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Making sense of networks via
graph-theoretic modeling
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The emerging area of network biology is seeking to pro-

vide insights into organizational principles of life.

However, despite significant collaborative efforts, there

is still typically a weak link between biological and com-

putational scientists and a lack of understanding of the

research issues across the disciplines. This results in the

use of simple computational techniques of limited poten-

tial that are incapable of explaining these complex data.

Hence, the danger is that the community might begin to

view the topological properties of network data as mere

statistics, rather than rich sources of biological infor-

mation. A further danger is that such views might result

in the imposition of scientific doctrines, such as scale-

free-centric (on the modeling side) and genome-centric

(on the biological side) opinions onto this area. Here, we

take a graph-theoretic perspective on protein-protein

interaction networks and present a high-level overview

of the area, commenting on possible challenges ahead.
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Introduction

Recent advances in experimental biology have enabled the
production of large quantities of interaction data between
genes and proteins. High-throughput screens, such as yeast
two-hybrid (Y2H) assays [1–7], affinity purification coupled to
mass spectrometry (AP/MS) [8–11] and synthetic-lethal and
suppressor networks [12], have yielded partial networks for
humans [5, 6], microbial [13–15] and viral [16] pathogens, as
well as many model organisms [1–4, 10–12]. These large net-
works are offering many interesting and important opportu-
nities for biological and computational scientists. We are
currently at a unique time in the history of science when
algorithmic and modeling advances applied to these data
could contribute to biological understanding, hence poten-
tially impacting therapeutics and public health. The nascent
field of network biology faces considerable challenges. First,
our current observational data are largely incomplete due to
sampling, population averaging, and other biases in data
collection, handling and interpretation [17–24]. Also, they
are noisy due to bio-technological limitations used for their
collection. An example of a protein-protein interaction net-
work (PIN) that illustrates sparsity of the data is presented in
Fig. 1. Despite incompleteness and noise, the scientific com-
munity has begun analyzing and modeling these data, which
yielded interesting and sometimes controversial discoveries
[25–35]. For example, it has been questioned whether meta-
bolic networks are ‘‘scale-free’’ or ‘‘scale-rich’’ [25, 26],
whether the most connected nodes (‘‘hubs’’) in yeast PIN
are lethal [27, 28], whether complex networks are ‘‘self-
similar’’ or ‘‘self-dissimilar’’ [29, 30], or whether hubs in yeast
PIN can be divided into ‘‘party’’ hubs, those that interact with
their partners simultaneously, and ‘‘date’’ hubs, those that
interact with different partners at different times or locations
[32–35] (see Network topology and biological function and
disease further below). The controversies often resulted from
a lack of understanding of the sampling properties of the data,
as well as from the use of computational techniques sensitive
to noise [19–21]. Also, a deep significance has initially been
attributed to power-law distributions in many biological
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networks, e.g. suggesting a ‘‘universal architecture’’ of com-
plex systems, that has later been challenged [31].

Modeling biological networks is of importance, since only
by using models we can obtain a concise summary of the
phenomenon at study that might exhibit some unexpected
properties that we may want to further explore experimen-
tally. Different modeling paradigms exist. In this manuscript,
we focus on graph-theoretic analyses and modeling. It can be
argued that such analyses are over-simplified views of net-
worked systems, as they are abstractions that ignore the
dynamics (e.g. see [36, 37] for accounts of dynamics). Many
protein-protein interactions (PPIs) are naturally undirected,
representing so-called ‘‘stable’’ interactions in which interact-
ing partners find each other and stay bound (e.g. protein
complexes such as ribosome, or hemoglobin), while others
are ‘‘transient’’ in the sense that the interacting partners bind
and unbind at different times and under different conditions
(e.g. signaling cascades). Hence, if we had complete knowl-
edge of a PIN, it would need to be represented as a mixed
network of directed and undirected edges, with time-depend-
ent components that include many parameters. However,
such information is currently unavailable on a systems-level
scale, so PINs are static undirected networks that amalgamate
stable interactions with all of the currently known transient
interactions at all examined time points and experimental
conditions. Nevertheless, even simple graph-theoretic
analyses of such data have already provided valuable bio-
logical insight (see below). Hence, it can be argued that these
data contain substantial biological information that is hidden
in their complexity, which could be revealed by developing
and applying sophisticated graph-theoretic techniques.

