstanding memory requests.
A major drawback of MMT machines is that processors are
custom, and not commodity, which means they are relatively
more expensive and have slower clock rates than commodity
processors.

Much previous work related to using FPGAs to solve graph
problems has focused on using on-chip memory resources [3],
[4] and [5]. However, many real world graphs are too large
to fit into on-chip memory of FPGAs, requiring the use
of off-chip memories such DRAM. Due to the significant
difference in access times between on-chip memories and off-
chip memories, many efficient on-chip FPGA solutions are
not suitable for high-latency off-chip storage. In our work, we
present a reconfigurable computing approach to accelerate the
processing of large graph problems that require high-latency
off-chip storage.

While there have been many applications in computational
biology which have been successfully accelerated on FPGA-
based compute engines [15], [16], [17], [18], there has been
no previous work to which we can compare our results on the
hardware acceleration of the graphlet counting algorithm.

VII. CONCLUSIONS AND FUTURE WORK

In this paper we described a novel framework for recon-
figurable hardware acceleration of graph algorithms. Using a
case study, we have shown through experimental study that
our approach is able to provide over an order of magnitude of
performance speed-up over a software implementation running
on a quad-core CPU, reducing execution time from several
hours to just few minutes, while achieving better scalability
of parallel resources. Overall, we have demonstrated that using
our framework we are able to overcome the cost of memory
latency, a dominant factor in the run-time of graph algorithms.

At the time of writing this paper, most of the steps in
the design flow of the framework are performed manually.
Our goal is to provide a proof concept that our approach
can provide significant performance improvements. While this
has been a short term goal, we ultimately aim to provide a
fully-automated framework for hardware acceleration of graph
algorithms. This includes exploring high-level synthesis tools
to generate hardware. We will also explore more algorithms
that will enable us to get further insight onto how to improve
our framework. Currently, we only support unlabelled and
unweighted graphs ; in the future we will extend our frame-
work to support labelled and weighed graphs. We also plan on

extending our testing graph data to include graph models other
than the Erdos-Renyi model such as geometric and scale-free
graph models.
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