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Networks are an invaluable framework for modeling biological systems. Analyzing

protein–protein interaction (PPI) networks can provide insight into underlying cellular processes.

It is expected that comparison and alignment of biological networks will have a similar impact on

our understanding of evolution, biological function, and disease as did sequence comparison and

alignment. Here, we introduce a novel pairwise global alignment algorithm called Common-

neighbors based GRAph ALigner (C-GRAAL) that uses heuristics for maximizing the number of

aligned edges between two networks and is based solely on network topology. As such, it can be

applied to any type of network, such as social, transportation, or electrical networks. We apply

C-GRAAL to align PPI networks of eukaryotic and prokaryotic species, as well as inter-species

PPI networks, and we demonstrate that the resulting alignments expose large connected and

functionally topologically aligned regions. We use the resulting alignments to transfer biological

knowledge across species, successfully validating many of the predictions. Moreover, we show

that C-GRAAL can be used to align human–pathogen inter-species PPI networks and that it can

identify patterns of pathogen interactions with host proteins solely from network topology.

1 Introduction

1.1 Background

Networks are used to model real-world phenomena in various

research domains, including systems biology. Technological

advances in high-throughput biological experimental methods

for interaction detection have led to an explosion in the

amount of biological network data of various types, such as

protein–protein interaction (PPI) networks, metabolic networks,

and transcriptional-regulation networks. We primarily focus on

analyzing protein–protein interaction (PPI) networks, in which

proteins are network nodes and physical interactions between

them are network edges. Since proteins rarely act in isolation,

but rather associate with each other to perform many biological

functions, analyzing the structure of PPI networks can provide

insights into the functioning of cells.

Meaningful biological network comparison is one of the fore-

most challenges in systems biology. Network alignment is one of

the most common biological network comparison methods. In the

context of PPI networks, the main goal of network alignment is to

identify conserved protein subnetworks across species that are

believed to represent evolutionarily conserved functional modules.1

These conserved subnetworks could provide transfer of

knowledge between species, as well as insights into evolution,
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Insight, innovation, integration

To address a challenge of identifying conserved protein

subnetworks across species, we introduce a novel pairwise

global alignment algorithm called Common-neighbors based

GRAph ALigner (C-GRAAL) that uses heuristics for max-

imizing the number of aligned edges between two networks and

is based solely on network topology. It allows the use of a node

similarity measure incorporating any type or combination of

biological data. However, it can also be used to align networks

for which information about node similarities is not available.

We show that C-GRAAL successfully aligns PPI networks of

different species, exposing large connected and functionally

similar topologically aligned regions and the resulting align-

ments can be used to successfully transfer biological knowledge

across species.

Integrative Biology Dynamic Article Links

www.rsc.org/ibiology PAPER

D
ow

nl
oa

de
d 

by
 I

m
pe

ri
al

 C
ol

le
ge

 L
on

do
n 

L
ib

ra
ry

 o
n 

13
 M

ar
ch

 2
01

3
Pu

bl
is

he
d 

on
 1

0 
Ja

nu
ar

y 
20

12
 o

n 
ht

tp
://

pu
bs

.r
sc

.o
rg

 | 
do

i:1
0.

10
39

/C
2I

B
00

14
0C

View Article Online / Journal Homepage / Table of Contents for this issue

http://dx.doi.org/10.1039/c2ib00140c
http://dx.doi.org/10.1039/c2ib00140c
http://dx.doi.org/10.1039/c2ib00140c
http://pubs.rsc.org/en/journals/journal/IB
http://pubs.rsc.org/en/journals/journal/IB?issueid=IB004007


This journal is c The Royal Society of Chemistry 2012 Integr. Biol., 2012, 4, 734–743 735

protein function, and protein–protein interactions. It is expected

that the network alignment will have a similar impact on our

understanding of biology and evolution as did sequence

alignment.

Similar to sequence alignments, there exist local and global

network alignments. Local network alignment algorithms

focus on matching small subnetworks from one network to

subnetworks in another network. Many of these, such as

PathBLAST,2 NetworkBLAST,3 NetAlign,4 MaWISh,5 and

Graemlin,6 combine network topology information with other

types of biological information, e.g., protein sequence similarities

or phylogenetic relationships between species whose networks

are being aligned, to identify small network structures that

correspond to conserved pathways or protein complexes. Since

these algorithms allow one node to have different pairings in

different local alignments, the resulting alignments can be

ambiguous.

A global network alignment provides a unique, one-to-one

mapping for every node in one network to exactly one node in

the other network, even though this can lead to suboptimal

matchings in some local regions. There are several global

network alignment algorithms, including IsoRank,7–9 Graemlin,10

GRAAL,11 H-GRAAL,12 and MI-GRAAL.13 The earliest global

network alignment algorithm, IsoRank, uses a greedy strategy to

create an alignment between two networks based both on sequence

similarity between nodes (i.e., proteins) and on topological

similarity of their neighborhoods.7 Later, this algorithm was

extended to perform multiple local and global network align-

ments.8,9 Graemlin, originally a local network alignment algorithm,

has been extended to allow global network alignment based on a

set of a priori known protein sequence alignments and phylogenetic

relationships between these proteins.10 More recently, three global

network alignment algorithms, GRAph ALigner (GRAAL),11

Hungarian-algorithm-based GRAAL (H-GRAAL),12 and

Matching-based Integrative GRAAL (MI-GRAAL),13 have

been published. Each of these uses a cost function relying on

a highly constraining measure of topological similarity

between the extended network neighborhoods of nodes.14

GRAAL is a greedy ‘‘seed and extend’’ approach that uses a

heuristic search strategy to quickly find approximate align-

ments. H-GRAAL is based on the Hungarian algorithm for

minimum-weight bipartite matching, and it produces an optimal

alignment having the minimum total alignment cost with respect

to the given cost function. MI-GRAAL algorithm combines a

‘‘seed and extend’’ approach with the maximum weight bipartite

matching problem to find a pairwise alignment between two

networks. Additionally, MI-GRAAL can integrate and use

multiple types of similarity measures between network nodes.

