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Abstract

Background: Understanding the relationship between diseases based on the
underlying biological mechanisms is one of the greatest challenges in modern
biology and medicine. Exploring disease-disease associations by using system-level
biological data is expected to improve our current knowledge of disease
relationships, which may lead to further improvements in disease diagnosis,
prognosis and treatment.

Results: We took advantage of diverse biological data including disease-gene
associations and a large-scale molecular network to gain novel insights into
disease relationships. We analysed and compared four publicly available
disease-gene association datasets, then applied three disease similarity measures,
namely annotation-based measure, function-based measure and topology-based
measure, to estimate the similarity scores between diseases. We systematically
evaluated disease associations obtained by these measures against a statistical
measure of comorbidity which was derived from a large number of medical
patient records. Our results show that the correlation between our similarity
measures and comorbidity scores is substantially higher than expected at random,
confirming that our similarity measures are able to recover comorbidity
associations. We also demonstrated that our predicted disease associations
correlated with disease associations generated from genome-wide association
studies significantly higher than expected at random. Furthermore, we evaluated
our predicted disease associations via mining the literature on PubMed, and
presented case studies to demonstrate how these novel disease associations can
be used to enhance our current knowledge of disease relationships.

Conclusions: We present three similarity measures for predicting disease
associations. The strong correlation between our predictions and known disease
associations demonstrates the ability of our measures to provide novel insights
into disease relationships.

Keywords: disease classification; network analysis; graph theory; topology;
protein-protein interaction

Background
Correct diagnosis is critical for effective treatment and prevention of disease. As

a result, disease classification has become a key cornerstone of modern medicine.

Disease may be classified by any one of a number of criteria: topographic, anatomic,

pathological, physiological, etiological, juristic, epidemiological or statistical ap-

proaches. However, without considering the molecular mechanisms driving diseases,

such knowledge is limited and can even be misleading. For example, a common phe-

notype can be caused by different underlying mechanisms, such as breast cancer,
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which can be divided into several subgroups that are characterized by distinct pat-

terns of pathway activation [1]. However, a common mechanism may lead to different

phenotypes. For example, a mutation at the β-globin locus may lead to sickle-cell

anemia with different phenotypes such as bony infarcts, acute chest syndrome and

stroke [2].

During the past decade, a wealth of biological data has been generated from vari-

ous large-scale genomic studies, prompting the scientific community to gain deeper

insight into disease relationships based on their underlying biological mechanisms.

Various types of biological data have been used to infer associations between dis-

eases. One of the most commonly used biological data is disease-gene association.

In a broad definition, a disease-gene association is a connection reported in the lit-

erature, which can be a genetic association (i.e., mutations in that gene may lead to

that disease), or a connection inferred from other aspects. Disease-gene associations

can be obtained from large-scale knowledge-bases such as the Online Mendelian In-

heritance in Man (OMIM) [3]. Early studies used text mining to infer similarities

between phenotypes contained in OMIM, and found those similarities were pos-

itively correlated with a number of measures of gene functions [4] and could be

used to predict disease-causing genes [5]. Also by using OMIM, Goh et al. [6] con-

structed the human diseasome by connecting diseases that share a disease-causing

gene. Other types of biological data such as biological pathways [7], gene expres-

sion data [8, 9], biomedical ontologies [10, 11], and genome-wide association study

(GWAS) data [12, 13, 14], have also been used to improve the current understanding

of disease relationships from different aspects. Recently, networks have been used

to model large-scale biological data, and network topology is beginning to provide

insights into diseases and their associations [6, 15, 16, 17]. By considering the in-

terconnectivity of biomolecules in the cell, the topology of biological networks is

expected to have various biological and clinical applications [18, 19].

Despite these advances, early studies have several limitations when inferring dis-

ease associations from biological data. First, some studies only considered several

specific diseases, rather than giving a global comparison among all diseases ( e.g.,

[12, 13, 14, 9]). This is the case for GWAS-based studies, since a small number of

GWAS studies have been completed to date in a relatively small proportion of the

total disease population. Furthermore, most studies solely used OMIM as the source

of disease-gene association data. OMIM is a catalogue of mendelian disorders and

as a result, most diseases are annotated with few genes in OMIM [20]. Limitations

of using OMIM have also been discussed previously [21, 22]. Finally, most compu-

tationally predicted disease associations were not systematically evaluated due to

the difficulty in identifying a suitable benchmark of known disease associations. In

particular, most studies were only able to validate part of their results by compar-

ing them with phenotypic similarities (e.g., [12]) or mining the literature manually

(e.g., [13]). A comparison of previous studies can be found in Table 1.

In our study, we used diverse biological data from a number of repositories to

gain novel insights into the relationship of over 500 known human diseases by con-

sidering their underlying biological mechanisms. We used disease-gene associations

obtained from four different sources to avoid the bias introduced by a single dataset.

Moreover, we took advantage of the topology of a large-scale molecular network to
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examine its use for inferring disease associations. We applied three different disease

similarity measures, namely annotation-based measure, function-based measure and

topology-based measure, to estimate similarity scores between diseases. The disease

associations obtained by the three measures were systematically evaluated against

the standard disease classification system, namely the International Classification

of Diseases[1], 9th revision (ICD-9), and a statistical measure of comorbidity de-

rived from a large number of medical patient records. In addition, we evaluated our

predicted disease associations by using disease associations generated from GWAS

studies, which represent one of the most robust routes for identifying causal rela-

tionships between genes and diseases. To our knowledge, this is the first time co-

morbidity and GWAS data have been used to evaluate computationally predicted

disease associations.

In the rest of this paper, we will start with a description of the biological data we

analysed, followed by details of our methodology of measuring disease associations.

Then we will show and discuss the evaluation of disease associations predicted by

our similarity measures against known disease associations derived from ICD-9, co-

morbidity data and GWAS data. Finally, we will present case studies to demonstrate

the ability of our similarity measures to predict novel disease associations.

