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1 METHOD
1.1 Solving the relaxed problem LR(\)

In our approach, LR(}) is solved by a double bipartite matching
algorithm, where Local bipartite matchings are used to find, for
each possible node mapping ¢ <> k, the best sets of edge mappings
having ¢ <+ k as tail-node mapping. Then a Global bipartite
matching finds the best set of node mappings according to the
previously found sets of edge mappings.

Specifically, for a given node mapping ¢ <+ k, a local problem
consists of finding a set of edge mappings (i,7) + (k,0), k < I,
such that the corresponding head-nodes mappings j <> [ form a 1-
to-1 matching and such that the contribution of these edge mappings
to LR(A)’s objective function, denoted by Local(ik), is maximum.
We recall that the contribution of an edge mapping (7, j) < (k,[)
into LR(A)’s objective function is e, 5, k, l) (from (12) in the
main text). This corresponds to the following IP program:

. A

Local(ik) = m;lx% €i ikl X Yijkl,
subject to constraints (10) and (11) from the main text. This problem
can be rephrased as a maximum weighted bipartite matching
problem between the neighbours of ¢ (i.e., all possible 5) and the
neighbours of k (i.e., all possible I, £ < [), where the weight of
mapping j to k is e?j - Denoting the maximum degree of a node
in N7 and N> by d, this matching problem can be solved in O(d®)
time using, for example, the Hungarian algorithm or the successive
shortest paths approach.

The global problem consists of finding a set of node mappings and
the corresponding edge mappings that have maximum contribution
to the objective function of LR(A). The contribution of a node
mapping i <> k is n*(i, k) (see (12) in the main document), and
the contribution of the edge mappings connected to ¢ <> k is
Local(ik) (as previously found by solving the local problem). This
corresponds to the following IP program:

Global = max Z(n)‘(i, k) + Local(ik)) X ik,

ik

subject to (4), (5), and (7) from the main text. Again, this problem
can be rephrased as a maximum weighted bipartite matching
problem between the nodes in Vi and the nodes in V>, where the
weight of mapping node i to node k is n* (i, k) + Local(ik). This
can be computed in O(|V'|*) time. Thus, solving LR()) is done in
O(|V|? 4 |V|?d?) time.

*to whom correspondence should be addressed

1.2 Solving the Lagrangian dual problem

The main relation between IP and LR()) is that LR(\) is an upper
bound of IP for any values of A, i.e., I[P < LR()\), VA e R™°.
Also, LR(A)’s solution, (Z, ¥), can be used to create a lower bound
on IP, denoted by b(A), by simply selecting the edge mappings,
y7 , that are adjacent to the selected node mappings &. In order to
improve the bounds, or eventually to solve IP, we need to solve its
Lagrangian dual problem (LD), which is the minimization of LR(\)
over \: LD = m}n LR()).

Many methods have been proposed so far for solving Lagrangian
dual problem (Guignard, 2003). Here, we choose the sub-gradient
descent (Held et al, 1974) because of our large number of
Lagrangian multipliers. The sub-gradient descent is an iterative
method which generate a sequence of Lagrangian multiplier vectors
A(0), A(1), A(2), ..., starting from A(0) = 0, as follows:

ax (UB - LB)

Ny (¢4 1) = max(0, N (1) = = s 9OV (1)
MLt 4 1) = max(0, A () — Wg(k’éﬁ (1)),

where UB is the smallest upper bound on I P found so far (i.e.,
the smallest value of LR()\)), LB is the largest lower _b_ound on
IP found so far (i.e., the largest value of [b(\)), g()\gj ) =
Tji—, k. k<1 Yijkt 18 the sub-gradient vector component associated
to the corresponding relaxed constraint (8) from the main text,
g()\’g; (t)) = zj1 — X, Yijw is the sub-gradient vector component
associated to the corresponding relaxed constraint (9) from the
main text, ||g(A(¢))|] is the number of non-zero sub-gradient vector
components, and « is the step size. In our implementation, the step-
size is initialised with a = 1, but is divided by 1.3 every five
consecutive iterations that do not improve the bounds on IP and
is similarly multiplied by 1.3 every five consecutive iterations that
improve the bounds.

A solution of LD is an optimal solution of IP if the corresponding
sub-gradient vector components are all equal to 0, but the process
can be stopped earlier if UB = LB.

1.3 Extending seed alignments

As presented in the main document, the Lagrangian relaxation-
based solver is used to generate a suite of seed alignments, which
are optimized over the selected node mappings having protein
similarities higher than a given threshold (see the main text).
Supplementary Algorithm 1 presents the greedy heuristic that we
use to extend each seed alignment, f, by using all possible node
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mappings, i.e., without being restricted to these selected node
mappings.