1.2 Our contribution

We introduce a novel pairwise network alignment algorithm,

Common-neighbors based GRAph ALigner (C-GRAAL). While

all currently available alignment algorithms depend on one or

more a priori defined features describing proteins, such as

sequence similarities, phylogenetic relationship, or topological

similarity between nodes, C-GRAAL does not require any

measure of node similarity. Instead, it builds an alignment

using a heuristic approach on the underlying network

topology alone. As such, it can be used to align networks for

which information about the node similarities is not available.

However, to achieve deeper understanding of complex biological

processes, we should try to use all biological data available. Our

algorithm allows the use of a node similarity measure incorporating

any type or combination of biological data.

We evaluate the performance of C-GRAAL and apply it to

multiple tasks. First, we align high-confidence yeast and human

PPI networks15,16 and demonstrate that C-GRAAL performs

as well as or better than the best currently available alignment

algorithm. Our results show that C-GRAAL exposes large

connected and functionally consistent aligned regions, implying

that these distant species share a substantial amount of network

topology.

In addition, we used C-GRAAL’s alignment to predict

biological characteristics, i.e., the functions, processes, and

localizations of proteins in prokaryotic and eukaryotic species.

We validate a large number of our predictions in the literature

and demonstrate that C-GRAAL can be used to transfer

biological knowledge between species.

Moreover, networks of interactions between human proteins

and bacterial pathogens are poorly understood. We show that

C-GRAAL can be used to detect large conserved regions

between aligned human–pathogen PPI networks.17 Since the

aligned regions are enriched with proteins with the same

biological characteristics, they can be used to identify patterns

of pathogen interactions with the host cell.

2 Results and discussion

C-GRAAL is a global network alignment algorithm that

aligns each node in a smaller network to exactly one node in

a larger network. Because of the uncertainty in the C-GRAAL

algorithm, we align each pair of networks 30 times and report

the average and a standard deviation of the alignment scores

over all runs, as well as the best score.

2.1 Evaluation of C-GRAAL algorithm

To evaluate the performance of C-GRAAL, we apply it to the

Saccharomyces cerevisiae PPI network (henceforth denoted as

‘‘yeast’’)15 and the Homo sapiens PPI network (henceforth

denoted as ‘‘human’’).16 The yeast PPI network contains

16 127 interactions between 2390 proteins. The human PPI

network contains 41 456 interactions between 9141 proteins.

We compare the topological and biological quality of

C-GRAAL’s alignments with those obtained by the best

currently published network alignment algorithm, MI-GRAAL.13

Furthermore, we evaluate the performance of C-GRAAL on the

following four bacterial PPI networks:M. loti, S. sp PCC6803,18,19

C. jejuni,20 and E. coli.21 The results obtained show that

C-GRAAL can be used to find large topologically similar regions

in which a statistically significant number of aligned bacterial

proteins perform the same biological function.

Note that we do not compare C-GRAAL to Graemlin10

becauseGraemlin requires as input information about phylogenetic

relationships between species whose networks are being aligned.

Furthermore, we do not compare C-GRAAL to IsoRankN,9

because IsoRankN’s alignment results in many-to-many node

mappings that cannot be quantified topologically with the

D
ow

nl
oa

de
d 

by
 I

m
pe

ri
al

 C
ol

le
ge

 L
on

do
n 

L
ib

ra
ry

 o
n 

13
 M

ar
ch

 2
01

3
Pu

bl
is

he
d 

on
 1

0 
Ja

nu
ar

y 
20

12
 o

n 
ht

tp
://

pu
bs

.r
sc

.o
rg

 | 
do

i:1
0.

10
39

/C
2I

B
00

14
0C

View Article Online

http://dx.doi.org/10.1039/c2ib00140c


736 Integr. Biol., 2012, 4, 734–743 This journal is c The Royal Society of Chemistry 2012

edge correctness (EC),7,11–13 where EC is the percentage of

edges from a smaller network that are correctly aligned to

edges in a bigger network. Since many-to-many node align-

ments can produce exponentially many one-to-one node align-

ments, enumerating all of them is computationally infeasible,

and thus a proper comparison with IsoRankN is infeasible.

2.1.1 Topological quality of yeast–human alignment. We

define the best alignment to be the alignment with the highest

edge correctness (EC) score over all node similarity measures

and over all runs of the algorithm. We evaluate C-GRAAL’s

performances on two node similarity measures: graphlet degree

vector (GDV) similarity14 that measures topological similarity

of nodes in a network, and protein sequence similarity (BLAST

E-values)22,23 (see ESIz for details). For each of the two

similarity measures, we calculate 30 different alignments.

The best yeast–human alignment is obtained when we use

only the GDV as a node similarity measure, with 3636

correctly aligned edges (EC = 22.55%). The average EC of

the 30 runs is 21.07% � 0.55%. This alignment is statistically

significant, with a p-value of 7� 10�8, meaning that it is highly

unlikely to obtain the observed EC score or better in a random

alignment of these two networks (see ESIz for details). There
are 1916 proteins involved in these correct edge alignments,

representing 80.17% of all yeast proteins. The best alignment

produced by MI-GRAAL using only GDV node similarity is

slightly better (EC = 23.26%) than C-GRAAL. However, the

average EC score for MI-GRAAL is lower and the standard

deviation is higher (19.73 � 1.39%). This implies that

C-GRAAL is more consistent in producing alignments of high

EC than MI-GRAAL.