Methods
Biological data

Three types of biological data were used in this study: protein-protein interactions

(PPIs), Gene Ontology (GO) annotations and disease-gene associations.

PPI network.

We modelled PPI data as a network. A network or graph G(V,E) consists of two

types of elements, a set V of nodes and a set E ⊆ V ×V of edges connecting them.

A PPI network models the physical interaction among proteins in the cell, in which

a node represents a protein, and an undirected edge exists between a pair of nodes

if their corresponding proteins can physically bind to each other. Currently avail-

able PPIs are mostly yielded from various high throughput proteomics experiments,

such as yeast two-hybrid screening (e.g., [23]) and affinity capture mass spectrom-

etry (e.g., [24]). We constructed a human PPI network using data obtained from

BioGRID [25] version 3.1.93 (released in October 2012). All self-loops, duplicate

interactions were removed since we considered only simple, undirected graphs. We

also removed the cross-species interactions (i.e., interactions between human pro-

teins and proteins of other species) because we focused on the physical interactions

between human proteins in our study. The PPI network we constructed contained

11,375 nodes and 66,317 edges, while its largest connected component contained

11,261 nodes and 66,253 edges. Note that the second largest connected component

only contained 5 nodes and 5 edges. There were also 7 isolated triangles and 43 iso-

lated edges in the PPI network. The presentence of these small components may be

due to the incompleteness of the PPI data. In addition, the topology of these small

components is not as informative as that of the largest connected component. For

these reasons, we only used the largest connected component of the PPI network in

our analysis.

[1]http://www.who.int/classifications/icd/en/
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GO annotations.

Genes are annotated with GO terms to represent their biological properties [26]. All

GO terms are organised in three domains: cellular component, molecular function

and biological process. We downloaded the ontology file and annotations of Homo

sapiens from the Gene Ontology database[2] in November 2012. We removed an-

notations with evidence code ‘Inferred from Electronic Annotation’ (IEAs), since

IEAs are computationally inferred annotations which have not been reviewed by cu-

rators. In total, we collected 171,888 annotations between 13,166 genes and 10,787

GO terms.

Disease-gene associations.

Disease-gene associations can be modelled as a graph containing both known human

diseases and disease-related genes in the human genome. The degree of a disease

is the number of genes associated with that disease, while the degree of a gene is

the number of diseases annotated with that gene. We used four disease-gene as-

sociation datasets obtained from different sources: OMIM, Comparative Toxicoge-

nomics Database (CTD) [27], Functional Disease Ontology annotations (FunDO)

[28] and Human Genome Epidemiology Network (HuGENet) [29]. Among these

datasets, OMIM, CTD, and FunDO contain curated associations, while HuGENet

contains computationally inferred associations. Details of these disease-gene associ-

ation datasets are described below.

• OMIM is considered to be the best-curated resource of known phenotype-

genotype relationships, and it has been used in various disease-related studies

(discussed in the Background section). We downloaded the OMIM database

in November 2012. In total, it contains 3,537 diseases (annotated by OMIM

IDs), 2,862 genes and 4,337 disease-gene associations.

• CTD provides scientific data describing relationships between chemicals,

genes, and human diseases, with the goal of improving the understanding

of environmental chemicals’ effects on human health. It contains both curated

and inferred disease-gene associations, but we only used curated associations

as they have higher confidence than inferred associations. Disease-gene asso-

ciations directly derived from OMIM were excluded to reduce the dependency

between datasets. We downloaded the data from CTD in November 2012 and

obtained 17,754 associations between 2,761 diseases (annotated by Medical

Subject Heading (MeSH) terms[3]) and 5,828 genes.

• FunDO contains disease-gene associations extracted from the NCBI Gene Ref-

erence Into Function (GeneRIF) database. A GeneRIF is a brief statement

about the function of a gene, along with information of its association with

diseases. We downloaded the latest stable version of FunDO (released in Octo-

ber 2008) and obtained 1,854 diseases (annotated by Disease Ontology (DO)

terms), 4,781 genes and 28,442 disease-gene associations.

• HuGENet is known as an integrated knowledge-base on human genome epi-

demiology. The Phenopedia collection [29] of HuGENet contains disease-gene

associations obtained by text-mining of abstracts on PubMed using machine

[2]http://www.geneontology.org
[3]http://www.nlm.nih.gov/mesh/
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learning techniques. Disease-gene association data were downloaded via HuGE

Navigator in September 2012. We obtained 353,883 associations between 2,387

diseases (annotated by Unified Medical Language System (UMLS) Concept

Unique Identifiers (CUIs)[4]) and 11,915 genes.

Since disease names or IDs used in these datasets are based on different labelling

schemes, we mapped all disease names or IDs to ICD-9 codes, for the purpose of

comparing these datasets and further evaluation (also see the Results and Discussion

section for details). We used the mapping manually constructed by [6] and [30] to

convert OMIM IDs to ICD-9 codes, and used the corresponding mapping provided

in Disease Ontology version 3 (the latest stable version of DO, released in May

2007) to map DO IDs, MeSH terms and UMLS CUIs to ICD-9 codes. In total,

1,467 OMIM IDs in OMIM, 423 MeSH terms in CTD, 806 DO IDs in FunDO and

693 UMLS CUIs in HuGENet were mapped to ICD-9 codes.

Disease similarity measures

We applied three similarity measures to estimate similarity scores between diseases.

These measures include standard methods (i.e., Jaccard index) and novel measures

proposed in this study (i.e., graphlet-based measure). Considering the information

used in calculation, the similarity score of a pair of diseases was measured in three

different ways: annotation-based, function-based and topology-based.

Annotation-based measure.

The annotation-based measure solely used the information obtained from disease-

gene association data. We applied the Jaccard index, which is known as a standard

method for comparing the similarity between two sets, to estimate the similarity

score between diseases as follows. Let GDi be the set of genes associated with a

disease Di. We computed the annotation-based similarity score of two diseases Di

and Dj as the Jaccard index (or Jaccard similarity coefficient) of GDi and GDj :

Simannotation(Di, Dj) =
|GDi

∩GDj
|

|GDi ∪GDj |
. (1)

Function-based measure.

