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Abstract

Exponential-family random graph models are probabilistic network models that are
parametrized by sufficient statistics based on structural (i.e., graph-theoretic) properties.
The ergm package for the R statistical computing environment is a collection of tools for
the analysis of network data within an exponential-family random graph model framework.
Many different network properties can be employed as sufficient statistics for exponential-
family random graph models by using the model terms defined in the ergm package; this
functionality can be expanded by the creation of packages that code for additional network
statistics. Here, our focus is on the addition of statistics based on graphlets. Graphlets are
classes of small, connected, induced subgraphs that can be used to describe the topological
structure of a network. We introduce an R package called ergm.graphlets that enables the
use of graphlet properties of a network within the ergm package of R. The ergm.graphlets
package provides a complete list of model terms that allows to incorporate statistics of
any 2-, 3-, 4- and 5-node graphlets into exponential-family random graph models. The
new model terms of the ergm.graphlets package enable both exponential-family random
graph modeling of global structural properties and investigation of relationships between
node attributes (i.e., covariates) and local topologies around nodes.
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1. Introduction

Networks are widely used representations of complex, relational systems from different do-
mains such as biology, sociology, economics, and technology. A network (or graph) consists of
nodes (or vertices) that represent the objects of the complex system and edges that represent
the relationships between the objects. For example, in a friendship network, the nodes corre-
spond to people, and an edge is drawn between two people if they are friends with each other
(illustrated example in Figure 1). Networks can be further enriched with node attributes that
describe various categorical features (e.g., the gender of the people in the friendship network)
or numeric features (e.g., the age of the people in the friendship network) of the nodes.

Understanding the processes underlying the formation of edges in a network is one of the main
challenges in network modeling. Various network models describe different rules for formation
of edges; e.g., Erdös-Rényi random graph models (also known as Bernoulli graphs; Erdös
and Rényi 1959), so-called “scale-free” models (Barabási and Albert 1999), geometric models
(Penrose 2003), and stickiness-index-based models (Pržulj and Higham 2006). Recent work on
the statistical modeling of networks has focused on the use of discrete exponential families as
general representations for these and other graph distributions. Exponential-family random
graph models (ERG models or ERGMs, also known as “p*” models) are probabilistic network
models that are parametrized in terms of sufficient statistics based on various topological
properties (Holland and Leinhardt 1981; Pattison and Wasserman 1999; Robins, Pattison,
Kalish, and Lusher 2007). In ERGMs, the conditional probability of the existence of an edge
given the rest of the graph is determined by the effect that the edge has on the values of these
statistics (and hence topology) which are conventionally called model terms. Using suitable
model terms, ERGMs enable statistical investigation of the importance of different structural
properties on the formation of edges. For example, for a friendship network, ERGMs can
answer questions such as: Are the chances of a friendship tie between two persons enhanced
by having a friend in common? Is this effect stronger than would be expected due to clustering
on observed characteristics (e.g., gender)? Does this effect differ based on the gender or race
of the common friend? Etc.

The ergm package (Hunter, Handcock, Butts, Goodreau, and Morris 2008b; Handcock, Hunter,
Butts, Goodreau, Krivitsky, and Morris 2014) for the R statistical computing environment (R
Core Team 2015) provides a set of tools for analyzing networks within an ERGM framework.
The ergm package allows the users to define ERGMs based on a wide range of network proper-
ties, fit ERGMs to observed networks using likelihood-based methods, simulate networks from
an ERGM, perform graphical goodness-of-fit tests of the type described by Hunter, Goodreau,
and Handcock (2008a) and Handcock, Hunter, Butts, Goodreau, and Morris (2003). The ergm
package itself provides a large but limited number of model terms. Custom model terms can
be introduced into the ergm package using the ergm.userterms package (Handcock, Hunter,
Butts, Goodreau, and Morris 2013).

Using the functionality of the ergm.userterms package, we introduce a new R package called
ergm.graphlets that enables defining ERGMs based on induced subgraph (also known as
graphlet) properties of networks. The ergm.graphlets package provide model terms for an
extended list of subgraph properties that capture all connected, undirected, induced subgraph
patterns of size 2, 3, 4 and 5. Furthermore, the terms of the ergm.graphlets package differ
from the available subgraph property terms of the ergm package as only “induced” subgraph
patterns are taken into account; when evaluating a subgraph induced on a set of nodes, all
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Figure 1: A hypothetical friendship network where nodes correspond to people and edges
are drawn between nodes if they are friends with each other. The node colors correspond to
gender (e.g., blue = male).

edges connecting the chosen set of nodes are considered.

In the remainder of this article, we proceed as follows. First, we provide some background
information on various network properties, graphlets and ERGMs (Section 2). Second, we
provide detailed explanations of the new model terms of the ergm.graphlets package in Sec-
tion 3. Third, we illustrate the ERG modeling process with the new model terms on two
real-world networks in Section 4. Finally, we conclude by providing a brief summary and
discussing the future directions in Section 5.

2. Background

In this section, we provide a brief introduction to the graph-theoretic definitions, network
properties, graphlets and exponential-family random graph models.

2.1. Definitions, network properties and graphlets

A network (or graph) is represented as G = (V,E) where V is the set of nodes and E is the
set of edges of graph G. Edges are represented by pairs of nodes, and represent ties; two
node joined by an edge are said to be adjacent. A network G′ is a subgraph of a network G if
its nodes and edges are subsets of the nodes and edges of G. A subgraph G′ is induced if it
contains all the edges that appear between its nodes in its originating network G. Different
subgraphs of a network can have very different configurations, such as a triangle, k-star, or
k-cycle. A triangle is a complete network of three nodes (i.e., where each pair of nodes is
adjacent). A k-star is a network of k+1 nodes where some node is adjacent to all other nodes.
A k-cycle is a network of k nodes such that there exists an ordering of the nodes v1, v2, . . . , vk
such that each node is adjacent to the node immediately before and after it, and the first
node is adjacent to the last.

For understanding complex systems, analyzing the topological properties of their network
representations is crucial. Many such properties have been defined and found to be useful
in various substantive contexts. The degree distribution (i.e., the distribution of the number
of neighbors each node has), clustering coefficient (a measure of the tendency of edges to
be contained in triangles), and diameter (i.e., the length of the maximum shortest path
between any two nodes in the network) are among the most well-known examples of structural
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properties (Wasserman and Faust 1994; Newman 2010). Recent work has identified many
useful properties based on graphlets. Graphlets are isomorphic equivalence classes of small,
connected induced subgraphs within a larger network (Pržulj, Corneil, and Jurisica 2004).
The set of possible graphlets of a given order (number of nodes) can be enumerated, and
we depict the set of 2- to 5-node graphlets in Figure 2. A range of different structural
properties can be defined by reference to graphlets. The most basic graphlet properties –
graphlet counts – are defined as the number of times that each graphlet appears in a given
network. E.g., for the friendship network in Figure 1: the count of G0 is the number of
edges in the network, 7; the count of G1 is the number of induced two-path subgraphs, 8;
the count of G2 is the number of triangles, 1, etc. More refined network properties can be
defined by considering the symmetries (i.e., automorphisms) within the graphlets (Milenković
and Pržulj 2008). Two nodes within a network are said to belong to the same automorphism
orbit (or automorphic equivalence class) if there exists a relabeling of nodes in the graph that
exchanges the two nodes while preserving the graph’s adjacency structure (Wasserman and
Faust 1994). Applying this notion to each 2- to 5-node graphlet yields 73 equivalence classes
(i.e., orbits), as illustrated in Figure 2. Each orbit reflects a distinct way of participating
in a graphlet structure, and counts of orbit memberships provide a node-level indicator of
structural position. The graphlet degree of a node is the number of graphlets that the node
touches at a given orbit; this generalizes the conventional notion of degree, which is the size of
a node’s neighborhood (in graphlet terms, the number of type 0 orbits that it occupies). The
computation of the 73 graphlet degrees for node A in the friendship network is illustrated in
Figure 3. The vector containing the 73 graphlet degrees of a node, named the graphlet degree
vector (GDV), provides a detailed description of network structure local to a node. Finally, the
third set of graphlet properties considered here summarizes the node-level graphlet degrees
by considering their distribution over the whole network. A generalization of the degree
distribution, the graphlet degree distribution of an orbit corresponds to the distribution of
the corresponding graphlet degrees of all nodes in the network (with the conventional degree
distribution being the graphlet degree distribution of orbit 0). The topology of a network can
be richly described with the 73 graphlet degree distributions associated with each of the 2-
to 5-node graphlet automorphism orbits.