The purpose of the manuscript is not to enter the debate
about reductionist and deterministic (that philosophers of
science tend to consider as naive or simplistic) versus dynamic
modeling, issues of the relationship between theory, model,

and experiment, or what strictly can be ‘‘predicted’’ by a
model or a theory (e.g. see refs. [38, 39]). Instead, I argue that
one way we can learn about biology is by analyzing and
modeling the ‘‘topology’’ (also called ‘‘structure’’) of bio-
logical networks. Hence, I will not refrain from using an
analogy with physical sciences and astronomy in the 17th
century: even though, thanks to Copernicus, Kepler, Galileo
and others, good observational data were available at the
time, along with competing theories of whether our solar
system was geocentric or heliocentric, it was not until Sir
Isaac Newton came up with his laws of universal gravitation
and motion that we understood why planets move as they do.
Only in the light of these laws did the observations about our
solar system become evident and we understood that they are
only a part of a much larger phenomenon. Similarly, the main
reason to model network data is to understand laws, since
only with the help of such laws we can hope to be able to make
predictions and reproduce the phenomena. One way of mod-
eling is by using graph theory. Despite imperfect data, proper-
ties of a network model have already been used to reduce
complexity. For example, they have been used to propose a
strategy for optimal interactome detection [40]. Also, we have
exploited them for developing efficient algorithms for approxi-
mately solving computationally intractable problems (such
algorithms are called ‘‘heuristic’’ algorithms) [41] and for data
de-noising [42].

Network comparisons via network
properties

Comparative analyses of network data would enable finding
similarities and differences between biological networks as
well as knowledge transfer. This would be useful since a lot is
often known about a network of a model organism, but very
little about networks of other organisms. However, comparing
large networks (also called ‘‘graphs’’) is computationally
infeasible, since any such comparison would involve solving
the ‘‘subgraph isomorphism problem’’ that asks whether one

Figure 1. A: An example of a PIN [22]. B: The adjacency matrix of
the same network illustrating its sparsity.
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graph exists as a copy in another graph; unfortunately, this
problem is known to be computationally intractable, so no
efficient way of solving it exists. Hence, easily computable
heuristic approaches are sought.

Some of these easily computable approaches are called
‘‘network properties’’ and they can roughly and historically be
divided into two groups: top-down macroscopic statistical
‘‘global network properties’’ and bottom-up microscopic ‘‘loc-
al network properties’’. Widely used global network properties
include the ‘‘degree distribution’’, ‘‘clustering coefficient’’,
‘‘clustering spectra’’, ‘‘network diameter’’, and various forms
of network ‘‘centralities’’ [43]. Based on these properties, net-
work models (see Network models further below) have been
proposed for biological networks if the properties of model
networks fit those of the data. The ‘‘degree’’ of a node is the
number of edges that the node touches; hence, the degree is a
property of a node. The ‘‘degree distribution’’ is a property of a
network: it is the distribution of degrees of all nodes in the
network; equivalently, it is the probability that a randomly
selected node in a network has degree k [commonly denoted
by P(k)]. Many biological networks, including PINs, have non-
Poisson degree distributions with a power-law tail, P(k) �k�g,
g > 0; all such networks have been termed ‘‘scale-free’’ [44].
Due to its conceptual simplicity, this property has widely been
used to ‘‘characterize’’ real networks, even though it is a very
weak descriptor of network structure [45, 46]. For example, a
network consisting of five triangles and a network consisting
of one 15-node ring are of the same size, i.e. they have the
same number of nodes and edges, and they have the same
degree distribution (each node has degree 2), but their top-
ologies are very different. This holds true for other global
network properties including the clustering coefficient, which
is the measure of ‘‘cliquishness’’ in the network, and the

network diameter, which measures how ‘‘far spread’’ the net-
work is [45]. PINs and other biological and real networks have
high clustering coefficients compared to completely random
networks, as well as small average diameters, of the order of
O(log n), where n is the number of nodes in a network; this is
called the ‘‘small-world’’ property of a network [47]. However,
global network properties of largely incomplete PINs can be
misleading, since they describe the network structure pro-
duced by the sampling techniques used to obtain these net-
works rather than the true structure of the currently unknown
complete networks [19–21]. Luckily, certain neighborhoods of
PINs are well studied, and usually network regions relevant
for human disease. Hence, local descriptions applied to the
well-studied areas are more appropriate.