The function-based similarity measure used both GO term annotations and disease-

gene associations to estimate the similarity score between a pair of diseases. We first

propagated the GO annotations upwards through the GO hierarchy, i.e., when a

gene was annotated with a GO term, we assumed associations between the gene

and the term’s parents. For each disease Di annotated in a specific disease-gene

association dataset, we then identified the set of GO terms that were overrepre-

sented within GDi , denoted by GODi . The statistical significance (p-value) of the

enrichment of a GO term was computed according to the hypergeometric distribu-

tion for sampling without replacement, and was corrected for multiple testing using

the Benjamini-Hochberg test. Only overrepresented GO terms from the ‘biological

process’ domain of GO and having a p-value less than 0.05 were considered to be in

[4]http://www.nlm.nih.gov/research/umls/



Sun et al. Page 6 of 19

GODi . For a pair of diseases Di and Dj , we computed the Jaccard index of GODi

and GODj
as their function-based similarity score, defined as:

Simfunction(Di, Dj) =
|GODi ∩GODj |
|GODi ∪GODj |

. (2)

Topology-based measure.

Many studies have shown the relationship between topological properties of proteins

in the PPI network and the involvement of proteins in diseases [6, 31, 32]. Topo-

logical similarities of proteins in a PPI network are considered as a complementary

information to sequence similarities [33]. Thus in this study, we took advantage of

the topology of the human PPI network along with disease-gene association data to

examine the use of network topology for uncovering novel disease associations. In

particular, we proposed a measure to estimate the similarity score between a pair

of diseases based on the topological similarity of their annotated genes.

We applied a graphlet-based method to assess the topological similarity of genes

in the human PPI network. A graphlet is defined as a small, connected and induced

subgraph of a larger network [34]. Within each graphlet, some nodes are topologi-

cally identical to each other, and such identical nodes are said to belong to the same

automorphism orbit [35]. The graphlet signature of a node u is a 73-dimensional vec-

tor, whose ith element ui counts the number of times the node u is touched by the

particular automorphism orbit i [36]. According to [36], the signature similarity of

a pair of nodes u and v is defined as:

SigSim(u, v) = 1− 1∑72
i=0 wi

(
72∑
i=0

(wi ×
| log(ui + 1)− log(vi + 1)|

log(max{ui, vi}+ 2)
)) (3)

where wi is a weight assigned to orbit i defined as 1 − log(oi)/log(73) (oi is the

dependency count of orbit i, see [36] for details). SigSim(u, v) ranges between 0

and 1, where the value of 1 means that the two nodes, u and v, are considered to

be topologically identical. This measure is a highly constraining measure of local

topological similarity between two nodes in a network as it compares the nodes based

on local structures of their neighbourhoods, which describe their interconnectivities

out to a distance of four [36]. Signature similarities have been applied to measure the

topological similarities between proteins in a PPI network [36, 37, 31, 33, 38, 39, 40].

It has been shown that topologically similar proteins are likely to belong to the

same protein complexes, perform the same biological functions, be localised in the

same subcellular compartments and have the same tissue expressions [36]. Signature

similarities have also been used to relate the network structure around a protein

in a PPI network to homology [33] and its involvement in diseases [31]. For these

reasons, we hypothesize that the topology around disease genes in the PPI network

can reflect the underlying biological mechanisms of diseases.

We calculated the signature similarity of each pair of genes in the human PPI

network. Note that the network has an edge density (the proportion of the number

of edges to the maximum possible number of edges) of 0.001, which for its size

(11,261 nodes and 66,253 edges) is dense enough to avoid low edge density regions



Sun et al. Page 7 of 19

in which the topology of networks is unstable (see [41] for details). Here we extended

the use of graphlet-based method to measure disease similarities. We introduced

two terms to quantify the topology-based similarity score between diseases Di and

Dj . The first term, denoted by AllSig, is the maximum of the signature similarity

between a gene in GDi and a gene in GDj :

AllSig(Di, Dj) = max
gm∈GDi
gn∈GDj

SigSim(gm, gn). (4)

The second term, denoted by ShareSig, focuses on the topological similarity

between genes shared with both diseases:

ShareSig(Di, Dj) = max
gm ̸=gn

gm∈GDi
∩GDj

gn∈GDi
∩GDj

SigSim(gm, gn). (5)

Finally we defined the topology-based similarity score between Di and Dj as the

average of these two terms:

Simtopology(Di, Dj) =
1

2
× (ShareSig(Di, Dj) +AllSig(Di, Dj)). (6)

Evaluation

Comorbidity associations of diseases.

The availability of electronic patient records facilitates studies into disease comor-

bidity, which indicates the potential for co-occurrence of two given diseases in the

same individual. Comorbidity can be considered as a type of disease association de-

rived from electronic medical record, but the underlying driver for comorbidity may

be very different from one another. Comorbidity and its correlation with other types

of disease associations such as genetic associations [42] and evolutionary associa-

tions [43] have previously been studied. Unlike these studies, we used comorbidity

data to evaluate disease associations predicted by our similarity measures. Comor-

bidity associations were downloaded from the Human Disease Network (HuDiNe,

[44]), which were obtained from the disease history of 32 million American patients.

Diseases were annotated using ICD-9 codes in HuDiNe, and as many diseases in

patient records were not specific enough to map to 4-digit or 5-digit codes, we used

the comorbidity data annotated using 3-digit level ICD-9 codes for our analysis.