Conversely, when we use only protein sequence similarity

information as a node similarity measure, C-GRAAL outper-

forms MI-GRAAL. The best C-GRAAL alignment obtained

with this node similarity measure consists of 1844 nodes

involved in 3344 correctly aligned edges. The average EC of

the 30 runs is 18.82% � 0.76%. All alignment results are

statistically significant, with a p-value of 10�8. The best

alignment produced byMI-GRAALwith only sequence similarity

as node similarity has an EC of 13.73%, while the average EC is

13.30% � 0.23%. For more details about the alignments, see

Table 1.

To assess the size and connectedness of the aligned regions

of our yeast–human alignment, we measure the size of the

largest common connected subgraph (CCS). The largest

CCS in our overall best alignment consists of 1799 nodes

and 3570 edges, which is approximately 75% of nodes and

22% of edges from the yeast network (Fig. 1).

Next, we compare the best alignments obtained for both

node similarity measures (GDV and sequence similarity) and

find that the overlap between these two alignments is low: only

two aligned yeast–human protein pairs are present in both

alignments. The small exact overlap between the alignments

might not be surprising, given that there might exist a large

number of different topological alignments, all of which may

have comparable quality. For example, it is possible that

topologically identical subgraphs in two networks are aligned

in each run, but the actual aligned protein pairs differ for

different runs; this could happen, for example, when two

cliques (complete graphs having all possible edges between

the nodes, e.g., triangle) of the same size are aligned, since all

pairings of nodes between such cliques are topologically

equivalent.

Since the yeast PPI network that we analyzed contains

interactions obtained only by pull-down experiments, we also

evaluate performance of C-GRAAL on networks obtained by

binary, yeast-two-hybrid (Y2H), experiments. We align the

same human PPI network with the yeast high-confidence PPI

network by Yu et al.,24 which is regarded as a gold standard

binary interaction network (henceforth denoted by ‘‘B.yeast,’’ for

‘‘Binary yeast’’). The B.yeast network consists of 1263 interactions

Table 1 C-GRAAL’s alignments of yeast and human. The statistics for aligning yeast and human PPI networks obtained using different node
similarity measures averaged over 30 runs of the algorithm. Columns denoted by ‘‘EC (max),’’ ‘‘EC (avg),’’ and ‘‘EC (std)’’ represent the maximum
edge correctness (EC), the average EC, and the standard deviation of EC over 30 runs, respectively. The column denoted by ‘‘p-value’’ represents
the statistical significance of observed alignments. Columns denoted by ‘‘LCCS (nodes)’’ and ‘‘LCCS (edges)’’ represent the size of the largest
common connected subgraph in terms of the number of nodes and edges, respectively, of the alignment with the maximum EC produced by
C-GRAAL. Columns YH–overlap, H–nodes (overlap), and Y–nodes (overlap) represent the number of yeast–human pairs present in all
30 alignments, percentage of human proteins present in all 30 alignments, and percentage of yeast proteins present in all 30 alignments,
respectively. Note that since yeast is the smaller network, all yeast proteins are present in the alignment in all 30 runs

Similarity measure
EC (max)
(%)

EC (avg)
(%)

EC (std)
(%) p-Value

LCCS
(nodes)

LCCS
(edges)

YH–overlap
(%)

H-nodes
(overlap) (%)

Y-nodes
(overlap) (%)

GDV similarity 22.55 21.07 0.55 7 � 10�8 1799 3570 255 (10.7%) 41.8 100
Sequence similarity 20.74 18.82 0.76 7 � 10�8 1814 3303 290 (12.2%) 37.5 100

Fig. 1 The largest common connected subgraph of the best yeast–

human alignment, consisting of 1799 nodes and 3570 edges (approxi-

mately 75% of nodes and 22% of edges from the yeast PPI network).

An edge between two nodes means that an interaction exists in both

species between the corresponding protein pairs.

D
ow

nl
oa

de
d 

by
 I

m
pe

ri
al

 C
ol

le
ge

 L
on

do
n 

L
ib

ra
ry

 o
n 

13
 M

ar
ch

 2
01

3
Pu

bl
is

he
d 

on
 1

0 
Ja

nu
ar

y 
20

12
 o

n 
ht

tp
://

pu
bs

.r
sc

.o
rg

 | 
do

i:1
0.

10
39

/C
2I

B
00

14
0C

View Article Online

http://dx.doi.org/10.1039/c2ib00140c


This journal is c The Royal Society of Chemistry 2012 Integr. Biol., 2012, 4, 734–743 737

between 1078 proteins, so it is very sparse and of low protein

coverage. The best B.yeast–human alignment is produced by

C-GRAAL when only the GDV is used as a node similarity

measure and this alignment contains 370 correctly aligned

edges (EC = 29.29%). The average EC of 30 runs of

C-GRAAL on these data is 28.49% � 0.86% and all align-

ments are statistically significant. This shows that C-GRAAL

performs equally well on both Y2H and pull-down data.

Although B.yeast–human alignment has higher edge correctness

than the yeast–human alignment, it consists of fewer than 400 edges

that are common to human and yeast, so biological insight

obtained from it is limited. This is because the B.yeast network is

very sparse and of low coverage. Hence, we use yeast–human

alignment for evaluation of biological quality of C-GRAAL’s

alignment of PPI networks of these species.

2.1.2 Biological quality of yeast–human alignment. We

evaluate the biological quality of alignments by analyzing

whether the aligned yeast–human protein pairs perform the

same biological function. Specifically, for a given alignment,

we count how many aligned yeast–human protein pairs share a

common GO term.25 We downloaded GO annotation data

from the Gene Ontology databasey in September 2009.

We report the statistics averaged over 30 runs for both node

similarity measures.