The local properties that concern us are based on the
notion of a subgraph. A ‘‘subgraph’’ (or a ‘‘partial subgraph’’)
of a network G is a network whose nodes and edges belong to
G. An ‘‘induced subgraph’’ H of G has to contain all edges of
G that connect nodes of H. For example, in graph G2 in Fig. 2, if
we pick all three nodes, we can pick any two edges between
them to form a three-node linear path (such as graph G1 in the
same figure); such three-node paths are partial subgraphs of
G2. Since an induced subgraph must contain all edges, the
only three-node induced subgraph of G2 is a triangle.
Analogous to sequence motifs, ‘‘network motifs’’ have been
defined as partial subgraphs that occur in a real network at
frequencies much higher than would be expected at random
[48–50]. It has been proposed that network motifs are func-
tional building blocks of gene regulation and other biological
networks, and that different motifs are characteristic for differ-
ent types of real networks [48–51]. However, it is unclear what
subgraph enrichment should be expected at random, since
many different random graph models exist (see Network
models further below) [52]. Also, when we are characterizing
the structure of any network family, we care about induced
rather than partial subgraphs [53]. Hence, we define a ‘‘graph-
let’’ as a small, connected, INDUCED subgraph of a network. We
introduce approaches based on the frequencies of occurrence

Figure 2. All 2-, 3-, 4-, and 5-node graphlets, G0, G1,. . .,G29 and
the orbits denoted by 0, 1, 2,. . .,72 [54]. In each graphlet, nodes
belonging to the same orbit are of the same shade.
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of all graphlets with up to five nodes (presented in Fig. 2),
regardless of whether they are over-represented in the data
when compared with any model networks [45, 54]. That is,
graphlets do not need to be over-represented and this, along
with being induced, distinguishes them from network motifs.

By counting the frequency of graphlets across a network,
we obtain a statistical characterization of local structure of a
network, independent of any network null model, and com-
paring such frequency distributions gives a measure of struc-
tural similarity between networks [45]. We further refined the
graphlet idea by noting that in some graphlets, the nodes are
distinct from each other. For example, in a ring (cycle) of four
nodes, every node looks the same as every other, but in a chain
(path) of four nodes, there are two end nodes, and two middle
nodes. We formalized this idea by using graph ‘‘automorphism
orbits’’ [54] (described below). In this way, we enhance the
sensitivity of using graphlets for network analysis and model-
ing without increasing the computational cost.

Network models

Erdös-Rényi (ER) random graphs are the earliest random
graph model. In these graphs, edges are drawn between pairs
of nodes uniformly at random with the same probability,
p [55]. This model has been extensively studied and many
of its properties are mathematically well understood [56]. For
this reason, it is a standard model to compare the data against,
even though it is not expected to fit the data well. Since ER
graphs, unlike PINs, have Poisson degree distributions and
low clustering coefficients, other network models have been
designed. In ‘‘generalized random graphs’’, the edges are
randomly chosen as in ER graphs, but the degree distribution
is constrained to match that of the data [57, 58]. ‘‘Small-world’’
networks integrate between regularity and randomness by
being regular ring lattices with a small number of randomly
rewired edges; hence, they have small diameters and large
clustering coefficients [47]. Scale-free (SF) networks include
an additional constraint that the degree distribution follows a
power-law [44, 46]. Since the degree distributions of many
PINs decay as approximate power-laws, many variants of SF
network growth models have been proposed, the most notable

of which are those based on biologically motivated gene
‘‘duplication and mutation’’ principles [59, 60]. Examples of
model networks are presented in Fig. 3.