2.2. Exponential-family random graph modeling

Exponential-family random graph models (ERGMs) are probabilistic network models param-
etrized by sufficient statistics based on different network properties. ERGMs are specified
via three elements: a vector of terms (sufficient statistics or functions thereof); a vector of
real-valued parameters; and a support (often chosen to be the set of all graphs or digraphs of
a given order; Kolaczyk 2009; Hunter et al. 2008b).1 Sufficient statistics for an ERGM can be
functions representing any topological properties of the network (and, optionally, covariates),
e.g., the number of edges, the degree distribution, the number of triangles, the number of
k-stars, or the number of k-cycles. In general, few constraints on model terms are required;
any real-valued functions are permissible, so long as they are finite and (for identifiable mod-
els) affinely independent on the support. Model terms can also relate node or edge attributes
with their topological properties, e.g., the correlation between a node’s attribute value and its
degree. Readers can refer to Morris, Handcock, and Hunter (2008) for a summary of model

1Technically, a reference measure is also required; for unvalued graphs on finite support, this can be taken
without loss of generality to be the counting measure (Krivitsky 2012).
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Figure 2: All 2-, 3-, 4- and 5-node graphlets, G0, G1, . . . , G29, and their automorphism orbits,
0, 1, 2, . . . , 72. (Pržulj 2007)
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Figure 3: Computation of the graphlet degree vector (GDV) of node A in the friendship
network in Figure 1. The number of graphlets that node A touches at orbit i is the ith
element of the GDV (Milenković and Pržulj 2008).

terms that are available in the ergm package.

ERGMs may be more formally summarized as follows. Let Y be a random variable that
represents the n-by-n adjacency matrix of an unweighted, loopless (no self-edges), undirected

network with n nodes. Y can have 2(n2) different values (configurations), where each value
represents a different network having n nodes. The number of configurations arises from the
fact that there are

(n
2

)
dyads in an order-n graph, each of which may here take two distinct

states. The set of all possible configurations forms the support for Y, denoted here by Y. Any
element of Y is a potential realization of Y and is represented by y. An ERGM describes the
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probability of observing a realization, y, as a function of a vector of sufficient statistics. The
probability of observing a realization is expressed in ERGM form per Equation 1:

Pθ,Y(Y = y|θ, t) =
exp{θ>t(y)}∑
z∈Y exp{θ>t(z)}

,y ∈ Y, (1)

where θ is the vector of model coefficients (i.e., the weights for the model terms) and t is
the vector of sufficient statistics (i.e., model terms corresponding to network properties of
interest; Frank and Strauss 1986; Wasserman and Pattison 1996). A generalization of the
above to more general cases (e.g., graphs with loops, digraphs, etc.) is immediate given an
alternative choice of Y; extension to valued graphs is treated by Krivitsky (2012). Since any
probability mass function for Y on finite Y can be written in this form, ERGMs are a fully
general representation for random graphs of finite order.

In an inferential context, ERG models for an observed network, y, are typically fit by esti-
mating the model coefficients, θ, that maximize the conditional probability, Pθ,Y(Y = y|θ, t)
for some selected t (with statistics being chosen based on a combination of exploratory anal-
ysis and prior theory). The most common approaches to estimation are currently maximum
pseudo-likelihood estimation (MPLE, generally avoided except as an approximation) and
maximum likelihood estimation (MLE, implemented via one of several techniques). Since the
computation of the normalizing factor (i.e., denominator) in Equation 1 is intractable, current
MLE methods do not directly compute the normalizing factor, but instead, use Markov chain
Monte Carlo (MCMC) algorithms to perturb the edge states of the networks one-by-one and
estimate the model parameters based on the change statistics of these edge flips (for details,
see Handcock et al. 2014). One consequence of this is that the model statistics themselves
need never be directly computed: for most purposes, only the change scores of edge flips
are directly necessary. This approach yields substantial savings in the computational time
required for estimating the model parameters.

The ergm package also employs this approach for estimating the model parameters of an
ERGM. For this reason, when defining new model terms with the ergm.userterms package,
users need to focus on identifying efficient ways of computing the change statistics of the
new model terms. For example, for defining “the number of edges” term, the implementation
should return +1 when a new edge is added into the network and −1 when an edge is removed.
Since these change statistics computations are likely to be performed millions of times during a
typical MCMC run for parameter estimation, the computation of the change statistics should
be time-optimized.

3. The ergm.graphlets package

We define graphlet statistics for ERGMs by introducing the ergm.graphlets package (Yaveroglu,
Fitzhugh, Kurant, Markopoulou, Przulj, and Butts 2015) that is built upon the ergm.userterms
package. The ergm.graphlets package is available from the Comprehensive R Archive Net-
work (CRAN) at http://CRAN.R-project.org/package=ergm.graphlets. To install and
load ergm.graphlets, type the following in R prompt:

R> install.packages("ergm.graphlets")

R> library("ergm.graphlets")

http://CRAN.R-project.org/package=ergm.graphlets
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The ergm.graphlets package is open-source and released under GPL-2 and higher. The
ergm.graphlets package introduces four graphlet based ERG modeling terms into the ergm
package for R. These model terms are summarized as follows:

1. Graphlet counts – graphletCount(g):

Statistics for the number of times that a graphlet appears in a network can be included
in an ERGM by using the graphletCount term. The question that the change score
function of this term answers is: how does the number of graphlets of type Gi change
when an edge is flipped in the network? This term has an optional argument, g. g
is a vector of distinct integers representing the list of graphlets to be evaluated during
the estimation of model coefficients (see Figure 2 for the list of graphlets). When this
argument is not provided, all graphlets are evaluated by default. The term adds one
network statistic to the model for each element in g. This term is defined for the 30
graphlets with up to 5 nodes. Therefore, g accepts values between 0 and 29.