The alignments produced using the GDV similarity measure

have 45.24 � 1.19%, 13.98 � 0.76%, and 3.62 � 0.55% of

aligned protein pairs sharing at least 1, 2, and 3 GO terms,

respectively. Compared to random alignments, the p-values for

these percentages are 8.3 � 10�5, 1.89 � 10�3, and 3.2 � 10�2,

respectively (see ESIz for details). The alignments produced using

the sequence similarity measure have 57.04 � 1.35%, 25.83 �
1.14%, and 14.61 � 0.84% of aligned protein pairs sharing at

least 1, 2, and 3 GO terms, respectively. Compared to random

alignments, the p-values for these percentages are 2.56 � 10�8,

2.61 � 10�8, and 6.03 � 10�9, respectively. Given that all

C-GRAAL alignments have similar and statistically significant

GO term enrichment (as demonstrated by small standard

deviations—see above), we conclude that there are many

yeast–human alignments of similar biological quality. Furthermore,

it is expected that sequence similarity-based alignments will result in

a larger number of pairs that share a GO term, since the majority of

GO terms are inferred computationally from sequence similarities.

The biological quality of C-GRAAL alignments is comparable to

the one obtained by MI-GRAAL.

Given that using a topologically based node similarity

measure results in alignments of higher topological quality,

whereas using sequence similarity results in alignments of

higher biological quality (see Tables 1 and 2), it might be

useful to combine the two node similarity measures to provide

a balance between the topological and biological quality of an

alignment. Defining such a combined measure is a subject of

future research.

Finally, we find that C-GRAAL aligns 12 yeast proteins that

belong to the Mediator complex and participate in transcrip-

tional regulation of RNA polymerase II to 12 human proteins

that are also mediators of RNA polymerase II transcription.

These 12 proteins participate in 45 aligned interactions (see Fig. 2).

This result is encouraging, since the mediator of RNA

Polymerase II transcriptional regulation is expected to be

conserved from yeast to human.26–28 Interestingly, the conservation

of this complex was not detected by the best alignment produced

by MI-GRAAL (using only GDV as node similarity measure),

further implying differences between the alignments produced by

C-GRAAL and MI-GRAAL.

2.1.3 C-GRAAL’s application to protein function prediction

in eukaryotes.We have demonstrated that C-GRAAL produces

large, statistically significant, and biologically meaningful align-

ments. Hence, we expect that these alignments can be used to

predict biological characteristics (i.e., GO terms for molecular

function (MF), biological process (BP), and cellular component

(CC)) of unannotated proteins by transferring the annotation

from their annotated aligned partners. We define unannotated

proteins to be those that either contain no GO terms or contain

only GO terms that have not been experimentally verified. To

make these predictions, we use the C-GRAAL’s overall best

yeast–human alignment obtained using the GDV node similarity

measure (as described above).

For each aligned protein pair with an unannotated protein,

we check if its aligned partner is annotated with the known

MF, BP, or CC GO term. If so, we transfer the annotation,

i.e., we assign all known MF, BP, and CC GO terms to the

unannotated protein. Here, we distinguish between the complete

GO annotation data set that contains all GO annotations

independent of GO evidence codes and biologically-based GO

annotation data set that contains GO annotations obtained by

experimental evidence codes only (see The Gene Ontology

Consortium25 for details). The biological GO data set is

considered to be of higher confidence than the complete GO

annotation data set, since it is not biased by annotations derived

from computational approaches or sequence similarity between

proteins.

With respect to biologically-based GO data set, we make BP

predictions for 1380 human and 1073 yeast proteins, CC

predictions for 1414 human and 971 yeast proteins, and MF

predictions for 1772 human and 799 yeast proteins. To

validate our predictions, we check if predicted GO terms

appear in the list of existing terms (including terms that have

not been experimentally verified) for that protein. For human

proteins, we validate 12.15% of BP predictions, 35.19% of CC

predictions, and 10.09% ofMF predictions. For yeast proteins, we

validate 7.21% of our BP predictions, 8.53% of CC predictions,

and 7.12% of MF predictions.

Table 2 Fraction of aligned protein pairs that share at least k
common GO terms. The fraction of aligned protein pairs from the
best yeast–human alignment that share at least k GO terms for each
node similarity measure. Numbers in parentheses represent p-values

k GO terms GDV similarity Sequence similarity

1 45.81% (0) 56.91% (1.48 � 10�8)
2 14.48% (2.19 � 10�5) 25.24% (1.62 � 10�8)
3 4.28% (6.26 � 10�4) 14.05% (0)
4 1.49% (3.84 � 10�3) 9.43% (1.39 � 10�8)
5 0.56% (0.02) 4.16% (3.28 � 10�9)

y http://www.geneontology.org/.
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With respect to the complete GO data set, we make BP

predictions for 316 human and 133 yeast proteins, CC predictions

for 274 human and 67 yeast proteins, andMF predictions for 219

human and 388 yeast proteins. To validate our predictions, we use

the literature search and text mining tool CiteXplorer.29 This tool

performs an automatic search of all published articles in

MEDLINE. We consider a prediction to be validated if the

tool finds at least one article mentioning the protein of interest

in the context of our predicted function. For human proteins,

we validate 33.23% of BP predictions, 46.72% of CC predictions,

and 20.09% of MF predictions. For yeast proteins, we validate

6.02% of our BP predictions, 14.93% of CC predictions, and

11.34% of MF predictions.

2.1.4 Alignment of bacterial PPI networks. We align the

high-confidence part of the C. jejuni PPI network20 (hence-

forth denoted as ‘‘CJJ’’) with the high-confidence PPI network

of E. coli21 (henceforth denoted as ‘‘ECL’’). These PPI networks

consist of data integrated from multiple experimental PPI data

sets. The CJJ PPI network consists of 2988 interactions between

1111 proteins and the ECL PPI network consists of 3989

interactions between 1941 proteins.

Moreover, we align PPI networks of Mesorhizobium loti

(henceforth denoted as ‘‘MZL’’) and Synechocystis sp

PCC6803 (henceforth denoted as ‘‘SPP’’), generated by a

modified high-throughput yeast two-hybrid system.18,19 These

PPI networks contain about 24% and 52% of the protein

coding genes from these species, respectively. However, due to

the limitations in experimental techniques, it is expected that

these networks still contain false positive and false negative

interactions between these proteins. The MZL PPI network

consists of 3094 interactions between 1804 proteins and

the SPP PPI network consists of 3102 interactions between

1920 proteins.