We have proposed an alternative, biologically motivated
models for PINs, based on ‘‘geometric graphs’’ (GEO) [45, 54,
61–63]. Assume we have a collection of points distributed in
space. We pick a constant distance e and say that two points
are ‘‘related’’ if they are within e of each other. This relation-
ship can be represented as a graph, where each point in space
is a node and two nodes are connected if they are within
distance e. This is called a ‘‘geometric graph’’; if the points
are distributed at random, then it is a ‘‘geometric random
graph’’. Illustrations are presented in Fig. 4.

As mentioned above, the degree distribution provides a
very weak constraint on the structure of a graph. Graphlet-
based methods are much more highly constraining. Using
them, we have shown that the data are fit much better by
the GEO model than by the SF model [45, 54]. This brings a
question of how to decide which property to trust when
comparing networks. We have shown that when a series of
global and local network properties is used to compare various
PINs with various model networks by using several machine
learning classifiers, the structure of PINs is the most consistent
with the structure of noisy GEO networks [63]. We have further
corroborated the fit of GEO by demonstrating that PINs can
explicitly be embedded into a low-dimensional geometric
space [64]. To build a GEO that corresponds to the PIN, as
the distance between proteins we used a function of the short-
est path length between them in the PIN. We have devised
further refinements of GEO to fit PINs even better, by learning
the distribution of proteins in the embedding space [61], or by
replicating the principles of gene duplications and mutations
mentioned above in a geometric space [62]. Conceptually, the
reason for the good fit of GEO to PINs could lie in the obser-
vation that all biological entities, including genes and proteins
as gene products, exist in some multidimensional biochemical
space; currently, it is hard to hypothesize about the nature or
dimensionality of that space. Gene duplications and
mutations are naturally modeled in the biochemical space:
a duplicated gene starts at the same point in the space as its
parent and then natural selection acts either to eliminate one,
or cause them to slowly separate in the space. This means that
the child inherits some of the interactors of its parent, while
possibly gaining novel connections as well. The further the
child is moved away from its parent in this abstract space, the
more different their biochemical properties. Currently, such

Figure 3. Examples of model networks. A: An Erdös-Rényi random
graph. B: A small-world network. C: A scale-free network.
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GEO models are quite crude mathematical approximations of
real biology and their further refinement is needed.

Network alignment

Another way to compare networks is by ‘‘aligning’’ them.
Analogous to sequence comparison and alignment that has
had a deep impact on our understanding of evolution, biology,
and disease, comparison and alignment of biological networks
are likely to have a similar impact.

Hence, it has been argued that comparing networks of
different organisms in a meaningful way is one of the foremost
problems in evolutionary and systems biology [65].
Conceptually, network alignment tries to find the best way
to ‘‘fit’’ network G into network H even if G does not exist as an
exact subgraph of H [65]. A simple example illustrating net-
work alignment is presented in Fig. 5. Unfortunately, in con-
trast to sequence alignment, any reasonable formulation of
this problem makes it computationally infeasible to solve
exactly. The reason for this is the underlying subgraph iso-
morphism problem described above. In addition, PINs and
other biological networks contain noise, i.e. missing edges,
false edges, or both [66]. Also, biological variation makes it
further non-obvious how to measure the ‘‘goodness’’ of the fit
between aligned networks.

As for sequence alignments, ‘‘local’’ and ‘‘global’’ network
alignments exist. In local alignments, a node can be mapped
to several nodes. In contrast, a global network alignment
provides a unique alignment from each node in the smaller
network to exactly one node in the larger network. However, a
disadvantage is that this might lead to non-optimal node
pairings in some local network regions. The majority of
methods used for alignment have focused on local alignments
that aim to find small subnetworks corresponding to pathways
or protein complexes conserved in PPI networks of different
species [67–70]. The earliest such algorithm is PathBLAST,
which searches for high-scoring alignments of pathways
between two PINs by taking into account the probabilities
that PPIs in a pathway are true PPIs rather than false positives,