The strength of comorbidity association between a pair of diseases can be measured

by the Relative Risk and ϕ-correlation [44]. Because comorbidity associations quan-

tified by ϕ-correlation were reported to contain more connections across different

ICD-9 categories [44], we chose ϕ-correlation as the measure of comoridity. The

ϕ-correlation score between Di and Dj was defined as the Pearson’s correlation for

binary variables, given by:

ϕ(Di, Dj) =
CijN − PiPj√

PiPj(N − Pi)(N − Pj)
(7)

where Cij is the number of individuals affected by both Di and Dj , N is the total

number of individuals in the population, Pi and Pj are the prevalences of Di and



Sun et al. Page 8 of 19

Dj respectively. A ϕ-correlation higher than 0 indicates the co-occurrence of Di

and Dj is more frequently than expected by random. The statistical significance of

ϕ-correlation was determined by using a t-test,

t =
ϕ
√
n− 2√
1− ϕ2

(8)

where n = max(Pi, Pj) is the number of observations used to calculate ϕ. We used

significant associations at 5% level (t ≥ 1.96) for our analyses.

GWAS data.

GWAS is a powerful method to identify genetic variations associated with diseases

and is one of the most robust routes for identifying causal relationships between

genes and diseases [45, 46]. GWAS studies examine the genome for single-nucleotide

polymorphisms (SNPs) that occur more frequently in people with a particular dis-

ease than in people without it. GWAS studies have enabled exploration of gene

association in complex diseases in a systematic way on a genome scale. Whilst in-

dividual studies are extremely powerful, only a small number of diseases have been

studied thus far using GWAS. Hence the GWAS database as a whole is only able

to contribute a relatively small component to the overall knowledge base of general

disease-gene associations. For this reason, we did not use GWAS data as a source

of disease-gene association to measure disease similarity scores, but used them to

evaluate our predicted disease associations. We downloaded GWAS data from the

National Human Genome Research Institute (NHGRI) GWAS catalog [47] in May

2013. This resource collects significant associations between traits (or diseases) and

SNPs from the literature. Similar to [48], we only considered highly confident associ-

ations with p-value lower than 10−7. We also eliminated not replicated associations

to minimise false-positives. For all disease-SNP associations in our analysis, we used

the corresponding disease-gene associations reported by the authors in the original

publications as recorded in the GWAS Catalog. After mapping diseases to ICD-9

codes, we obtained 1,756 genetic associations (from 478 publications) between 126

diseases and 1,298 genes.

Results and discussion
Comparison of disease-gene association datasets

We analysed four different disease-gene association datasets: three curated datasets,

namely OMIM, CTD and FunDO, and one computationally predicted dataset,

HuGENet (details of these datasets can be found in the Methods section). Although

these datasets focus on different aspects of the connections between diseases and

genes, they are not fully independent since information contained in these datasets

is extracted from the literature. For example, disease-gene associations contained in

CTD and FunDO were extracted from 9,269 and 48,436 publications respectively,

and they have 799 publications in common. We mapped all disease names or IDs

annotated in these datasets to ICD-9 codes for a correct comparison (see the Meth-

ods section for more details). If several diseases were mapped to a common ICD-9

code, we assigned the union of genes associated with those diseases to that ICD-9
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code. In order to evaluate our measures using comorbidity data, we further limited

the ICD-9 codes to 3-digit level. We are aware that noise may be introduced when

merging diseases into 3-digit level. Generally speaking, a 3-digit level ICD-9 code is

always associated with more than one disease, thus the average degree of diseases

increased after mapping. Note that it is possible that two diseases may share clinical

traits but have different 3-digit level ICD-9 codes, e.g., acute bronchitis (ICD-9: 466)

and chronic bronchitis (ICD-9: 491). However, in most cases if two diseases have

different ICD-9 codes at 3-digit level, they always have different clinical phenotypes

and they are unlikely to share similarity traits.

Interestingly, the overlap among the four disease-gene association datasets is un-

expectedly small, as shown in Figure 1. While a considerable number of diseases

(120 diseases in total, that is, 50.21%, 47.43%, 26.20% and 33.33% of diseases anno-

tated in OMIM, CTD, FunDO and HuGENet, respectively) have gene annotations

in all four datasets, few disease-gene associations (159 associations in total, that

is, 7.05%, 1.99%, 0.92% and 0.11% of associations in OMIM, CTD, FunDO and

HuGENet, respectively) can be found in all datasets. Figure S1 further demon-

strates the difference between these datasets according to the degree distribution of

diseases. In general, these distributions follow power law distributions, indicating

that most human diseases are associated with only a few disease genes, while a small

number of diseases relate to many genes. However, this scale-free topology may also

be an artifact of sampling: several diseases are better studied than others [49]. We

notice that in OMIM, most diseases are associated with fewer genes compared with

other datasets. The average number of genes associated with a disease in OMIM is

9.43, while in the two other curated datasets CTD and FunDO, these numbers are

31.59 and 37.80. On the other hand, on average a disease in HuGENet is annotated

with more than 300 genes: HuGENet has a higher false positive rate compared to

other datasets, since its associations were derived from computational predictions

rather than manual curations.

The difference and inconsistency discussed above indicate that currently available

disease-gene association datasets are still noisy and incomplete. The incompleteness

may be due to the focus of the datasets and the nature of the curation process. For

example, OMIM mainly focuses on mendelian diseases and traits. Meanwhile, many

false positives may be introduced by text-mining the literature (e.g., HuGENet).

However, there is no single standard and systematic method to assess the quality

of these data. Therefore, to gain a more comprehensive view of human diseases and

to test the robustness of our methods, we used all four disease-gene association

datasets along with the intersection/union of the three curated datasets in further

computation and evaluation.

Evaluation of similarity measures

Correlation with ICD-9.