In MI-GRAAL, Kuchaiev et al. use four different combined

node similarity measures, two to align CJJ and ECL, and two

to align MZL and SPP PPI networks.13 The first similarity

measure, denoted as ‘‘SM-1,’’ combines GDV similarities and

degrees, the second one, denoted as ‘‘SM-2,’’ combines GDV

similarities, clustering coefficients, and BLAST E-values, the

third one, denoted as ‘‘SM-3,’’ combines GDV similarities,

degrees, clustering coefficients, and eccentricities, and the fourth

one, denoted as ‘‘SM-4,’’ combines GDV similarities, degrees,

clustering coefficients, eccentricities, and BLAST E-values.

To compare and evaluate C-GRAAL against MI-GRAAL

on the bacterial networks, we use the same combined similarity

measures.

As above, we define the best alignment to be the alignment

with the highest edge correctness (EC) score over all node

similarity measures and over all runs of the algorithm.

The best alignment between CJJ and ECL PPI networks

when we use SM-1 as a node similarity measure consists of

584 edges (EC = 19.54), while the best alignment obtained for

SM-2 as a node similarity measure consists of 600 edges

(EC = 20.08) (for more details see Table 3). Both these

alignments have the EC lower than the EC values obtained

by MI-GRAAL for SM-1 (EC = 26.14) and SM-2 (EC =

24.44), respectively. However, all alignments produced by

C-GRAAL are of good biological quality and contain a

statistically significant fraction of protein pairs sharing at least

Fig. 2 C-GRAAL aligns RNA Polymerase II transcriptional regulation proteins in yeast and human.

Table 3 C-GRAAL’s alignments of bacterial PPI networks. The
alignment statistics for the alignment of bacterial networks using four
different combined node similarity measures: SM-1: GDV similarities
and degrees; SM-2: GDV similarities, clustering coefficients, and
BLAST E-values; SM-3: GDV similarities, degrees, clustering coeffi-
cients, and eccentricities; and SM-4: GDV similarities, degrees, clustering
coefficients, eccentricities, and BLAST E-values. The column denoted by
‘‘Network 1–Network 2’’ contains names (species) of networks being
aligned. The column denoted by ‘‘NSM’’ contains a node similarity
measure used. Columns denoted by ‘‘EC (best),’’ ‘‘EC (avg),’’ and ‘‘EC
(std)’’ represent the edge correctness (EC) of the best alignment, the
average EC, and the standard deviation of EC over 30 runs, respectively.
The column denoted by ‘‘p-value’’ represents the statistical significance of
observed alignments. Columns denoted by ‘‘LCCS (nodes)’’ and ‘‘LCCS
(edges)’’ represent the size of the largest common connected subgraph in
terms of the number of nodes and edges, respectively, for the best
observed alignments produced by C-GRAAL

Network
1–network 2 NSM

EC
(best)
(%)

EC
(avg)
(%)

EC
(std)
(%) p-Value

LCCS
(nodes)

LCCS
(edges)

CJJ–ECL SM-1 19.54 18.11 0.80 1.2 � 10�9 441 501
CJJ–ECL SM-2 20.08 18.43 0.72 1.2 � 10�9 449 575
MZL–SPP SM-3 23.79 22.97 0.39 3.6 � 10�9 686 696
MZL–SPP SM-4 26.02 24.71 0.74 3.6 � 10�9 731 740
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1, 2, 3, or 4 GO terms (see Table 4), while some of the

alignments produced by MI-GRAAL for SM-1 do not contain

a statistically significant fraction of protein pairs sharing

GO terms.

We observe similar results in the alignment of MZL and

SPP PPI networks. The best alignment between these PPI

networks for SM-3 as a node similarity measure consists of

736 edges (EC = 23.79), while the best alignment obtained

for SM-4 as a node similarity measure consists of 805 edges

(EC= 26.02) (for more details see Table 3). The best alignment

produced by MI-GRAAL using SM-3 node similarity has the

EC of 41.79, while the best alignment for SM-4 has the EC of

39.75. Although MI-GRAAL produced alignments with higher

EC values, none of its alignments obtained for SM-3 contain a

statistically significant fraction of protein pairs sharing GO

terms. On the other hand, all alignments produced by

C-GRAAL contain a statistically significant fraction of protein

pairs sharing at least 1, 2, 3, or 4 GO terms (see Table 4).

Based on these results, we can say that C-GRAAL is

comparable to MI-GRAAL. Even though it does not produce

alignments with better EC than MI-GRAAL, all alignments

produced by C-GRAAL are of good biological quality, while

some of MI-GRAAL’s are not. Furthermore, these results

confirm that C-GRAAL performs well on data based on Y2H

experiments.

All bacterial network alignments produced by C-GRAAL are

statistically significant, with a p-value of 1.2 � 10�9 (see ESIz for
details).

2.1.5 C-GRAAL’s application to protein function prediction

in prokaryotes. Analogous to prediction of protein functions

for yeast and human based on the yeast–human PPI network

alignment, we use the best alignment between CJJ and ECL

PPI networks (obtained for SM-2) and the best alignment

between MZL and SPP PPI networks (obtained for SM-4) to

predict function of unannotated proteins. We downloaded GO

annotation data for CJJ and ECL from the European Bioin-

formatics Institutez and GO annotation data for MZL and

SPP from the Kazusa DNA Research Institute8, in

March 2010.