as well as the homology information derived from sequences
of the aligned proteins [67]. PathBLAST identified orthologous
pathways between yeast Saccharomyces cerevisiae and bacte-
rium Helicobacter pylori. A modification of PathBLAST, called
NetworkBLAST-M, identified conserved protein complexes in
multiple species [71]. Another approach, called MaWISh
(Maximum Weight Induced Subgraph), uses the duplication
and divergence models for understanding the evolution of
protein interactions [72]. Using this model, MaWISh constructs
a weighted global alignment graph and tries to find a maxi-
mum induced subgraph in it. MaWISh is used to perform
pairwise alignments of yeast, worm, and fruitfly PINs.
Graemlin is another local network aligner; it gives a score
to a possibly conserved module between different networks by
computing the log-ratio of the probability that the module is
subject to evolutionary constraints and the probability that the
module is under no constraints, while taking into account
phylogenetic relationships between species whose networks
are being aligned [69].

Several global network alignments have been developed
[73–79]. The earliest one, IsoRank, follows the intuition that
two nodes should be matched only if their neighbors can also
be matched [73]. This is formulated as an eigenvector problem
and spectral graph algorithms are used to compute scores for
topologically aligning node pairs from different networks.

Figure 4. Left panel: 250 points in the unit cube. Middle panel: the
resulting geometric graph with a cut-off distance of 0.1. Right panel:
the same points, but a different graph resulting from a cut-off dis-
tance of 0.15.

Figure 5. An example of an alignment of two networks.
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Bioessays 00: 000–000,� 2010 WILEY Periodicals, Inc. 5

R
e
v
ie

w
e
s
s
a
y
s



IsoRank also includes BLAST scores [80] for sequence sim-
ilarity between proteins in PINs into the node alignment; it
utilizes a user-defined weight constant l that controls for the
relative contribution of network similarity, whereas 1-l con-
trols for the contribution of sequence similarity. These scores
are then used in a greedy strategy for constructing an align-
ment. IsoRank was used to identify functional orthologs
between yeast and fly. It was later extended to perform
multiple local and global alignments between networks
[75, 77]. While this approach combined topology and sequence
information, we designed network alignment approaches that
use only network topology (see below) [78, 79]. Also, network
querying approaches exist that use no topology at all [81].
‘‘Network querying’’ is a type of network comparison that
finds, in a PIN, subnetworks similar to the query network,
which is usually a protein complex or a pathway. Due to space
constraints, we do not survey network querying approaches.

Our global network alignment algorithms that are based
solely on local network topology are called GRAAL (GRAph
ALigner) [78] and H-GRAAL [79]. Since they rely on topology
only, they can align networks of any type, not only biological
ones. Both algorithms use ‘‘graphlet degrees’’ defined below,
which give a highly constraining quantification of the topo-
logical similarity between nodes [82]. If we recall that the
degree of a node is the number of edges it touches, and that
an edge is the only graphlet with two nodes (graphlet G0 in
Fig. 2), we can define a ‘‘graphlet degree’’ of node x with
respect to each graphlet Gi in Fig. 2, in the sense that the Gi

degree of x counts ‘‘how many graphlets of type Gi touch node
x’’ [54]. Then, the traditional degree is simply the G0 degree.
Since there are 30 graphlets with up to five nodes, this would
provide a vector of 30 ‘‘graphlet degrees’’. Luckily, specificity
can be increased by observing that not all nodes in a graphlet
are necessarily topologically equivalent. For example, the
middle node in G1 is topologically distinct from the end nodes
of G1 (Fig. 2). Figure 2 shows all 73 topologically distinct nodes
across all graphlets with up to five nodes. Each is called an
‘‘orbit’’ (an ‘‘automorphism orbit’’, see [54, 82] for details),
and we label them 0,. . .,72. The ‘‘graphlet degree vector’’
(GDV) or ‘‘GD signature’’ of node x hence has 73 elements;
element i represents the number of times node x ‘‘touches’’ a
graphlet at orbit i, across all the graphlets in its neighborhood.
Hence, it describes the topology of a node’s neighborhood and
captures the node’s inter-connectivities out to a distance 4.
Reaching out to distance 4 from a node might be enough to
almost uniquely determine the node’s position in a network,
since many real-world networks have the ‘‘small-world’’ prop-
erty [47] (described in Network models above). Based on find-
ing GD signature-similar nodes across two networks, GRAAL is
a seed-and-extend approach, while H-GRAAL is based on the
Hungarian algorithm for solving the assignment problem,
which is a combinatorial optimization algorithm for finding
a maximum weight matching in a weighted bipartite graph.
We applied them to yeast and human PINs, and they expose
regions of network similarity about an order of magnitude
larger than other algorithms. Also, we used them to transfer
knowledge from annotated to unannotated parts between
aligned networks. Moreover, analogous to sequence align-
ments, we used the network alignment scores to infer phy-
logeny [78, 79]. Thus, network alignments could have the