Supplementary Algorithm 1. Between two networks,
N; and N, the Extend function heuristically refines a
seed alignment, f, so that its score, S(f), measured
by using L-GRAAL’s scoring function (see eq. 2

in the main document), is maximized. Note that
f(u) = 0 means that w € Vi is not aligned yet, and
f~'(v) = 0 means that v € Vs is not aligned yet.

Extend( N1 = (Vi, E1), N2 = (Va, E2), f)
//Step 1: Remove non-contributing node-mappings u <> v.
for u <» v € fdo
if S(F\{u < v)}) > S(f) then
f < f\{u« v} Ge.,set f(u) =0)
//Step 2: Maximally extend f
for u € V1 such that f(u) = 0 do
Findv € Va s.t. f~1(v) = 0 and v =argmax S(f U{u < v})
[ fU{u < v} (e, set f(u) =v)
//Step 3: Greedy local search
for v € V1 do
e P\ fu o v}
Find v’ € Va s.t. f/~1(v') = 0 and v’ =argmax S(f’ U{u + v'})
it S(f) < S(f ' U{u + v'}) then
FefU{uo o)
Return f

Step one, which removes node mappings that do not contribute to
the score of the alignment, is needed because such node mappings
may be included in the seed alignments (the repaired solutions from
the Lagrangian relaxation-based solver) when we use topological
similarity only: this is because when a = 0, the node mappings
do not contribute directly to the objective function (their weights
are all zero because a = 0), but the edges adjacent to such nodes
contribute to the relaxed solution. Then, because the edge mappings
chosen to be in the relaxed solution might be infeasible (when
only one of their two end-node mapping are in the alignment) such
infeasible edge mapping are removed when creating the repaired
solution. If the repairing process removes all the edge mappings
that are adjacent to the node mapping, this node mapping does not
contribute to the alignment’s score any more.

1.4 Differences between L-GRAAL and NATALIE

Since L-GRAAL and NATALIE both use integer programming and
Lagrangian relaxation to optimize their objective functions, we
briefly explain here how the two methods differ.

The two approaches start with the same modelling of node and
edge mappings: node mappings ¢ <> k are represented with boolean
variables x;, edge mappings (¢, j) <> (k, 1) with boolean variables
Yijki, and the relationships between an edge mapping and its two
end-node mappings are first represented by the two constraints:

Tik < Yikjl,
Tji < Yikjl-
Then, to apply different relaxation schemes, the two methods

alter the above model in different ways. NATALIE applies so-called
cost split technique: variables representing the edge mappings are

duplicated (mapping edge (%, j) with edge (k,!) is represented by
two variables, y;;x; and z;;1), each copy being bound to a different
end-node mapping, and the validity of the alignment then being
guaranteed by the equality between y and z variables:

Tik < Yikijl,
Tji < Zikjl,
Yijkl = Zijkl-

Natalie relaxes and tries to repair the edge equalities, using sub-
gradient and dual-ascent techniques. In the case of a dense network,
the number of relaxed constraints in NATALIE’s scheme is upper-
bounded by n* (where n is the number of nodes in the network).

In L-GRAAL, we first rewrite constraints zj;; < Yk to
reduce their numbers, and then relax them. In our approach, the
number of relaxed constraints is upper-bounded by n®. Since the
efficiency of dual solvers is strongly dependant on the number of
relaxed constraints, our relaxation scheme is favourable. Of lesser
importance, NATALIE doubles the number of variables representing
edge-mapping, which can be an issue for general purpose solvers.

Finally, NATALIE only optimizes the alignments over the
sequence similar node mappings, but never tries to extend the
alignments using non-sequence related proteins. This means in
particular that NATALIE will never uncover functionally similar
proteins that are not sequence related.

1.5 Statistical significance of Edge Correctness

When aligning two networks N1 = (Vi, E1) and N2 = (Va, E»),
under the standard model of sampling without replacement, the
probability p of obtaining at least kK common edges by chance is
the tail of the hyper-geometric distribution:

()
2T

where m1 = |E1|, ma = |E2|, and M = |Va| x (V2| —1)/2 s the
number of node pairs in No (Przulj et al., 2004).

2 SUPPLEMENTARY RESULTS
2.1 Additional semantic similarity results

We detail here the semantic similarity results that are obtained at the
interaction level.