We make BP predictions for 24 ECL and 443 CJJ proteins,

CC predictions for 94 ECL and 560 CJJ proteins, and MF

predictions for 61 ECL and 247 CJJ proteins. As before, we use

CiteXplorer29 to validate the predictions. For ECL proteins, we

validate 17.10% of BP predictions, 55.16% of CC predictions,

and 55.612% of MF predictions. For CJJ proteins, we validate

7.26% of our BP predictions, 18.72% of CC predictions, and

8.12% of MF predictions. Higher validation rates obtained for

ECL can be explained by the fact that ECL (i.e., E. coli) is a

more studied organism and thus has more and better annotated

proteins than CJJ.

We make BP predictions for 483 SPP and 384 MZL

proteins, CC predictions for 320 SPP and 324 MZL proteins,

and MF predictions for 486 SPP and 385 MZL proteins.

However, we were not able to validate these predictions in

the literature. One of the possible reasons for this is that these

bacteria are not as well studied as ECL and CJJ, and thus, the

number of articles in which they appear might be limited.

Indeed, we find that MZL and SPP (the species, not their

proteins) appear in about 300 PubMed** articles, while ECC

and CJJ appear in over 272 000 and 5000 PubMed articles,

respectively. Furthermore, CiteXplorer29 finds an article for

only 0.55% and 8.23% of MZL and SPP proteins (proteins in

general, not proteins in the context of our predictions),

respectively, while the same is true for 31.9% and 11.5% of

ECL and CJJ proteins, respectively.

2.2 Alignment of human–pathogen PPI networks

We align three human–pathogen PPI networks: interactions of

F. tularensis and H. sapiens (henceforth denoted as ‘‘FH’’),

B. anthracis andH. sapiens (‘‘BH’’), andY. pestis andH. sapiens

(‘‘YH’’), generated by a high-throughput yeast two-hybrid

system.17 Dyer et al. previously attempted to identify conserved

protein interaction modules (CPIMs) amongst these three net-

works using existing algorithms based on homology relationship

(Match-and-Split,30 NetworkBLAST,3 and GraphHopper31).

Using the GraphHopper algorithm, the authors were able to

identify 39, 41, and 64 CPIMs between FH and BH, FH and

YH, and BH and YH PPI networks, respectively. However,

when using either the Match-and-Split or NetworkBLAST

algorithm, the authors were not able to identify any CPIMs.

Since various pathogenic proteins may use the same strategies to

invade a human cell, we believe that by focusing mainly on

homologous relationships between proteins, one may miss patterns

Table 4 Fraction of aligned protein pairs that share at least k common GO terms. The fraction of aligned protein pairs from the best bacterial
network alignments (denoted as ‘‘best’’) and the average fraction and the standard deviation of aligned protein pairs over 30 runs (denoted as
‘‘avg.’’) that share at least 1, 2, 3, or 4 GO terms for each node similarity measure (‘‘NSM’’). Node similarity measures: SM-1: GDV similarities and
degrees; SM-2: GDV similarities, clustering coefficients, and BLAST E-values; SM-3: GDV similarities, degrees, clustering coefficients, and
eccentricities; and SM-4: GDV similarities, degrees, clustering coefficients, eccentricities, and BLAST E-values. Numbers in parentheses represent
p-values

Alignment NSM 1 GO term 2 GO terms 3 GO terms 4 GO terms

CJJ–ECL (best) SM-1 33.72% (3.65 � 10�9) 11.48% (7.77 � 10�10) 3.98% (2.01 � 10�9) 1.76% (4.54 � 10�7)
CJJ–ECL (best) SM-2 35.60% (4.31 � 10�9) 11.24% (1.54 � 10�9) 4.45% (2.29 � 10�9) 1.76% (2.82 � 10�9)
MZL–SPP (best) SM-3 14.82% (2.13 � 10�9) 3.60% (7.16 � 10�9) 1.25% (5.45 � 10�9) 0.69% (1.32 � 10�7)
MZL–SPP (best) SM-4 16.78% (0) 3.27% (1.17 � 10�9) 1.09% (1.24 � 10�8) 0.41% (1.03 � 10�7)
CJJ–ECL (avg.) SM-1 34.26 � 1.41% (4.43 � 10�9) 11.20 � 1.09% (1.60 � 10�9) 4.42 � 0.63% (1.30 � 10�8) 1.71 � 0.38% (9.77 � 10�5)
CJJ–ECL (avg.) SM-2 33.57 � 1.33% (4.53 � 10�9) 10.01 � 0.75% (1.58 � 10�9) 3.88 � 0.54% (2.62 � 10�9) 1.66 � 0.28% (6.26 � 10�6)
MZL–SPP (avg.) SM-3 14.46 � 0.96% (1.27 � 10�9) 3.28 � 0.38% (4.20 � 10�9) 1.03 � 0.25% (6.87 � 10�3) 0.20 � 0.21% (6.30 � 10�3)
MZL–SPP (avg.) SM-4 15.37 � 1.00% (1.91 � 10�9) 3.63 � 0.56% (1.06 � 10�7) 1.16 � 0.34% (3.09 � 10�5) 0.45 � 0.22% (9.77 � 10�5)

z http://www.ebi.ac.uk/.
8 http://genome.kazusa.or.jp. ** http://www.ncbi.nlm.nih.gov/pubmed/.
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of human–pathogen interactions that are topologically simple

to detect. Since it has been shown that sequence and topology

may contain complementary information,32 we apply the

C-GRAAL algorithm using the GDV similarity measure to

align these three PPI networks and to evaluate the biological

information and patterns we can extract solely from topology.

The FH PPI network consists of 1345 proteins and 1383

interactions, the BH PPI network consists of 2604 proteins

and 3062 interactions, and the YH PPI network consists of

3322 proteins and 4053 interactions. All networks contain

uncharacterized (i.e., putative) pathogenic proteins.