The graphletCount term shows similarity with some terms of the ergm package, e.g.,
cycle, edges, kstar, threepath, triangle, twopath. The major difference between
these existing ergm terms and the graphletCount term is that the existing terms con-
sider arbitrary subgraphs, while graphletCount enforces the subgraphs to be induced.
For example, graphletCount does not count the two-path subgraphs in a three node
subgraph forming a triangle, while the twopath term counts three different two paths in
a triangle subgraph. A closer parallel is the triadcensus term, which counts induced
subgraphs on three nodes; note, however, that the triad census includes all isomorphism
classes of order 3, while the order 3 graphlets consist only of the classes corresponding
to connected graphs. Thus, while there is overlap between some quantities computed
by graphletCount and some existing ergm terms, the two are on the whole distinct.

2. Graphlet orbit covariance – grorbitCov(attrname, grorbit):

The correlation between a node’s graphlet degree and a numeric attribute value can be
included into an ERGM by using the grorbitCov term. The question that the change
score function of this term answers is: what is the change in covariance between a vector
of node attributes and graphlet degrees (for a given orbit) when an edge is changed?
This term has two arguments: attrname and grorbit. The attrname is a character
vector giving the name of a numeric node attribute. The optional grorbit argument
is a vector of distinct integers representing the list of graphlet orbits to include into
the ERGM model (see Figure 2 for the list of graphlet orbits). When grorbit is not
provided, all graphlet orbits are evaluated by default. The term adds one network
statistic to the model for each element in grorbit. Each term is equal to the sum given
in Equation 2:

grorbitCov(G, i,X) =
∑
v∈V

GDi(G, v) ∗Xv, (2)

where X is the vector of node attribute values, i is the queried graphlet orbit and
GDi(G, v) is the number of graphlets that touch node v at orbit i. This term is defined
for the 73 orbits corresponding to graphlets with up to 5 nodes. Therefore, grorbit
accepts values between 0 and 72.

The grorbitCov term can be viewed as an extension of the the nodecov term in the
ergm package to higher-order structures. In fact, the nodecov term is a special case of



8 ergm.graphlets: A Package for ERG Modeling Based on Graphlet Statistics

grorbitCov where the grorbit argument is set to 0.

3. Graphlet orbit factor – grorbitFactor(attrname, grorbit, base):

The grorbitFactor term adds a relationship between graphlet degrees and a categorical
node attribute into an ERGM. The question that the change score function of this term
answers is: what is the change in the total graphlet degree (for a given orbit) for those
nodes with a given attribute value, for a particular edge change? This term has three
arguments: attrname; grorbit; and base. attrname is a character vector giving the
name of a categorical node attribute. The optional grorbit argument is a vector of
distinct integers representing the list of graphlet orbits to include into the model (see
Figure 2 for the list of graphlet orbits). When grorbit is not provided, all graphlet
orbits are evaluated by default. The optional base argument is a vector of distinct
integers representing the list of categories in attrname that are going to be omitted.
When this argument is set to 0, all categories are evaluated. Otherwise, the attribute
values are sorted lexicographically and the attributes that are indexed by the base

value(s) are omitted. For example, if the “fruit” attribute has values “orange”, “apple”,
“banana” and “pear”, grorbitFactor("fruit", 0, 2:3) will ignore the “banana” and
“orange ” factors and evaluate the “apple” and “pear” factors. When the base argument
is not provided, the argument is set to 1 by default. The grorbitFactor term adds
a ∗ |grorbit| terms into the model where a represents the number of attribute values
that are evaluated in the model and |grorbit| is the number of graphlet orbits to be
evaluated in the model. Each term is equal to the sum in Equation 3:

grorbitFactor(G, i,Xc) =
∑

v∈V,category(v)=Xc

GDi(G, v), (3)

where Xc is the category of the term, i is the queried graphlet orbit, category(v) is the
category that node v belongs to, and GDi(G, v) is the number of graphlets that touch
node v at graphlet orbit i. This term is defined for the 73 graphlet orbits corresponding
to graphlets with up to 5 nodes. Therefore, grorbit accepts values between 0 and 72.

The grorbitFactor term extends the nodefactor term in the ergm package. In fact,
the nodefactor term is a special case of grorbitFactor where the grorbit argument
is set to 0.

4. Graphlet degree distribution – grorbitDist(grorbit, d):

The graphlet degree distributions of different graphlet orbits can be included into the
ERGM by using the grorbitDist term. The question that the change score function
of this term answers is: how do the number of nodes having graphlet degree n for orbit
i change when an edge is flipped? This term has two arguments: grorbit and d. The
grorbit argument is a vector of distinct integers representing the list of graphlet orbits
to include into the model (see Figure 2 for the list of graphlet orbits). The d argument is
a vector of distinct integers. This terms adds one network statistic to the model for each
pairwise combination of the arguments in grorbit and d vectors. The statistic for the
combination of (i, j ) is equal to the number of nodes in the network that have graphlet
degree j for orbit i. This term is defined for the 15 graphlet orbits corresponding
to graphlets with up to 4 nodes. Therefore, grorbit accepts values between 0 and
14. Graphlets of size 5 are omitted for this term because of the high computational
complexity of the change score computation of the term.
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The grorbitDist term extends the degree term in the ergm package. In fact, the
degree term is a special case of grorbitDist where the grorbit argument is set to 0.
However, the grorbitDist function does not support the filtering functionalities of the
degree term that are defined with the by and homophily arguments.

For detailed explanations and algorithmic details on the implementation of the new terms of
the ergm.graphlets package, please refer to Appendix A.

4. Illustration: ERGMs with graphlet terms

In this section, we illustrate the use of terms from the ergm.graphlets package with two exam-
ples, one from the social sciences (Figure 4A) and one from the biological sciences (Figure 4B).

4.1. Lake Pomona emergent multi-organizational network (EMON)

Our first example comes from Drabek, Tamminga, Kilijanek, and Adams (1981)’s set of inter-
organizational communication networks in the context of search and rescue operations. The
setting for our example is the immediate aftermath of the capsizing of the Showboat Whip-
poorwill following its contact with a tornado near the southern shore of Lake Pomona, due
south of Topeka, Kansas (Drabek et al. 1981). Sixty passengers and crew were stranded in
the lake, prompting the immediate response of the twenty organizations whose communica-
tion ties compose our network. We use the grOrbitFactor and grOrbitCov terms of the
ergm.graphlets package to analyze the patterns of brokerage (i.e., mediator nodes that bridge
two nodes that are not directly connected as described by Gould and Fernandez 1989) in the
organizational search and rescue network. Previous studies of brokerage have been limited

(A) (B)

Figure 4: (A) Lake Pomona emergent multi-organizational network (EMON) tasked with
a search and rescue operation. Node size is scaled by command rank score and nodes are
colored by whether they had permanent headquarters situated locally (red) or non-locally
(blue). (B) Network representation of the protein structure of the two matriptase-BPTI
complexes. Secondary structure elements are shaded by the complex to which they belong.
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to the use of marginal tests to determine whether levels of brokerage exceed what we would
expect by some baseline (Gould and Fernandez 1989; Marcum, Bevc, and Butts 2012; Lind,
Tirado, Butts, and Petrescu-Prahova 2008; Spiro, Acton, and Butts 2013). The introduc-
tion of these graphlet terms enables us to examine brokerage using conditional tests in which
we can identify entities’ propensities to occupy brokerage roles independent of confounding
factors such as degree.