The results obtained by these measures were first evaluated against the standard

disease classification system ICD-9. We say that two diseases are associated accord-

ing to ICD-9, if they are classified under the same ICD-9 category[5]. For example,

diabetes mellitus (ICD-9 code: 250) and thyroiditis (ICD-9 code: 245) are classified

[5]http://www.icd9data.com/2013/Volume1/default.htm
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under the same category ‘endocrine, nutritional and metabolic diseases, and im-

munity disorders’. To investigate the correlation between our similarity measures

and the ICD-9 classification, we tested whether a pair of diseases from the same

ICD-9 category tends to have a higher similarity score than diseases from different

ICD-9 categories (Table 2). Since similarity scores obtained by our measures are not

normally distributed, we used a non-parametric test, namely the Mann-Whitney U

test, to assess the statistical significance (p-value). Our results show that for all

three similarity measures and all four disease-gene association datasets, similarity

scores of diseases from the same ICD-9 category are significantly higher than those

from different ICD-9 categories.

Correlation with comorbidity.

As the goal of our study is to uncover novel disease associations that may reflect

common underlying mechanisms, we are more interested in the associations between

diseases that belong to different ICD-9 categories. For this reason, we systematically

evaluated our similarity measures against a statistical measure of comorbidity. We

say two diseases are associated according to comorbidity if they are reported to have

a significant co-occurrence in the same individual. In particular, their ϕ-correlation

score should be higher than a chosen threshold and statistically significant at 5%

level. Figure S2 shows the distribution of ϕ-correlation scores for all pairs of dis-

eases we analysed. Note that even though the comorbidity associations we used for

evaluation contained disease associations across different ICD-9 categories, there

was overlap between associations derived from ICD-9 and comorbidity associations.

For example, the association between diabetes mellitus and obesity was supported

by both ICD-9 classification and comorbidity data. Since ICD-9 and comorbidity

describe the relationship between diseases from different aspects, we believe the

evaluations against ICD-9 classification and comorbidity do not contradict each

other, but are complementary to each other.

To assess the ability of our measures to uncover highly confident comorbidity as-

sociations, we used Receiver Operating Characteristic (ROC) curves, in which we

plotted the True Positive Rate (TPR, also known as sensitivity) versus the False

Positive Rate (FPR, also known as 1−specificity) for different thresholds of simi-

larity score. TPR is defined as the fraction of true positives (that is, all pairs of

diseases having a similarity score higher than a chosen threshold and having co-

morbidity association) out of the positives (all pairs of diseases having comorbidity

association), while FPR is defined as the fraction of false positives (all pairs of

diseases having a similarity score higher than a chosen threshold but having no

comorbidity association) out of the negatives (all pairs of diseases excluding those

having comorbidity association). Figure 2, Figure S5 and Table 3 show the ROC

curves and Area Under Curve (AUC) values obtained by the three disease similarity

measures. To illustrate that our results cannot be obtained by chance, we assigned

a randomised score which was drawn from the same distribution of the similar-

ity scores to each pair of diseases, and evaluated associations derived from these

randomised scores against comorbidity. We show that the correlation between our

similarity measures and comorbidity scores is substantially higher than expected at

random for all disease-gene association datasets we analysed. In particular, diseases
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yielding a high similarity score are very likely to have comorbidity associations, thus

confirming that our measures are able to uncover known comorbidity relationships.

While varying the ϕ-correlation threshold, we obtained higher AUC values for

higher thresholds (the ROC curves are not shown in the paper due to space limita-

tions). For example, when the ϕ-correlation threshold was set to 0.06 (49 comorbid-

ity pairs), the AUC value was 0.7580 ± 0.0024 (using the topology-based measure

and FunDO as the source of disease-gene associations). When the ϕ-correlation

threshold was set to 0.08 (33 comorbidity pairs) and 0.10 (25 comorbidity pairs),

the AUC value increased to 0.7669 ± 0.0027 and 0.7996 ± 0.0060, respectively.

This indicates our similarity measures tend to detect strong comorbidity associa-

tions with high ϕ-correlation. Meanwhile, when we decreased the number of false

negatives in the comorbidity data by lowering the ϕ-correlation threshold from 0.06

to 0.02, the AUC values we obtained were still higher than expected at random. For

example, when the ϕ-correlation threshold was set to 0.04 (93 comorbidity pairs)

and 0.02 (300 comorbidity pairs), the AUC values we obtained were 0.7064 ± 0.0019

and 0.6017 ± 0.0015, respectively. These results suggest our similarity measures are

robust to high false negatives in the comorbidity data. Better ROC curves can also

be obtained by evaluating diseases annotated with higher numbers of genes (Figure

S5). From Table 3, we observed that best performances of our similarity measures

are achieved by using highly confident curated disease-gene associations (i. e. the

intersection set of OMIM, CTD and FunDO), with AUC values higher than 0.98.

Note that our approach is robust to the incompleteness presented in disease-gene

association datasets and PPI networks. We downloaded the disease-gene association

data from OMIM and the PPI data from BioGRID (version 3.2.112) in June 2014 to

re-examine whether we obtained the same results when we used the latest biological

data. In total, the OMIM data contained 4,002 diseases (annotated by OMIM IDs),

3,218 genes and 4,816 disease-gene associations. The PPI network we constructed

contained 14,089 nodes and 126,891 edges. By re-computing the similarity scores

and evaluating the results against comorbidity on these latest biological data, we

showed that we were able to obtain results (shown in Figure S4) that agree with

the ones reported in Table 3 and Figure S5. These results further validated the

robustness of our approach.

Correlation with GWAS data.

We further examined the correlation between our predicted disease associations

and currently available highly confident GWAS data (see the Methods section for

details) to see whether our findings are supported by GWAS studies. A gene is said

to be associated with a disease according to GWAS, if the occurrence of genetic

variants (SNPs) within that gene is significantly higher in people with that disease

than in people without it. We say that two diseases are associated according to

GWAS if they share at least one gene in GWAS data. Since disease-gene associations

collected in the four datasets we analysed were extracted from the literature, genetic

associations reported in GWAS studies may also be collected in these datasets. To

avoid bias in evaluation, we chose FunDO as the source of disease-genes associations,

as it has few overlap with GWAS data. In particular, since most GWAS data were

published after FunDO’s last stable release (October 2008), only 42 out of 48,436
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publications in FunDO were also found in GWAS data. We removed disease-gene

associations collected from the common 42 publications before computing similarity

scores between diseases using FunDO. Similar to our evaluation against comorbidity,

we used ROC curve analysis to assess the ability of our similarity measures to recover

disease associations derived from GWAS (Table 4). For each of the three measures,

we found that the correlation between our similarity measures and GWAS data

is substantially higher than expected at random. This result further confirms the

validity of our methods.