C-GRAAL correctly aligns between 45% and 63% of edges

between these three networks. All alignments are statistically

significant (p-valueo 10�10). Moreover, C-GRAAL identified

39, 41, and 64 CPIMs between FH and BH, FH and YH, and

BH and YH PPI networks, respectively. The largest CPIM

consists of 665 aligned edges between 664 proteins in the

FH–BH alignment, 422 edges between 422 proteins in the

FH–YH alignment, and 975 edges between 967 proteins in

the BH–YH alignment. For more details about the alignments

see Table 5.

All alignments between human–pathogen PPI networks

have a significant number of aligned protein pairs that share

one or more GO terms (see Table 6). Furthermore, C-GRAAL

detects multiple correctly aligned edges (interactions) where

aligned proteins share the same GO terms. We call these

interactions conserved interactions. C-GRAAL detects 42 connected

components that consist of conserved interactions in the FH–BH

alignment, 18 in the FH–YH alignment, and 38 in the BH–YH

alignment, respectively. Out of 42 such components from the

FH–BH alignment, 13 consist of two or more edges. Similarly,

4 out of 18 components from the FH–BH alignment and 4 out

of 38 components from the BH–YH alignment also represent

conserved components that consist of two or more edges.

Interestingly, the majority of aligned proteins do not have

statistically significant sequence similarity, and thus, such

interactions could not have been discovered by methods based

on homologous information.

These results confirm that topology is rich in biological

information and can detect biologically significant patterns.

Therefore, it is expected that the results obtained by alignment of

these networks can be used for annotation transfer. Analogous to

prediction of protein functions for yeast and human based on the

yeast–human PPI network alignment, we use the best alignment

between the human–pathogen PPI networks to predict function

of unannotated proteins.

We make GO term biological process predictions for 504

H. sapiens, 305 F. tularensis, 647 B. anthracis, and 661 Y. pestis

proteins, cellular component predictions for 315 H. sapiens,

390 F.tularensis, 1177 B. anthracis, and 1182 Y. pestis proteins,

and molecular function predictions for 485 H. sapiens,

270 F.tularensis, 620 B. anthracis, and 719 Y. pestis proteins.

As before, we use CiteXplorer29 to validate the predictions.

For human proteins, we validate 16.11% of BP predictions,

17.26% of CC predictions, and 15.70% of MF predictions.

However, we were not able to validate predictions for pathogenic

species in the literature. One possible reason is that these pathogens

are not as well studied and thus, the number of articles in which

they appear might be limited. We find that CiteXplorer29 finds an

article for less than 1% F. tularensis, B. anthracis, and Y. pestis

proteins (proteins in general, not proteins in the context of our

predictions), respectively. We downloaded GO annotation data for

all species from the European Bioinformatics Instituteww in

June 2011.

3 C-GRAAL algorithm

Let G(V,E) and H(U,F) be two networks, where V and U are

sets of nodes and E and F are sets of edges of G and H,

respectively. Without loss of generality, let us assume that

|V| o |U| (hence |G| o |H|). C-GRAAL is a global network

alignment algorithm that aligns each node in the smaller

network G to exactly one node in the larger network H. That

is, C-GRAAL’s alignment of G to H is a set of ordered pairs

(v,u), v A V and u A U, such that no two ordered pairs share a

node. We call each such ordered pair an aligned pair.

We denote by deg(v) the degree of a node v in networkG, byN(v)

the set of neighbors of node v, byN[v] the closed neighborhood of v,

defined as N[v] = N(v) , {v}, the neighborhood density of v as:

ndðvÞ ¼
X

vkeN½v�
degðvkÞ; ð1Þ

and the combined neighborhood density of nodes v and u

(veG, ueH) as:

cndðv; uÞ ¼ ndðvÞ þ ndðuÞ
max ndðGÞ þmax ndðHÞ ; ð2Þ

where max_nd(G) and max_nd(H) are maximum neighborhood

densities of nodes in networks G and H, respectively, cnd(v,u)

A [0,1].

Table 5 C-GRAAL’s alignments of human–pathogen PPI networks.
The alignment statistics for three human–pathogen PPI networks
averaged over 30 runs of the algorithm. Columns denoted by ‘‘EC
(max),’’ ‘‘EC (avg),’’ and ‘‘EC (std)’’ represent the maximum edge
correctness (EC), the average EC, and the standard deviation of EC
over 30 runs, respectively. Columns denoted by ‘‘LCCS (nodes)’’ and
‘‘LCCS (edges)’’ represent the size of the largest CPIMs in terms of the
number of nodes and edges, respectively, of the alignment with the
maximum EC produced by C-GRAAL

Alignment
EC (max)
(%)

EC (avg)
(%)

EC (std)
(%)

LCCS
(nodes) (%)

LCCS
(edges) (%)

FH–BH 63.34 63.03 0.16 664 665
FH–YH 50.25 50.11 0.13 442 442
BH–YH 45.36 45.18 0.13 967 975

Table 6 Fraction of aligned protein pairs that share at least
k common GO terms. The fraction of aligned protein pairs from the
human–pathogen alignments that share at least k common GO terms
for each node similarity measure. Numbers in parentheses represent
p-values

k GO terms FH–BH FH–YH BH–YH

1 38.45% (0) 29.96% (0) 26.90% (0)
2 19.63% (0) 15.02% (0) 12.55% (0)
3 8.80% (0) 7.36% (0) 5.4% (0)
4 4.12% (0) 3.37% (0) 3.21% (0)
5 2.10% (0) 1.46% (0) 1.36% (7 � 10�10) ww http://www.ebi.ac.uk/.
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We denote by ‘‘Fal,’’ the flag that describes the alignment

status of nodes on which we perform calculations. When this

flag has a value equal to 1, we take into consideration only

nodes that are already aligned, otherwise we take into con-

sideration only nodes that are not yet aligned. Initially, the flag

Fal is set to 0, because at that point the alignment set is empty.