As presented in supplementary Fig. 2, HUBALIGN, L-GRAAL,
and SPINAL best map together interactions that are involved in
similar biological processes, in similar molecular functions, and
that are localised in similar cellular regions. When using GO-BP,
the average semantic similarity of the interaction mapping is 1.09




Supplementary Material: L-GRAAL

for HUBALIGN, 1.08 for L-GRAAL and 1.04 for SPINAL. When
using GO-BP, the average semantic similarity of the interaction
mapping is 0.42 for HUBALIGN, 0.38 for L-GRAAL, and 0.37
for SPINAL. Finally, when using GO-BP, the average semantic
similarity of the interaction mapping is 0.64 for HUBALIGN, 0.60
for L-GRAAL, and 0.50 for SPINAL.

2.2 Balancing sequence and topological information

In the main document, we comment on how the topological and
biological quality of the alignments change when «, the parameter
that balances topological and sequence information, varies in [0,1].
These changes are presented in supplementary Figure 5. Note that
these alignments are obtained when using — log of blast’s evalues
as sequence similarity.

2.3 Predicting protein interactions

In the main document, we present the number of protein interactions
that can be predicted from L-GRAAL’s alignment of yeast and
human PPI networks, when using a sequence identity threshold
between the mapped proteins of 70%, threshold for which
the mapped proteins are expected to share the same functions.
Supplementary Figure 4 extends these results for more lenient
sequence identity thresholds. In particular, we can predict 24,147
protein interactions with a sequence identity threshold of 30%, for
which 90% of the mapped proteins are expected to be homologous
(Rost, 1999). Among these 24,147 predicted interactions, 2,273
(10.6%) are also predicted in the Interologous Interaction Database
(I2D ver. 2.3)(Brown and Jurisica, 2007), which validates our
approach.

3 COMPARISON OF NETWORK ALIGNERS ON
THE NAPA BENCHMARK
Since no GO term annotation is available on the NAPA benchmark,

we cannot apply semantic similarity-based measures on this dataset.
However, the equivalence classes of all nodes are known. Thus,

we evaluate the biological quality of the alignments by their node
correctness (NC), which is the percentage of the nodes from
the smaller network that are mapped with nodes from the same
equivalence classes.

GHOST, SPINAL and L-GRAAL have the largest edge-
correctness between the aligned networks, with edge-correctness of
76.3% for GHOST, 74.4% for SPINAL and 72.7% for L-GRAAL
(see the left panel of supplementary Fig. 5). NATALIE, L-GRAAL
and GHOST best map sparse regions with sparse regions and dense
regions with dense regions, with symmetric sub-structures score
of 64.0% for NATALIE, 61.4% for L-GRAAL and 61.3% for
GHOST (see the middle panel of supplementary Fig. 5). Finally,
NATALIE, GHOST and SPINAL uncover the largest connected
common sub-networks, L-GRAAL being the 4" with LCC of
74.6%, NATALIE, GHOST and SPINAL leading at 79.3%, 77.9%,
and 76.1%, respectively (see the right panel of Supplementary Fig.
5).

As already observed by Clark and Kalita (2014), the behaviour of
network aligners on the NAPA benchmark is different than on real
PPI networks. Although L-GRAAL still performs well on the NAPA
Benchmark, HUBALIGN, which performs very well on real PPI
networks obtains poor results on the NAPA benchmark. Methods
such as NATALIE and GHOST achieve much better performances
on the NAPA benchmark than on real PPI networks.
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Supplementary Figure 2. Network aligners (x-axis) are compared according to the average semantic similarity of their
interaction mappings (y-axis), when using GO-BP (left panel), GO-MF (middle panel), and GO-CC (right panel).
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Supplementary Figure 3. Effect of « (x-axis) on the quality of L-GRAAL’s alignments, as indicated by the average value of
the different scoring schemes (y-axis). Top: Topological quality of the alignments, as measured by edge-correctness (EC, left
panel), by symmetric sub-structure score (S3, middle panel), and by largest connected component (LCC, right panel). Middle:
Biological quality of the protein mappings, as measured by the average semantic similarity using GO-BP (left panel), GO-MF
(middle panel), and GO-CC (right panel) of the aligned proteins. Bottom: Biological quality of the interaction mappings, as
measured by the average semantic similarity using GO-BP (left panel), GO-MF (middle panel), and GO-CC (right panel) of

the aligned interactions.
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Supplementary Figure 4. The number of predicted interactions (y-axis) as a function of the minimum sequence identity
between the aligned yeast-human proteins (x-axis). We add in red the number of predicted interactions that are also predicted
in I2D database.
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Supplementary Figure 5. Network aligners (x-axis) are compared according to the average of the best scores (y-axis) that
they achieve on the 30 pairs of PPI networks from the NAPA benchmark. Left: when the topological quality of the alignments
is measured by edge-correctness (EC). Middle: when the topological quality of the alignments is measured by symmetric
sub-structure score (S3). Right: when the biological quality of the alignments is measured by the node correctness (NC).