Comparison of similarity measures

The three similarity measures, namely annotation-based measure, function-based

measure, and topology-based measure, use different biological information to pre-

dict disease associations. For a pair of diseases, the annotation-based measure esti-

mates their similarity score based on the overlap of their annotated genes, while the

function-based measure estimates their similarity score based on the overlap of their

associated biological functions derived from GO annotations. The topology-based

measure makes use of the topology information derived from the underlying PPI

network, and estimates disease similarity scores based on the topological similar-

ity of their annotated genes. Based on our evaluation, the three similarity measures

perform well in recovering known disease associations. Note that since all three mea-

sures compare diseases based on information derived from their associated genes,

the three measures are not independent from each other. Diseases that have many

shared genes are likely to have common biological processes and have high topo-

logical similarities. In addition, a part of the GO annotations is inferred from PPIs

(i.e., annotations with evidence code ‘inferred from physical interactions’). However,

even though dependency between the three measures exists, the three measures un-

cover different aspects of disease-disease associations. In fact, the predictions derived

from them can differ from each other, demonstrating that the three measures give

different insights despite being dependent. Figure S3 shows the overlap of disease

associations predicted by the three measures. When considering the top 5% of the

most associated disease pairs as our predicted disease associations, 14% ∼ 38% of

the predictions are supported by all three similarity measures.

In the topology-based measure, we used two terms, namely AllSig(Di, Dj) and

ShareSig(Di, Dj), to measure the topological simialrity of disease genes. Since the

term AllSig(Di, Dj) is defined as the maximum of the signature similarity be-

tween a gene associated with disease Di and a gene associated with disease Dj , we

have AllSig(Di, Dj) = 1 if the two diseases Di and Dj have at least one common

genes. The term ShareSig(Di, Dj) is defined as the maximum of the signature sim-

ilarity between genes that are shared between diseases Di and Dj , thus we have

ShareSig(Di, Dj) = 0 if the two diseases share no genes. Therefore, the topology-

based similarity score for a pair of diseases that share genes is always higher than

a pair of diseases that do not share genes. To assess the contribution of the two

terms, AllSig and ShareSig, in predicting disease associations, we evaluated the

performance of the topology-based similarity measure for predicting comorbidity as-

sociations by solely using AllSig and ShareSig as the disease similarity score. The

good performance of the topology-based similarity measure is mainly attributed to
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the term AllSig when using OMIM or CTD as the disease-gene association dataset

(Table S3). Since in these two datasets, only 2.69% (OMIM) and 16.62% (CTD)

disease pairs have common genes, we have Simtopology = AllSig for most disease

pairs. On the other hand, the good performance of the topology-based measure

is mainly caused by ShareSig when using FunDO or HuGENet, as in these two

datasets 31.41% (FunDO) and 80.57% (HuGENet) of disease pairs have common

genes.

Our similarity measures are sensitive to the noise in disease-gene association

data. We notice that prediction performances of our similarity measures gener-

ally decrease with the increase of noise level, thus using the intersection of curated

disease-gene association datasets results in the best performance when predicting

comorbidity associations (Table 3 and Figure S5). Both the annotation-based mea-

sure and the topology-based measure have better performances by using curated

disease-gene associations (i.e., OMIM, CTD and FunDO) than computationally pre-

dicted associations (i.e., HuGENet). However, the function-based measure obtains

lower AUC values for curated datasets CTD and FunDO than the two other simi-

larity measures, but higher AUC values for HuGENet. In this regard, the function-

based measure may be more appropriate for analysing predicted datasets, while the

annotation-based measure and topology-based measure may be more appropriate

for analysing curated datasets.

The annotation-based measure is straightforward, but has relatively good perfor-

mance according to our evaluation. However, as it only uses disease-gene associa-

tions to estimate similarity scores, for a pair of diseases sharing few genes, their

annotation-based similarity score may be low, even if their annotated genes are

closely related. In particular, the annotation-based measure is highly affected by

the occurrence of pleiotropic genes (genes that cause multiple phenotypes) in the

dataset. We obtained the list of 802 pleiotropic genes from the OMIM Morbidmap

by identifying genes that associated with more than one disease (similar approach

was used in [50]). To examine the influence of pleiotropic genes on our measures, we

excluded these genes from OMIM and evaluated the performances of our similar-

ity measures against comorbidity. Note that when pleiotropic genes were excluded

from OMIM, there were no disease pairs that had any common genes. Therefore,

the annotation-based similarity score for a pair of diseases became 0 in this case

and no predictions could be derived from the annotation-based measure. On the

other hand, since both the function-based measure and the topology-based mea-

sure use additional data sources (GO annotations or network topology) to estimate

similarity scores, they are less affected by pleiotropic genes. AUC values obtained

by the function-based measure and the topology-based measure dropped to 0.7816

and 0.7199 respectively, after removing pleitropic genes from OMIM. These results

show the contribution of similarities between specific genes (genes associated with

only one disease) to the prediction performances of our similarity measures.

Since disease-gene association datasets were obtained by different research groups

and approaches, good performances for all datasets confirm the robustness of our

similarity measures in predicting disease associations. In addition, the topology-

based measure is also robust to the noise and incompleteness presented in PPI

networks. We evaluated this by using PPI data obtained from different releases of
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BioGRID database (see Table S1 for details). Generally speaking, the performance

of the topology-based measure slightly decreases when using early PPI networks

(Table S2). However, AUC values obtained by using these early PPI networks are

still substantially higher than expected at random. These results suggest that the

ability of the topology-based measure to predict disease-disease associations may

increase with more accurate and complete PPI data.