potential to provide a completely new, independent source
of biological and phylogenetic information.

The reason for developing methods for aligning large
biological networks, such as PINs, that use only network
topology is twofold. Biological networks describe a part of
biological information, just as genetic sequences do. We argue
that sequence and topology provide complementary insights
into biological knowledge [83]. Analogous to sequence align-
ment algorithms that do not use biological information exter-
nal to sequences to perform alignments, using biological
information external to network topology might deter from
finding biological information that is encoded in network
topology. We argue that we can learn the most about biology
only after reliable algorithms for analyzing each data type
separately are developed and then integrated [78].

Network topology and biological function
and disease

The relationship between the topology of PINs and biological
function has been the subject of many studies. The aim is to
predict function of unannotated proteins [84]. Similarly, the
role of PINs in disease has been examined [85]. An early
approach found a correlation between protein connectivity,
i.e. degree, in a PIN and its essentiality in baker’s yeast [27].
However, node degree alone seems to be a poor measure of
topology around a node in the network, since the correlation
failed on newer PINs [28, 86] and it appears to hold only for
literature-curated [87] and smaller in scope Y2H [2] PINs. Note,
however, that this might be due to the fact that these data sets
are biased toward essential proteins [88]. We examined similar
simple correlations between connectivity in a PIN and protein
function [89].

Considering high node connectivity as a good measure of
topological positioning of a protein in a PIN led to another
controversy [32–35]. ‘‘Hubs’’ in a PIN have been studied in the
context of expression correlation, co-localization, evolution-
ary rates, and structural perturbation of a PIN upon deletion.
Based on these, a distinction between ‘‘party’’ hubs and
‘‘date’’ hubs described above has been proposed [32, 34].
However, the results could not be reproduced on literature-
curated PIN data sets [33, 35]. Hence, in addition to the degree
being a weak measure of network topology, the controversy
also may have resulted from biases that different techniques
for PIN construction impose on PIN topologies [66, 90]. An
example of a bias that impacts PIN topology is the one that
exists in PINs resulting from AP/MS screens: the interactions
in these PINs are typically modeled by using either the
‘‘matrix’’ (all proteins associated in the pulled-down protein
complex are assumed to directly interact), or the ‘‘spoke’’ (the
bait protein of the pulled-down complex is assumed to interact
with all associated prey proteins, but no other interactions in
the complex are assumed) model [24, 91] and the choice of
a model has been shown to have an impact on the PIN
topology [23].

Because of these controversies linked to using overly
simple measures of network topology, such as node degrees,
a series of more involved graph-theoretic methods have been
developed. Some were based on the assumption that proteins
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that are closer in a PIN are more likely to have similar function
[92–94], others tried to minimize the number of PPIs among
different functional categories in a PIN [95, 96], or used cut-
based and network flow-based methods [97]. Also, functional
homogeneity of groups of proteins that show some type
of ‘‘clustering’’ or ‘‘coherence’’ in a PIN has been examined
[11, 89, 98–102]. Graphlet degree vectors (described in Network
alignment above) have also been used to isolate the topolog-
ical positions of proteins in PINs and relate them to protein
function and involvement in disease [82, 103, 104].