Although Drabek’s emon dataset is originally represented as a digraph, informants were
asked to report on communication between organizations (without regard to directionality)
and the relation is thus inherently undirected. We symmetrize the original emon network via
union rule (Krackhardt 1987), treating a tie as present if an informant from either involved
organization reports it. We include the command rank score, location and sponsorship node
attributes of the original network with our undirected version. Command rank score is a
rating of each organization’s prominence in the network’s chain of command, as reported by
informants from all organizations participating in the search and rescue effort. When ranking
those with the strongest position in the chain of command, informants were limited to the six
organizations present from the early phase of the response. As a result, some organizations
were not ranked and have been coded “NA” in the emon data. For our example, we assume
those who were not ranked have the lowest possible command rank score (arriving later and
being more marginal to the unfolding response) and assign them a score of 0. The location of
each group’s headquarters was also recorded; organizations were situated locally or non-locally
in the Lake Pomona response. Finally, we include the sponsorship level of each organization:
city, county, state, federal, or private. The resulting undirected network can be readily loaded
from the ergm.graphlets package by typing:

R> data("emon3", package = "ergm.graphlets")

We illustrate the network in Figure 4A. Our network resembles a core-periphery structure with
the core primarily composed of non-local organizations and organizations with high command
rank scores.

In our ERGM model for the emon network, we begin with an edge term for the total number of
edges (baseline density). We use dyadic independence terms (i.e., nodefactor and nodecov)
for sponsorship level and command rank score. One might expect organizations at different
sponsorship levels to be involved with more or fewer communication partnerships than orga-
nizations from a different sponsorship; likewise, an organization’s command rank score may
be associated with its propensity to be involved in more communication partnerships. Fi-
nally, we include terms related to graphlet structure. Graphlet G6, which involves brokerage
between a dyad and a pendant, is a natural choice given the core-periphery structure of the
graph, and we include all its orbits (i.e., 9, 10, and 11) into our model. We incorporate the
location covariate into the term to evaluate whether an organization’s location is associated
with its propensity to occupy these specific orbits. The results will demonstrate whether the
location of an organization in this type of subgraph is associated with its role as a pendant
(orbit 9), member of a dyad with ties to a broker (orbit 10), or broker between the pendant
and the dyad (orbit 11). We model the network as shown below:

R> emon.ergm <- ergm(emon.3 ~ edges + nodefactor("Sponsorship") +

+ nodecov("Command.Rank.Score") + grorbitFactor("Location", 9:11),

+ control = control.ergm(seed = 1, MCMC.samplesize = 50000,

+ MCMC.interval = 100000, MCMC.burnin = 50000, parallel = 60))
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Iteration 1 of at most 20:

Loading required package: rlecuyer

Convergence test P-value: 0e+00

The log-likelihood improved by 0.6982

Iteration 2 of at most 20:

Convergence test P-value: 0e+00

The log-likelihood improved by 0.1079

...

Iteration 9 of at most 20:

Convergence test P-value: 9e-01

Convergence detected. Stopping.

The log-likelihood improved by < 0.0001

This model was fit using MCMC. To examine model diagnostics and check

for degeneracy, use the mcmc.diagnostics() function.

Before examining the coefficients we examine the MCMC diagnostics to ensure the estimation
process did not exhibit any peculiar behavior (Hunter et al. 2008a). This model appears to
have converged properly.

A summary of the model object reproduces the original formula for the model, the coefficients,
deviance measures, and measures of the goodness of fit.

R> summary(emon.ergm)

==========================

Summary of model fit

==========================

Formula: emon.3 ~ edges + nodefactor("Sponsorship") +

nodecov("Command.Rank.Score") + grorbitFactor("Location", c(9:11))

Iterations: 20

Monte Carlo MLE Results:

Estimate Std. Error MCMC % p-value

edges -2.450670 0.688351 9 0.000473 ***

nodefactor.Sponsorship.County -0.437354 0.319080 3 0.172175

nodefactor.Sponsorship.Federal -0.581708 0.606596 5 0.338852

nodefactor.Sponsorship.Private -0.041876 0.188267 1 0.824230

nodefactor.Sponsorship.State -1.326516 0.785447 1 0.092967 .

nodecov.Command.Rank.Score 0.333315 0.075229 5 < 1e-04 ***

grorbitFactor.orb_9.attr_NL 0.009319 0.020540 0 0.650596

grorbitFactor.orb_10.attr_NL -0.018051 0.014288 2 0.208081

grorbitFactor.orb_11.attr_NL 0.158800 0.031310 7 < 1e-04 ***

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
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Null Deviance: 263.4 on 190 degrees of freedom

Residual Deviance: 144.8 on 181 degrees of freedom

AIC: 162.8 BIC: 192 (Smaller is better.)

The results show significant effects for our edge term, command rank score, and non-local
organizations’ occupation of orbit 11. The results show a strong, positive association between
an organization’s command rank score and its odds of forming a tie. Most relevant to our
interests, we find that one of the automorphism orbit terms is significant. Specifically, we
find a positive, significant association between an organization’s being non-local (NL) and its
propensity to occupy a brokerage role between a pendant and a dyad (orbit 11). Substan-
tively, this demonstrates that non-local organizations tend to occupy this specific structure
of extended brokerage in which an organization occupies a brokerage position between one
organization and a pair of connected organizations. Interestingly, location is not related to
occupancy of orbit 9 (a brokered pendant) or orbit 10 (a brokered cluster), which tells us
that non-local organizations engaging in brokerage are not preferentially brokering between
a local “core” and a non-local periphery. The role of the non-local organizations in brokerage
for this response is thus richer than might be imagined at first blush.

We use the gof command to examine model adequacy. While the AIC and BIC demonstrate
substantial improvements over a baseline model, the gof command measures demonstrate
how well networks simulated from our model reproduce statistics from the original network.
We examine the model’s reproduction of four statistics: geodesic distance, degree distribution,
edgewise shared partner distribution, and the triad census. We demonstrate below how we
produce plots to examine these measures of fit.

R> EMONgof <- gof(emon.ergm, GOF = ~ degree + distance + espartners +

+ triadcensus)

R> par(mfrow = c(2, 2))

R> plot(EMONgof)

The plots are illustrated in Figure 5. As there are no clear discrepancies between the model-
simulated networks and the original network, we find the model to be an adequate fit.

The graphlet orbit terms enable us to link local position to covariates in a model-based
framework. As demonstrated, this is a useful tool for modeling brokerage, as we are able to
link an entity’s covariates to its propensity to occupy a specific brokerage role, whether it is a
traditional (i.e., twopath) brokerage role or an extended brokerage role (e.g., orbit 11 in our
model). Beyond brokerage, these techniques can extend to any particular automorphism orbit
contained within a graphlet: pendants, clique members, or other nodes whose position may be
linked to some categorical or continuous variable. Being able to incorporate these covariate-
driven graphlet terms into a model-based framework will enhance our ability to understand
which factors are associated with nodes’ occupation of local positions within graphlets.

4.2. Protein secondary structure network

The past decade has seen a surge of interest in identifying network motifs (i.e., subgraphs
that are overrepresented or underrepresented in a network, relative to chance; Milo, Shen-Orr,
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Figure 5: The solid black line in each plot represents the Lake Pomona EMON’s observed
statistics. The box plots illustrate the statistics for our simulated networks, as produced by
the MLE.