Case studies

To demonstrate how our similarity measures can be used for uncovering novel dis-

ease associations, we present a case study for diabetes mellitus (DM, ICD-9 code:

250). DM is a metabolic disease that affects the body’s ability to produce or use

insulin, a hormone for regulating carbohydrates. It causes hyperglycemia and may

lead to severe consequences such as brain damage, amputations and heart disease

[51]. Table 5 lists the top 10 diseases associated with DM using the topology-based

measure and FunDO as the source of disease-gene associations. Results obtained by

other measures and data are not shown here due to space limitations.

Among these 10 diseases, both ovarian dysfunction (ICD-9 code: 256) and obesity

(ICD-9 code: 278) are classified under the same ICD-9 catalogue ‘Endocrine, nutri-

tional and metabolic diseases, and immunity disorders’ with DM. In addition, both

obesity and essential hypertension (ICD-9 code: 401) have highly confident comor-

bidity associations with DM. Note that among all disease pairs that we analysed,

only 0.74% of them have a ϕ-correlation score higher than 0.06. Therefore, the ϕ-

correlation scores reported in the case study (see Table S4 and Table S5 for details)

are relatively high compared with the ϕ-correlation scores of all disease pairs. More-

over, 6 out of 10 associations are supported by the GWAS data, e.g., rheumatoid

arthritis shares 8 genes with DM according to GWAS data. Apart from the above,

associations between DM and the remaining diseases listed in the table are consid-

ered as novel associations predicted by the topology-based measure. We evaluated

the top 14 novel associations via mining the literature on PubMed[6] (see Table S4

for details). We are able to confirm all of these associations, including surprising

associations such as DM and ‘other cerebral degenerations’ (ICD-9 code: 331). This

result highlights the power of our approaches to identify novel associations between

diseases. Further exploration of potential underlying mechanisms shared by these

diseases may lead to improvement in disease diagnosis, prognosis and treatment.

Another case study (Parkinson’s disease, ICD-9 code: 332) can be found in the

supplemental material.

Conclusions
In this study, we gained novel insights into the relationship between human diseases

by considering their molecular causes and underlying physical interactions. We used

information derived from latest biological data, including disease-gene associations,

gene functions and the topology of the human PPI network in our analysis. We

applied three different measures to estimate the similarity score of diseases, and

these measures were systematically evaluated against ICD-9 classification system,

[6]http://www.ncbi.nlm.nih.gov/pubmed
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a statistical measure of comorbidity and GWAS data. Our results showed the cor-

relation between associations predicted by our measures and known disease asso-

ciations, and we also demonstrated the use of our measures in discovering novel

disease associations and validated it via literature curation.

Novel disease associations uncovered in this study can be further used to improve

our understanding of disease classification. For example, a human disease network

that models the relationship of diseases can be constructed based on these simi-

larity measures, and computational approaches, such as clustering, can be applied

to detect communities in the disease network. This may provide the opportunity

to redefine the current disease classification and further lead to improvements in

disease diagnosis, prognosis and treatment.
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Figures

Figure 1 The overlap of datasets. The overlap of diseases (denoted by ‘D’), genes (denoted by
‘G’) and their associations (denoted by ‘A’) between the four disease-gene association datasets we
analysed. Boxes on the left list the sizes of the datasets. The size of the intersection of the
datasets is marked in bold.

Figure 2 Evaluation against comorbidity. ROC curves obtained by evaluating the three disease
similarity measures against comorbidity. Due to space limitations, only ROC curves of FunDO are
shown here (see Figure S5 for ROC curves of other datasets). The ϕ-correlation threshold was set
to 0.06 (the same threshold was used in [44]). We evaluated diseases annotated with at least 1, 3,
5, 7, 10, 15 genes, shown by curves with different colours in each plot.

Tables
Additional Files
Additional file 1 — Supplementary Information

The Supplementary Information file contains all additional figures and tables mentioned in the manuscript.
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Table 1 Comparison of studies on inferring disease association. The comparison is based on the data
used to derive associations (denoted by ’Data’), number of diseases evaluated (denoted by ’Size’) and
benchmarks used for evaluation (denoted by ’Evaluation’). The number of diseases evaluated in our
study is computed as the union of diseases annotated in the four disease-gene association datasets we
analysed, given in Figure 1.

Data Size Evaluation
van Driel et al.
(2006) [4]

OMIM 5132 phenotypes
in OMIM

Comparing results with
genotypic similarities

Lage et al. (2007)
[5]

OMIM 7000 OMIM record
pairs

Evaluating results against
the overlap of the OMIM
record pairs

Goh et al. (2007)
[6]

OMIM 1284 OMIM
diseases

Analysing network topologi-
cal properties

Huang et al. (2009)
[12]

GWAS 7 diseases Comparing results with phe-
notypic similarities

Li and Agarwal
(2009) [7]

Pubmed abstracts,
biological pathways

1028 diseases in
MeSH

Comparing results with
MeSH classification

Kim et al. (2009)
[13]

GWAS 53 clinical traits
related to severe
asthma

Mining the literature manu-
ally

Hu and Agarwal
(2009) [8]

Expression data 645 diseases in
MeSH

Comparing results with
MeSH classification

Suthram et al.
(2010) [9]

Expression data,
PPI

54 diseases Evaluating results against
genetic similarities

Lewis et al. (2011)
[14]

GWAS 61 diseases Comparing results with
Huang et al. (2009) results

Mathur and
Dinakarpandian et
al. (2007) [10]

DO annotation, GO
annotation

36 diseases (for
evaluation)

Evaluating results using 68
curated disease associations

Our study Disease-gene
associations, GO
annotation, PPI

543 ICD-9 diseases Evaluating results against
ICD-9 classification, comor-
bidity, and genetic similari-
ties derived from GWAS data

Table 2 Evaluation of our measures against ICD-9 classification. Numbers in the table are similarity
scores between diseases from the same ICD-9 categories, compared with those from different ICD-9
categories. P -values are calculated by using the Mann−Whitney U test.