Similarly, human PINs have been examined for topology-
disease associations. Again, when only node degrees were used
to measure topology, a discrepancy was observed in the sense
that some groups reported that genes (and proteins) involved in
disease tend to have high degrees in PINs [105, 106], while
others contradicted that conclusion [107]. Apart from this,
general observations were that disease-causing proteins are
closer together and are centrally positioned within the PIN
[105–107]. However, these results might be biased, since dis-
ease-causing proteins may exhibit these properties simply
because they have been better studied than nondisease proteins
[85]. More constraining measures of network topology, such as
graphlet degree vectors, were also utilized and revealed that
topological similarities of known regulators of melanogenesis
in the human PIN can be used to predict novel melanogenesis
regulators involved in cancer [104]. Also, by simulating propa-
gation of an abstract functional ‘‘flow’’ (where ‘‘function’’
means known involvement of a protein in a disease) from
disease-causing proteins to their neighbors in the PIN was used
to score the strength of disease association of proteins and
protein complexes [108]; note that this has nothing to do with
network dynamics, it is a method applied on a (static) PIN to
rank and predict involvement of a protein in a disease. An
approach that combines different data sets with PINs to predict
cancer genes has also been proposed [109].

A general conclusion is that the relationship between net-
work topology and biological function and involvement in
disease is far from being random, even though we are cur-
rently not capable of providing complete mathematical
characterizations of those relationships.

Outlook

The nascent research area of network biology is already in
turmoil. It gathers researchers from various disciplines who
have different levels of biological and quantitative under-
standing. Hence, the use of simple measures of network top-
ologies, such as node degrees, and modeling of simple
biological phenomena are preferred. However, as demon-
strated above, such practices result in inconclusive or con-
troversial results clearly demonstrating the need for
developing better algorithmic and mathematical tools.
Discouraged by such controversies, some sub-communities
have started developing aversions toward ‘‘overly compli-
cated’’ methods and new models. Such positions could poten-
tially lead to the emergence of overly simplistic doctrines that
could further hinder this emerging research area. For example,
widely publicized use of simple computational techniques,
such as degree distributions, on early and noisy PINs has

contributed to the propensity toward SF-centric modeling of
complex biological networks [31], which has since been shown
to be far too simplistic a model for such networks.

Another example involves the genome-centric view of
biological systems. Analyses of genetic sequence data have
certainly revolutionized our view of biology. However, they
have not provided us with complete understanding of bio-
logical systems and we should keep being open toward new
scientific horizons. In particular, even though PIN data are
new and currently noisy and incomplete, and even though
most mathematical methods currently applied to them are
rather primitive, there is already evidence documenting that
they can reveal biological information that could not have
been inferred from genetic sequence, at least not by using the
currently available sequence analysis tools. Despite these
results, some members of the community have kept question-
ing the value of the network data with unsubstantiated claims
challenging relatedness of network topology and biological
function. At a recent meeting, this led to a publicly asked
question of whether the community ‘‘should keep analyzing
PIN data’’. Needless to say, the danger is that such questions
would lead to scientific censorship that the area might already
be starting to experience. For instance, studies showing that
PIN data reveal biological information that cannot be obtained
from genetic sequence can be viewed as being wrong, since
they are not in agreement with the well-established sequence-
based beliefs. Conversely, if PIN-based studies are in agree-
ment with what sequences tell us, then they are often regarded
as useless, since they only confirm what we can get from
sequences. Hence, PIN analyses are bound to lose in such
an unfairly played game. Moreover, such views might have
negative impacts on the availability of funding resources
needed for continued data collection, as well as for the accom-
panying development of reliable computational and modeling
methods. Both genome analysis and network topology
analysis are major domains of modern bioinformatics, and
playing either one against each other, which happens some-
times at bioinformatics meetings, is akin to getting lost in local
politics when there is an external threat. The debate between
genome and PIN analysis is, when put in larger perspective of
new challenges in systems biology, after all quite marginal.

Finally, there is somewhat of a clash within the compu-
tational research community. Even though finding statistical
patterns in the data has surely proved its value, such
approaches do not provide mechanistic descriptions of how
things actually work. Hence, despite the prevalence and ease
of use of statistical tools, we should keep searching for
descriptive models that would provide understanding and
enable reproduction of the phenomena.
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82. Milenković T, Pržulj N. 2008. Uncovering biological network function
via graphlet degree signatures. Cancer Inform 6: 257–73.
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