Itzkovitz, Kashtan, Chklovskii, and Alon 2002; Milo et al. 2004). Typically, scholars have used
marginal tests to identify how frequently these subgraphs occur relative to some baseline. In
these types of tests the observed network is compared to a set of randomized networks that
hold constant some statistic of the original network, often the degree distribution. While
these types of marginal tests have been employed by networks scholars for decades (see, e.g.,
Wasserman and Faust 1994; Butts 2008, for reviews), a model-based approach allows us to
examine the likelihood of observing these subgraphs, conditioned on a variety of parameters
(e.g., degree, triadic closure, covariates, etc.). This is particularly important where the method
of data collection itself may bias structure in particular ways; failure to account for these
effects may result in spurious findings. We use the graphletCount terms to examine patterns
of biological network motifs in an ERGM framework, while controlling for artifacts of the
data collection process.

We analyse the the protein structure network of a matriptase-aprotinin complex (PDB ID:
1eaw; Friedrich et al. 2002) whose nodes are secondary structure elements (specifically, α
helices and β sheets) which are “tied” if the distance between them is smaller than 10
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Angstroms (Å) (Milo et al. 2004)2. Milo et al. (2004) examine the overrepresentation and
underrepresentation of subgraphs in this network, by comparison to uniform random graphs
conditional on the degree distribution. They find that subgraphs in the form of graphlets
G3 and G4 are underrepresented while subgraphs in the form of G6, G7, and G8 are over-
represented. We will determine whether these results hold in a model-based framework that
allows us to account for potentially confounding degree, transitivity, and mixing effects, some
of which represent artifacts of the data collection process.

Before modeling the protein structure network, it is important to consider how this network
was obtained. Although Milo et al. (2004) do not report on the content of the structure3,
Friedrich et al. (2002) note that the asymmetric unit of the crystal structure (from which
the network is constructed) contains two biological assemblies, each of which is a complex of
two proteins (the catalytic domain of matriptase/MT-SP1 and a bovine pancreatic trypsin
inhibitor/BPTI). The presence of multiple copies of a biologically relevant complex within
a crystal structure is a common artifact of the crystallization process, and indeed the same
system could potentially have been observed with more or fewer complexes in the asymmetric
unit. This is of considerable importance for modeling the resulting network, as we would
typically expect far more adjacencies within complexes than between them; failure to control
for this effect may lead to very misleading conclusions. Indeed, as shown in Figure 4B, the
network is dominated by two dense subgraphs corresponding to the two complexes, with very
few ties spanning these subgraphs. To account for this, we create vertex attributes based
on biological assembly membership as reconstructed from information in the Protein Data
Bank (Friedrich et al. 2002), with polypeptide chains A and B of the structure belonging to
assembly 1, and chains C and D belonging to assembly 2. By incorporating these attributes
into the model, we are much better able to account for the patterns of clustering in the network
than we would be if we neglected the data collection process. The protein structure network
containing the assembly membership node attributes can be readily loaded by typing:

R> data("spi", package = "ergm.graphlets")

We begin by setting up our ERGM with an edges term, a dyadic independence term, and
several dyadic dependence terms, including our graphlet terms. Because we observe very little
tie formation across the sets of chains associated with each complex, we include a homophily
term for protein assembly in our model. Additionally, we include a within-assembly triadic
closure term (i.e., closure of triads where all members belong to the same assembly). We
also include a degree term, as the original paper was concerned with graphlet counts net
of the degree distribution. Of principal interest is our graphletCount term, which includes
graphlets G3, G4, G6, G7, and G8, the same set Milo et al. (2004) find to occur at greater or
lesser levels than chance.

Our first model includes all terms described above. To speed up model fit, one may omit the
“control” arguments, although the resulting standard errors (and accordingly, p values) will
be larger than what we report.

2This protein structure network can be obtained from: http://www.weizmann.ac.il/mcb/UriAlon/Papers/
networkMotifs/1eawInter_st.txt.

3The structure is not described in the paper, and is (inaccurately) summarized in the supplemental materials
only as “a serine protease inhibitor” (Table S1). In fact, the structure contains two assemblies, each of which
is a complex of one domain of a serine protease (MT-SP1) with an inhibitor (BPTI).

http://www.weizmann.ac.il/mcb/UriAlon/Papers/networkMotifs/1eawInter_st.txt
http://www.weizmann.ac.il/mcb/UriAlon/Papers/networkMotifs/1eawInter_st.txt
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R> spi.ergm.34678 <- ergm(spi ~ edges + nodematch("Assembly") +

+ triangle("Assembly") + gwdegree(0.5, fixed = TRUE) +

+ graphletCount(c(3, 4, 6, 7, 8)), control = control.ergm(seed = 1,

+ MCMC.samplesize = 500000, MCMC.interval = 75000, MCMC.burnin = 300000,

+ parallel = 60))

Iteration 1 of at most 20:

Loading required package: rlecuyer

Convergence test P-value: 0e+00

The log-likelihood improved by 0.3676

Iteration 2 of at most 20:

Convergence test P-value: 0e+00

The log-likelihood improved by 0.06913

...

Iteration 10 of at most 20:

Convergence test P-value: 8.3e-01

Convergence detected. Stopping.

The log-likelihood improved by < 0.0001

This model was fit using MCMC. To examine model diagnostics and

check for degeneracy, use the mcmc.diagnostics() function.

R> summary(spi.ergm.34678)

==========================

Summary of model fit

==========================

Formula: spi ~ edges + nodematch("Assembly") + triangle("Assembly") +

gwdegree(0.5, fixed = T) + graphletCount(c(3, 4, 6, 7, 8))

Iterations: 20

Monte Carlo MLE Results:

Estimate Std. Error MCMC % p-value

edges -6.42760 1.22926 12 < 1e-04 ***

nodematch.Assembly 2.48031 0.74204 6 0.000852 ***

triangle.Assembly 3.87343 0.67331 1 < 1e-04 ***

gwdegree 2.40227 1.51019 5 0.111906

graphlet.3.Count 0.04962 0.02964 7 0.094298 .

graphlet.4.Count -0.03917 0.05467 1 0.473841

graphlet.6.Count -0.15361 0.04993 0 0.002137 **

graphlet.7.Count -0.47295 0.17782 0 0.007910 **

graphlet.8.Count -2.49869 0.72543 0 0.000590 ***

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
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Null Deviance: 1910.3 on 1378 degrees of freedom

Residual Deviance: 593.9 on 1369 degrees of freedom

AIC: 611.9 BIC: 658.9 (Smaller is better.)

Our model finds a significant, positive effect for within-assembly homophily, a positive effect
for triadic closure within complexes, and a propensity for the graph to be biased against
formation of graphlets G6, G7, and G8, assuming all other terms are held constant. We find
no significant results for graphlets G3 and G4.

We proceed to remove the non-significant terms to see if that improves model fit. AIC suffers
slightly if we remove G3 from the model (AIC: 612.97), while BIC improves (654.8). Both
improve if we keep G3 and remove G4 (AIC: 610.73, BIC: 652.56). We find the best fit by
removing both G3 and G4 (AIC: 610.7, BIC: 647.3). Accordingly, we fit our final model as
follows.