Data Group Annotation-based Function-based Topology-based
OMIM Same 0.0114 ± 0.0665 0.0355 ± 0.0892 0.4349 ± 0.1101

Different 0.0010 ± 0.0139 0.0118 ± 0.0314 0.3996 ± 0.0760
P -value 1.2785 ×10−13 1.0423 ×10−52 2.1257 ×10−54

CTD Same 0.0361 ± 0.1590 0.0728 ± 0.1754 0.4863 ± 0.1770
Different 0.0050 ± 0.0274 0.0333 ± 0.0662 0.4408 ± 0.1368
P -value 1.4887 ×10−23 1.4040 ×10−9 2.0240 ×10−25

FunDO Same 0.0418 ± 0.1344 0.0991 ± 0.1611 0.5560 ± 0.2214
Different 0.0100 ± 0.0262 0.0549 ± 0.0830 0.4952 ± 0.1636
P -value 1.7609 ×10−144 9.6708 ×10−100 2.7037 ×10−90

HuGENet Same 0.0931 ± 0.1798 0.2470 ± 0.2123 0.8031 ± 0.2248
Different 0.0438 ± 0.0566 0.1881 ± 0.1522 0.7837 ± 0.2292
P -value 1.4585 ×10−74 9.9053 ×10−72 4.5910 ×10−14

Intersection Same 0.0338 ± 0.1511 0.0593 ± 0.1907 0.3826 ± 0.1131
Different 0.0024 ± 0.0329 0.0089 ± 0.0428 0.3496 ± 0.1020
P -value 2.2667 ×10−2 2.7448 ×10−4 5.4716 ×10−4

Union Same 0.0350 ± 0.1179 0.0963 ± 0.1463 0.5680 ± 0.2226
Different 0.0085 ± 0.0219 0.0583 ± 0.0818 0.5042 ± 0.1716
P -value 1.3493 ×10−211 7.1478 ×10−113 4.1709 ×10−141
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Table 3 Evaluation of our measures against comorbidity. Numbers in the table are AUC values
obtained by evaluating the three disease similarity measures against comorbidity associations. The
ϕ-correlation threshold was set to 0.06 (the same threshold was used in [44]), and all diseases
annotated with at least 3 genes were evaluated. Average AUC values obtained by using randomised
scores are shown by numbers in brackets (standard deviations are not shown in the table due to space
limitation). Each evaluation test was run 30 times to compute the statistics reported in the table.

Data Annotation-based Function-based Topology-based
OMIM 0.8009 ± 0.0277 (0.5740) 0.8694 ± 0.0073 (0.5120) 0.8495 ± 0.0011 (0.5044)
CTD 0.7849 ± 0.0164 (0.5404) 0.7316 ± 0.0046 (0.5047) 0.7949 ± 0.0042 (0.5203)
FunDO 0.7426 ± 0.0088 (0.4672) 0.7142 ± 0.0017 (0.4940) 0.7497 ± 0.0016 (0.5031)
HuGENet 0.7563 ± 0.0001 (0.5084) 0.8185 ± 0.0001 (0.4987) 0.7153 ± 0.0015 (0.4922)
Intersection 0.9925 ± 0.0001 (0.6013) 0.9802 ± 0.0001 (0.5081) 0.9958 ± 0.0041 (0.4664)
Union 0.8225 ± 0.0045 (0.4704) 0.7491 ± 0.0001 (0.4999) 0.7939 ± 0.0022 (0.5008)
Average 0.8194 ± 0.0837 (0.5270) 0.8106 ± 0.0930 (0.5029) 0.8163 ± 0.0907 (0.4979)

Table 4 Evaluation of our measures against GWAS. Numbers in the table are AUC values obtained
by evaluating the three disease similarity measures against disease associations derived from highly
confident GWAS data. Only diseases annotated with at least 3 genes were evaluated. ‘F/G’ are
diseases having associated genes in both FunDO and GWAS data (99 diseases in total). ‘Common’
are diseases having associated genes in all four disease-gene association datasets (given in Figure 1)
and GWAS data (50 diseases in total). Average AUC values obtained by using randomised scores are
shown by numbers in brackets (standard deviations are not shown in the table due to space
limitation). Each evaluation test was run 30 times to compute the statistics reported in the table.

Data Annotation-based Function-based Topology-based
F/G 0.7224 ± 0.0010 (0.4945) 0.6781 ± 0.0001 (0.4968) 0.6863 ± 0.0009 (0.5005)
Common 0.7527 ± 0.0010 (0.4926) 0.7147 ± 0.0001 (0.5005) 0.7555 ± 0.0020 (0.4951)

Table 5 List of the top 10 diseases associated with DM. The topology-based measure was used as
the similarity measure, and FunDO was used as the source of disease-gene associations. Only diseases
annotated in all four disease-gene association datasets are listed in the table. For a disease associated
with DM according to ICD-9, comorbidity or GWAS, we added the supported evidence to the
reference (the last column). The remaining disease associations were validated via mining the
literature on PubMed, and for each disease only one reference (shown by PubMed ID) was listed in
the table due to space limitation.

Rank Code Disease name Reference
1 239 Neoplasms of unspecified nature PMID: 23639840
2 155 Malignant neoplasm of liver and intrahepatic bile

ducts
GWAS

3 710 Diffuse diseases of connective tissue GWAS
4 714 Rheumatoid arthritis and other inflammatory pol-

yarthropathies
GWAS

5 256 Ovarian dysfunction ICD-9, GWAS
5 278 Overweight, obesity and other hyperalimentation ICD-9, comorbidity, GWAS
7 401 Essential hypertension Comorbidity
8 295 Schizophrenic disorders PMID: 17474808
9 282 Hereditary hemolytic anemias GWAS
10 289 Other diseases of blood and blood-forming organs PMID: 11727971