Fig. 3 C-GRAAL—alignment of common neighbors. Let G and H be two networks we want to align, where colored (blue, red, green) nodes are

already in the alignment and gray nodes are currently unaligned. Nodes that are colored with the same color are aligned to each other, e.g., a to A, c

to C and e to E. (a) First, we calculate the number of common neighbors for all pairs of nodes that are already in the alignment (see table

‘‘Common neighbors’’). The two pairs of aligned nodes that have the largest number of aligned neighbors are (a,A) and (c,C). (2) We want to align

common neighbors of nodes a and c to neighbors of nodes A and C, i.e., we want to align either node b or node f to either node B or node F. To do

so, we compare node similarities between these four pairs of nodes from G andH (b-B, b-F, f-B, and f-F). From the ‘‘node similarity’’ table, we can

see that nodes b and B have the highest similarity of 0.99, and thus we align node b to node B (and we color them purple). Next, we align remaining

common neighbor of nodes a and c to remaining common neighbor of nodes A and C, i.e., we align node f to node F (and color them olive-green).

(c) Since there are no more aligned pairs of nodes that share common neighbors, C-GRAAL performs step (1) of the algorithm. Since aligned

nodes e and E have one unaligned neighbor, the flag Fal is set to 1, and neighbors of these nodes are aligned based on their node similarity. (d) Final

alignment between networks G and H.
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We can describe the C-GRAAL algorithm in three steps:

1. Finding seed and expansion around the seed;

2. Aligning common neighbors of already aligned nodes,

and

3. Finalizing the alignment.

In the first step, C-GRAAL sets the flag Fal to 1 if the

current alignment contains at least one node v from G, such

that both nodes v and u, v aligned to u A H, have at least one

unaligned neighbor. Next, C-GRAAL calculates all-to-all

combined neighborhood densities for all pairs of nodes in

the two networks being aligned. The pair of nodes (v,u), v A G

and u A H, that have the largest combined neighborhood

density represents the seed. Next, C-GRAAL expands around

the seed (v,u), v A G and u A H, by greedily aligning their

direct neighbors vi and uj (vi A N(v), uj A N(u)), based on the

given node similarity measure (see Fig. 3 for an illustration).

In the second step, given the existing alignment, C-GRAAL

decreasingly orders pairs of nodes vi and vj (vi,vj A G) that are

already in the alignment based on the number of their

common neighbors in G. Next, the node pair having the

highest number of common neighbors is selected. It is checked

for whether the pair of nodes from H that is aligned to the

selected pair in G shares at least one common neighbor. If so,

based on the given node similarity measure, C-GRAAL

greedily aligns the common neighbors of the selected pair in

G with the common neighbors of the corresponding aligned

pair in H. If not, C-GRAAL descends the ordered list and

selects the next pair from G with the highest number of

common neighbors. C-GRAAL repeats step (2) while there

exist pairs in the alignment that have common neighbors not

in the alignment and the corresponding aligned pairs in H also

have common neighbors not in the alignment. When there are

no such pairs left, C-GRAAL goes back to step (1). See Fig. 3

for an illustration.

C-GRAAL repeats steps (1) and (2) while there exist aligned

pairs in which both nodes have at least one neighbor that is

unaligned. Otherwise, C-GRAAL proceeds with step (3),

where it greedily aligns all of the remaining (unaligned) nodes

in G to nodes in H based only on the node similarity measure,

without taking explicitly into account any network connectivity

information. Each pair of nodes is aligned one at a time (one

node from each network) based on the given node similarity

measure.

In case that node similarity measure is not provided, the

algorithm assigns the same value of similarity to all nodes. All

ties in the algorithm are broken randomly.

The C-GRAAL pseudocode is given in the ESI.z
The computational complexity of C-GRAAL is quadratic in

graph size, O(|VG1|x|VG2| + max(|EG1|,|EG2|)). The alignment

of the yeast and human PPI networks takes about 1 hour on

an Intel Xenon X3350 (2.66 GHz CPU) machine. C-GRAAL’s

computational complexity is the same as the computational

complexity of GRAAL and similar to that of MI-GRAAL,

O(|VG1|x|VG2| + |EG1| + |EG2|)). The computational com-

plexity of IsoRank scales exponentially with the number of

aligned networks k, as O(Ek), hence it is quadratic for aligning

two networks. Note that if network G(V,E) is sparse, O(E) =

O(V), while if the network is dense, then O(E) = O(V2).

Hence, IsoRank’s complexity for aligning two dense networks

is O(E2) = O(V4), i.e., it is the fourth-power polynomial in the

network input size and hence may be prohibitively computationally

expensive for large networks. In contrast, C-GRAAL’s, MI-

GRAAL’s, and GRAAL’s computational complexity remains

quadratic even for dense networks.

4 Conclusions

We present a novel global network alignment algorithm,

C-GRAAL, that can build an alignment between two net-

works solely based on network topology. As such, it can be

applied to the variety of other network domains, such as

social, technological, or transportational networks. We show

that C-GRAAL performs comparable or better than the best

currently available network alignment algorithm, and that it

can be used to successfully transfer biological knowledge

across species. We demonstrate that C-GRAAL performs well

on data of different confidence levels and sizes, and that it

consistently produces topologically statistically significant

alignments. We believe that with the increase of the amount

and quality of biological network data, C-GRAAL algorithm

will continue to prove itself as a useful tool that can provide

insights into biological function.
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7, 135.

D
ow

nl
oa

de
d 

by
 I

m
pe

ri
al

 C
ol

le
ge

 L
on

do
n 

L
ib

ra
ry

 o
n 

13
 M

ar
ch

 2
01

3
Pu

bl
is

he
d 

on
 1

0 
Ja

nu
ar

y 
20

12
 o

n 
ht

tp
://

pu
bs

.r
sc

.o
rg

 | 
do

i:1
0.

10
39

/C
2I

B
00

14
0C

View Article Online

http://dx.doi.org/10.1039/c2ib00140c