R> spi.ergm.all <- ergm(spi ~ edges + nodematch("Assembly") +

+ triangle("Assembly") + gwdegree(0.5, fixed = TRUE) +

+ graphletCount(c(6, 7, 8)), control = control.ergm(seed = 1,

+ MCMC.samplesize = 15000, MCMC.interval = 2000, MCMC.burnin = 15000))

Iteration 1 of at most 20:

Convergence test P-value: 0e+00

The log-likelihood improved by 0.2026

Iteration 2 of at most 20:

Convergence test P-value: 0e+00

The log-likelihood improved by 0.05503

...

Iteration 8 of at most 20:

Convergence test P-value: 9.7e-01

Convergence detected. Stopping.

The log-likelihood improved by < 0.0001

This model was fit using MCMC. To examine model diagnostics

and check for degeneracy, use the mcmc.diagnostics() function.

R> summary(spi.ergm.all)

==========================

Summary of model fit

==========================

Formula: spi ~ edges + nodematch("Assembly") + triangle("Assembly") +

gwdegree(0.5, fixed = T) + graphletCount(c(6, 7, 8))

Iterations: 20
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Monte Carlo MLE Results:

Estimate Std. Error MCMC % p-value

edges -4.80106 0.73658 8 < 1e-04 ***

nodematch.Assembly 2.11636 0.66232 5 0.001428 **

triangle.Assembly 3.27864 0.53805 0 < 1e-04 ***

gwdegree 1.12902 1.21795 1 0.354095

graphlet.6.Count -0.12037 0.04122 2 0.003560 **

graphlet.7.Count -0.46225 0.16905 0 0.006330 **

graphlet.8.Count -2.31074 0.68949 0 0.000826 ***

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Null Deviance: 1910.3 on 1378 degrees of freedom

Residual Deviance: 596.7 on 1371 degrees of freedom

AIC: 610.7 BIC: 647.3 (Smaller is better.)

Once again we find positive, significant effects for homophily within complexes and triadic
closure within complexes. Controlling for this, we find negative, significant effects for graphlet
terms G6, G7, and G8.

Our final model appears to have converged without any notable issues (Hunter et al. 2008a).
We now assess model adequacy. As Figure 6 indicates, our model closely approximates the ob-
served network; our simulated networks show no clear deviations from the observed statistics
on degree, geodesic distance, shared partners, or the triad census.

It is interesting to compare the results of our joint, multivariate analysis with the marginal
tests conducted by Milo et al. (2004). Milo et al. (2004) find that the network overrepresents
graphlets G6, G7, and G8 and underrepresents G3 and G4. After controlling for other factors
(particularly clustering within each complex), we find no evidence of additional underrepre-
sentation or overrepresentation of G3 or G4; further, we actually find that the network appears
biased against formation of graphlets G6, G7, and G8, once other terms are accounted for.
The discrepancy here is due to the use of marginal tests by Milo et al. (2004). To determine
whether a graphlet occurs more or less often relative to chance, they compare the number
of observed graphlets to the number observed in a set of random graphs conditioned on the
degree distribution (a form of conditional uniform graph test). For this protein structure
network, such random graphs bear little resemblance to the data in question (Figure 7), and
in particular do not include effects related to the fact that the structure is a composite of
two distinct complexes. While this does not make the results of such tests wrong per se, it
does render them unable to distinguish between structural biases arising from simple features
arising from the data collection process, and those arising from more subtle and informative
biochemical mechanisms. The marginal approach is also unable to unravel the joint influence
of multiple biases simultaneously; because graphlet structures are dependent upon one an-
other, over- or underrepresentation of multiple graphlets (relative to a uniform baseline) may
actually be the result of biases to a smaller number of features. Such complexities are difficult
to unravel using marginal tests, and are more flexibly handled via the ERGM framework.

Our analysis underscores the fact that one can obtain misleading conclusions when trying to
use marginal tests to assess graphlet counts, particularly when the baseline distribution being
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Figure 6: The solid black line in each plot represents the protein network’s observed statistics.
The box plots illustrate the statistics for our simulated networks, as produced by the MLE.

Observed Network Simulated Network: ERGM Simulated Network: 
Conditioned on Degree Distribution

Figure 7: Observed protein network (left), typical protein network simulated by our final
model (middle), and typical random graph produced by holding constant the observed net-
work’s degree distribution (right).
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employed does not incorporate extremely basic features of the system being studied. While
inference for complex, highly dependent systems is difficult under the best of conditions, the
generative nature of the ERGM framework allows us to assess the adequacy of our models by
comparison to features of the original data; given that we have identified a model that is both
sensible and that successfully regenerates the important properties of the observed network,
we have a stronger basis for subsequent investigation than would be obtained from simple
rejection of a null hypothesis.

By using an ERGM approach and incorporating our graphlet terms, we are able to produce
more sophisticated models of protein networks that include not only network motifs but also
other important biological and/or chemical properties of the system in question. Scholars in a
variety of biological sub-disciplines have begun to use ERGMs to model many different types
of networks, including protein-protein interaction networks (Bulashevska, Bulashevska, and
Eils 2010; Clark, Dannenfelser, Tan, Komosinski, and Ma’ayan 2012), neural networks (Hinne,
Heskes, Beckmann, and van Gerven 2013; Simpson, Hayasaka, and Laurienti 2011; Simpson,
Moussa, and Laurienti 2012), and metabolic networks (Saul and Filkov 2007). Introducing the
tools from the ergm.graphlets package to the network community should enhance the field’s
ability to model graphlet counts in the context of network motifs or any other application
where one is interested in counts of small, undirected, induced subgraphs.

5. Discussion

The ergm.graphlets package introduces four new terms into the ergm package which enable
ERG modeling using the graphlet properties of a network. The graphletCount term en-
ables defining ERGMs based on the number of graphlets in the network. grorbitCov term
uses the relation between a numeric node attribute with a specific structural feature in or-
der to introduce node attribute relations into a model. The grorbitFactor term is similar
to the grorbitCov term except that it relates categorical node attributes with graphlet de-
grees. The grorbitDist term uses the graphlet degree distribution for ERG modeling. The
graphletCount, grorbitCov and grorbitFactor terms are defined for graphlets with 2, 3,
4 and 5 nodes. Because of the computational complexity issues, grorbitDist is not defined
for 5 node graphlets.

Model degeneracy, instability, and sensitivity are currently important challenges for modeling
within the ERGM framework (Handcock 2003; Schweinberger 2011). For some combinations
of model terms, the MCMC procedure may fail to converge within a reasonable number
of iterations: this is generally because the graph distribution associated with the specified
model family is ill-behaved. Like most dependence terms, the terms in the ergm.graphlets
package sometimes suffer from these instability issues, depending on the modeled network
and the other terms in the ERGM. Typically, degeneracy problems are currently handled
either by using user-selected terms whose effects partially cancel (e.g., using sparse graphlets
and complete graphlets together) or using curved exponential family models (Hunter and
Handcock 2006; Butts 2011; Schweinberger 2011) that systematically combine large numbers
of terms in a manner that balances their total effect. The former technique requires having an
intuition about the structure of the data and a number of trials with different combinations
of terms under this intuition. It can be hard to identify the best terms for generating an
ERGM model and there is currently no general solution that works well in all settings. Our
experience suggests that graphlet terms for which the change score is non-zero for most of
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the steps in the MCMC procedure are good terms to start the modeling process with. For
example, it is not reasonable to model a sparse network using dense graphlets, as the change
score will be 0 for most of the MCMC steps. In this respect, the graphlet terms that are
expected to be overrepresented in the network can also be good candidate terms to start ERG
modeling. Using terms of the same graphlet size together usually improves the convergence of
the MCMC process, since smaller graphlets might already be contained in a number of larger
graphlets and this causes dependency issues among model terms. We have also observed
that the MCMC procedure converges faster when graphlets containing closed-loop structures
(e.g., triangles, cycles) are excluded from the model definition: This is mainly because of
the instability of these terms, as explained in Schweinberger (2011). As more data sets are
subjected to analysis using ERGMs (and models with graphlet terms in particular), better
heuristics are likely to emerge.

Past work with partial (i.e., non-induced) subgraph terms has suggested that curved expo-
nential family models can also be used for improving degeneracy issues. In curved exponential
families, the parameters associated with model statistics are constrained to lie on a non-linear
surface of reduced dimension, forcing them to remain in a fixed relationship with one another;
this can be helpful when dealing with intrinsically correlated graph statistics, as very precise
weighting may be needed to avoid the degenerate regime. Examples of curved terms include
the gwdegree, gwdsp, and gwesp terms of the ergm package, as well as the closely related
alternating k-star and alternating path statistics of Snijders, Pattison, Robins, and Handcock
(2006). Because graphlet statistics do not “nest” in the same way as partial subgraph statis-
tics, they may benefit from novel formal development. On the other hand, some ideas used in
existing curved families – e.g., geometrically weighted degree distributions – could potentially
be applied to graphlet degrees in a relatively straightforward manner. This would seem to be
a promising direction for future research.

When the over- or underrepresentation of a specific graphlet statistic is of particular interest
but inclusion of this statistic into one’s model proves difficult, another alternative is the use
of a simplified model omitting the statistic as a reference distribution against which to test
the observed graphlet statistic. Specifically, let t′ be the statistic of interest, and let t be
the vector of statistics in the best-fitting model without t′. A test of the hypothesis that the
parameter θ′ associated with the joint model (t′ ∪ t, θ′ ∪ θ) is non-zero can be conducted by
examining the quantiles of t′(y) in the distribution of t(Y ), where Y ∼ ERG(θ̂, t) and θ̂ is the
MLE of θ given y. This approach (which was one motivation for the original development of
ERGMs) is described in more detail by Holland and Leinhardt (1981).

Although we have tried to minimize the complexity of the change score computation, there
is still room for improving the graphlet counting process. We apply a brute-force algorithm,
which tries to minimize the number of computations: this gives an exact solution. Further
gains in efficiency may be possible. These improvements would enable the implementation of
grorbitDist for graphlets with 5 nodes. The model coefficients for terms related with larger
graphlets would also be estimated more quickly with these improvements.

In addition to their inferential value, we note that the terms in the ergm.graphlets package
can be used for evaluating the goodness-of-fit of an ERGM model estimate based on other
(non-graphlet terms). When a model (with or without graphlet related terms) is estimated,
the quality of this model in explaining the structure of the data in terms of graphlet properties
of the network can be assessed by simulating new networks from the model and using the
summary function to compute the graphlet counts and graphlet degree distributions. The
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graphlet properties of the network can be compared with these simulation results to evaluate
whether the structure of the network fits to the structure described by the model. An example
that describes how this test can be performed is explained in Goodreau, Handcock, Hunter,
Butts, and Morris (2008).

In conclusion, the ergm.graphlets package extends the functionality of the ergm package by
incorporating graphlet statistics. The new terms are of particular utility when modeling
processes such as brokerage, functional mediation, or other phenomena that depend not only
on the edges that are present within a graph, but also on those that are absent. Such
processes are common in both social and biological systems, and the ability to capture them
is an important goal of modern network analysis.
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Pržulj N (2007). “Biological Network Comparison Using Graphlet Degree Distribution.” Bioin-
formatics, 23(2), 177–183.
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A. Algorithms and implementation

The terms in the ergm.graphlets package are implemented using the ergm.userterms package
(Handcock et al. 2013). The ergm.userterms package enables users to introduce new model
terms into the ergm package by implementing C code which calculates the change statistics
of the new term. For the ergm.graphlets package, the change score function should answer
the question: how do the graphlet counts in the network and graphlet degrees of the nodes
change when an edge is flipped in the network? This question can be answered efficiently by
touching the graphlets on the flipped edge and counting only the graphlets that are going to
be affected by the edge flip. For this purpose, we identify all edge automorphism orbits in
graphlets with 2, 3, 4 and 5 nodes. The 69 different edge automorphism orbits are in Figure 8
(Solava, Michaels, and Milenkovic̀ 2012). In this section, we use node orbits for graphlet
orbits that are provided in Figure 2 and edge orbits for edge automorphism orbits in Figure 8
for clarity.

We apply a brute-force search algorithm for computing the change score for graphlet terms.
For each flipped edge, the edge orbits that are related with the queried graphlet are mapped
on the flipped edge and the neighborhood of that edge is searched for nodes that complete the
graphlet. For each node combination that completes the graphlet, the count of the affected
graphlets is incremented by one. For identifying the change in the count of a specific graphlet,
the computation is performed only for relevant edge orbits. The relations among graphlets
and edge orbits are summarized in Table 1. For example, the change score for the counts
of graphlet G11 and G12 can be calculated by counting E19, E20, E21, E22, E27, E36, E40, E48.
After counting these edge orbits, the change score for G11 is equal to (E19 − E27) and the
change score for G12 is equal to (E20 +E21 +E22−E36−E40−E48) where Ex represents the
number of graphlets counted by placing edge orbit x on the flipped edge. By counting the
graphlet change scores based on edge orbits, we do not only restrict the counting process to
graphlets that are affected from the edge flip, but also avoid repeated counting of the same
edge orbit for different graphlet counts. For instance, E3 affects the count of G2 positively
and the count of G1 negatively. With our implementation, the number of graphlets affected
by E3 is counted only once, and this change score is computed for identifying the changes
in the counts of both G1 and G2. The edge orbit based counting procedure is applied for
computing the change scores for all the terms in the ergm.graphlets package.

The computational complexity of this approach is dependent on the average degree (and
therefore the density) of the modelled network. The average degree of a network is defined as
the average number of ties that a node has in the network. The density of a network is defined
as |E|

(|N|
2 )

where |E| is the number of edges and |N | is the number of nodes in the graph. In the

average case, the computational complexity of the change counting procedure is O(d2) where
d represents the average degree of a node. The worst case scenario occurs when searching for
graphlet G9 in a clique. In this case, the computational complexity of the function is O(n3)
where n is the number of nodes in the network. But this situation occurs very rarely as most
real-world networks are sparse.

The four terms in the ergm.graphlets package are all implemented using edge orbits. However,
the computation of the change scores differ slightly from each other depending on the way
that the graphlet counts contribute to change statistics for these terms. The computation of
the four terms in the ergm.graphlets package are explained as follows:
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Figure 8: The edge automorphism orbits in 2-, 3-, 4- and 5-node graphlets. Adapted from
Solava et al. (2012).

Edge automorphism Edge automorphism
Graphlet Positive Negative Graphlet Positive Negative

G0 E1 – G15 E30 E46

G1 E2 E3 G16 E31, E32, E33 E35, E41, E44, E45

G2 E3 – G17 E34, E35, E36, E37 E49, E52, E54

G3 E4, E5 E7, E9 G18 E38, E39 E57

G4 E6 E8 G19 E40, E41, E42, E43 E51, E55, E60

G5 E7 E12 G20 E44 E50, E59

G6 E8, E9, E10 E11 G21 E45, E46, E47, E48 E56, E58

G7 E11, E12 E13 G22 E49, E50 E64

G8 E13 – G23 E51, E52, E53 E61

G9 E14, E15 E21, E24, E30, E32 G24 E54, E55, E56, E57 E63, E65

G10 E16, E17, E18 E20, E23, E28, E31 G25 E58, E59, E60 E62, E66

G11 E19 E27 G26 E61, E62, E63, E64 E67

G12 E20, E21, E22 E36, E40, E48 G27 E65, E66 E68

G13 E23, E24, E25, E26 E39, E42, E47 G28 E67, E68 E69

G14 E27, E28, E29 E34, E38 G29 E69 –

Table 1: The relations between graphlet types and edge automorphism orbits. The “Positive”
columns list the edge automorphism orbits that increase the graphlet count, and the “Neg-
ative” columns list the edge automorphism orbits that decrease the graphlet count when an
edge is added.

1. graphletCount(g): The counting procedure is based on identification of graphlets.
Therefore, each identified graphlet directly increments (or decrements) the change score
for the related graphlet by 1. The change score for this term is computed by counting
all edge orbits that are associated with the graphlets provided in argument g. When all
required edge orbits are counted, these counts are summed to get the overall change in
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the number of graphlets. For example, the change score for graphlet G12 is equal to the
summation of (E20 +E21 +E22 −E36 −E40 −E48) where Ex represents the number of
graphlets that touch the flipped edge on edge orbit x.

2. grorbitCov(attrname, grorbit): This term relates a numeric node attribute with
the graphlet degrees of the nodes according to Equation 2 as explained in Section 3.
The change score of this term depends on the graphlet degrees. Therefore, for each
identified graphlet, the nodes of this graphlet are associated with the node orbits that
they correspond to. Let us say that a graphlet of type G4 is identified for the subgraph
of nodes a, b, c, d, when the edge (a, b) is added into network. The identified subgraph
is in Figure 9. Then the change score for node orbit 6 is incremented by Xb +Xc +Xd,
and the change score for node orbit 7 is incremented by Xa, where X is the attribute
vector keeping the attribute values for all nodes. The same logic applies when an edge is
removed from the network. The final change score is obtained by summing these values
for all edge orbits that are related with the graphlet that the query node orbit belongs
to.

3. grorbitFactor(attrname, grorbit, base): This term relates a categorical attribute
with the graphlet degrees of the nodes according to Equation 3 as explained in Section 3.
The change score of this term depends on the graphlet degrees. When the flip of an
edge affects a node orbit, the change score that relates the category of the affected node
with the node orbit is incremented (or decremented) by 1. Let us say a graphlet of type
G4 is identified for the subgraph of nodes a, b, c, d, when an edge (a, b) is added into the
network. The identified subgraph is in Figure 9. Nodes a and b belong to “Category
1”, c and d belong to “Category 2”. In this scenario, the change score for “Node Orbit
7, Category 1” and “Node Orbit 6, Category 1” will increase by 1 with the contribution
of nodes a and b. The change score for “Node Orbit 6, Category 2” will increase by 2
because of the nodes c and d. The same logic applies when an edge is removed from the
network. The final change score is obtained by summing these values for all edge orbits
that are related with the graphlet that the query node orbit belongs to.

4. grorbitDist(grorbit, d): This term identifies the change in the graphlet degree dis-
tribution of a node orbit when an edge is flipped during the MCMC process, as explained
in Section 3. The change score computation for this term is slightly different from the
other terms, as graphlet degrees for all nodes in the network are required for the compu-
tation. In order to reduce the computational complexity of the problem, we compute the
graphlet signatures of all nodes at the beginning of the MCMC procedure. During the
execution of the MCMC procedure, we update these signatures using the change scores.
The computation of the changes in graphlet degrees of the nodes is performed similar
to the algorithm applied for the other terms. However, as graphlets can convert to each
other with the addition or removal of edges, the counting procedure should be applied
for all edge orbits. Therefore, it is not possible to restrict the counting procedure to edge
orbits that are related with the query node orbits. For these reasons, the computational
complexity of this term is higher than the other terms in the ergm.graphlets package.
We implement the grorbitDist term only for graphlets with 2, 3, and 4 nodes, because
of the high computational complexity of the computation of change score for graphlets
with 5 nodes.
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d

a

b

c

Figure 9: The subgraph that is used for illustrating the change statistics computation for the
grorbitCov and grorbitFac terms.

We first test the correctness of the terms in the ergm.graphlets by using the summary function.
The summary function computes the statistics for the provided terms. If the change score
function is implemented correctly, the summary function produces the actual value of the
term statistic for the provided network. In this respect, we validated the correctness of the
graphletCount term by running:

R> summary(ntwk ~ graphletCount)

The output of the summary function was exactly the same as the graphlet counts produced
by the graphlet counting implementation of Pržulj (2007). Evaluating the correctness of
the grorbitCov term is slightly different from graphletCount as it is related with a node
attribute value. To test the correctness of this term, we first created a dummy node attribute
that is named “dummy”. This node attribute has value 1 for all nodes in the network. We
validated the correctness of gorbitCov by running:

R> summary(ntwk ~ grorbitCov("dummy"))

The output of the summary function was exactly the same with the sum of the graphlet degrees
of all nodes for all node orbits. We repeated this test with weighted attribute values, e.g.,
when all attribute values are set to 2. The correctness of the results is also validated for this
case. The validation for the grorbitFactor term is similar to the grorbitCov term. We
assigned the same value for the category attribute, named “dummy”, of all nodes and called
the summary function as:

R> summary(ntwk ~ grorbitFactor("dummy", 0:72, 0))

This call correctly returns the sum of graphlet degrees of all terms. When the category value
is changed to another value, the output of the call does not change. Finally, for validating
the grorbitDist term, we called the summary function as:

R> summary(ntwk ~ grorbitDist(0:14, 0:10))

This call produces the correct graphlet degree distributions for all node orbits as validated in
comparison with the output of the implementation of Pržulj (2007).

We also validated the correctness of our implementation by performing simulations on ERGMs
that contain graphlet terms. In these tests, we defined ERGMs containing an edge term and a
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graphlet term. We manually set the model coefficient for the graphlet related term to various
positive and negative values. We simulated 30 networks from each of these ERGMs. With
these simulations, we validated that positive coefficients promote the count of the related
graphlet in the simulated networks. The count of related graphlet increases up to a certain
coefficient value. After this threshold, the simulated networks contain the maximum possible
number of related graphlets in the simulated networks. Similarly, negative coefficients have
an effect of suppressing the appearance of the graphlet in the simulated networks. As the
coefficient value gets closer to 0, the suppressing effect disappears. The range where the
graphlet counts increase with the coefficient depends on the coefficients of the other terms in
the ERGM.
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