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Network Models (continued)

In last class we covered the following three network models:

1 Erdos-Renyi Random Graphs

2 Generalized Random Graphs

3 Small-world Networks

Today we cover:

4 Scale-free Networks

Scale-free networks (“SF”) have power-law degree distributions: P (k) = k−γ ,
where γisapositivenumber. Such degree distributions are observed in many
biological networks, where usually 2 < γ < 3. There are many ways to generate
SF networks. We will cover three that are the most commonly used to model
biological networks.

4.1 Preferential Attachment Model (Barabasi-Albert, 1999)

In this network model (henceforth denoted by “SF-BA”), nodes are added to an
existing network and newly added nodes preferentially attach to existing nodes
with probability proportional to the degree of the target node. This process is
repeated until the network size matches the empirical data set it is trying to
model. As nodes with a high number of edges probabilistically receive more
edges through this algorithm, it is also known as ”Rich getting richer”. In this
model, the starting network strongly influences the properties of the resulting
network. An illustration is given in Figure 1.
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Figure 1: if deg(v1) > deg(v2) > deg(v3) then p(uv1 ∈ E) > p(uv2 ∈ E) >

p(uv3 ∈ E)

To generate this network (“growth process”):

1. Start with a small, connected network with N0 nodes.

2. Add a node at each time step to the existing network and connect it’s
edges to an existing node with the probability proportional to the degree
of the existing node. One standard method of doing this is to add edges

to a node, vi using this probability function: ρ(vi) =
ki∑n

j=0
kj

. The newly

introduced node is connected with m ≤ N0 edges to already present node,
where N0 is the starting number of nodes in the growth process.

3. Repeat 2 until the number of of nodes and the number of edges matches
that of the empirical network to be modeled.

After t time steps, this network model has:

• NV (t) = N0 + t nodes.

• NE(t) = mt edges.

SF-BA has a power-law degree distribution: P (k) ∝ k−γBA with γBA = 3
that is invariant with time.

SF-BA is particularly effective at describing the Internet’s link topologies -
large sites tend to receive more links smaller ones resulting in this distribution.

4.2 Gene Duplication and Mutation (Vazquez et al., 2003)

Gene Duplication and Mutation scale-free network model (“SF-GD”) is biologi-
cally motivated. It attempts to mimic gene duplication and mutation processes
to influence the generation of the random network that still has scale-free de-
gree distribution: the idea is that by mimicing gene duplication and mutation
process that created biological networks, we might get a better network model
for them. The network is generated in a similar manner to SF-BA: at each time
step, a node is added to the network according to the following rules:
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1. Start with a small, connected network.

2. Duplication:

(a) Select node i at random.

(b) A new node, i′ is added and linked to all nodes that i is linked to;
as such, the neighbourhoods of the two nodes are the same, i.e.,
N(i) = N(i′).

(c) With probability p, add an edge between i and i′.

3. Divergence/mutation:

(a) For each node j linked to nodes i and i′ described above, choose one
of the two links randomly and remove it with probability q.

4. Repeat steps 2 and 3 until the number of of nodes is similar to that of
empirical network to be modeled.

The parameters of this gene duplication & mutation model are p and q.

Summary of network properties of this network model compared to network
properties of real-world biological networks:

Degree Distribution Clustering Coefficient Average Diameter
Real-World Power Law High Small

SF-GD Power Law Low Small
Comparison ✔ ✗ ✔

4.3 Hierarchical Scale-Free Networks

These networks attempt to preserve the degree distribution and network “mod-
ularity” via a fractal-like generation of the network.

Figure 2: An example of how a simple hierarchical scale free network, based of
the K4 graph may be generated. Also see examples in ppt slides.

These graphs do not match any biological data and are highly unlikely to be
found in data-sets unless engineered - one may liken them to crystal structures.
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Figure 3: An illustration of constructing a geometric random graph. Source:
http://www.nowpublishers.com/10.1561%5CNET13%5C1300000014%5Cnet01438x.gif

5 Geometric Random Graphs (“GEO”)

GEO graphs are formed through the following method:

1. Take any metric space and, using a uniform random distribution, place
nodes within it.

2. If any nodes are within radius r (calculated via any chosen distance norm
for the space), they will be connected.

If we are modeling a real-world network G(V, E) with |V | = n and |E| = m,
radius r in a GEO network must be selected so that the number of edges in the
GEO graph is m, i.e., so that the size of the data and the GEO model network
are the same.

There are many possible metric spaces (e.g., Euclidean space) and distance
norms (e.g. the Euclidean distance (L2), the Chessboard distance (L∞), and
the Manhattan/Taxi Driver distance (L1)).

Summary of network properties of this network model compared to network
properties of real-world biological networks:

Degree Distribution Clustering Coefficient Average Diameter
Real-World Power Law High Small

GEO Poisson High Small
Comparison - ✔ ✔

In the geometric random graphs, the degree distribution follows a Poisson
distribution. However, we can redefine the model, so that degree distribution
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becomes a power-law distribution. Also, gene duplications and mutations can
be used to guide the growth process in geometric graphs. These concepts were
explored in Przulj & Kuchaiev, Pacific Symposium on Biocomputing, 2009 &
2010.

5.1 Geometric Gene Duplication and Mutation (“GEO-
GD”)

This variant of geometric graph models, GEO-GD, attempts to model gene
duplications and mutations as follows:

Growth is governed by adding new nodes intended to model gene
duplications and mutations, moderated by natural selection as fol-
lows. A duplicated gene starts at the same point in biochemical
space as its parent, and then natural selection (which can be viewed
as “evolutionary optimization”) acts either to eliminate one, or cause
them to slowly separate in the biochemical space.1

This variant also reproduces graphlet properties of the empirical dataset,
which is another desirable feature, as well as these networks having power-law
degree distributions.

6 Stickyness Index Based Model (“STICKY”)

This is a biologically motived network model which is based on the notion
of proteins interacting because they have complimentary binding domains. A
stickyness index is a number based on the a protein’s normalised degree in a PPI
network and it is used to summarize the abundance and popularity of binding
domains of the protein.

The basic assumption of this model is that a high degree protein has many
binding domains. This assumption has certain issues - notably that some pro-
teins would need to be huge to have such large binding domains as suggested
by this assumption. In reality, the proteins will not be interacting with their
bound proteins at all times, and the set of bound proteins at any one time may
change. This is illustrated in Figure 4

A pair of proteins is more likely to interact under this model if both proteins
have high stickyness indicies: the probability of an edge between two nodes is
the product of those nodes’ stickyness indicies.

Degree Distribution Clustering Coefficient Average Diameter
Real World Power Law High Small
”STICKY” Matches data Matches data Matches data
Comparison ✔ ✔ ✔

1N. Przulj, O. Kuchaiev, A. Stevanovic, and W. Hayes, Geometric Evolutionary Dynamics
of Protein Interaction Networks, Proceedings of the 2010 Pacific Symposium on Biocomputing
(PSB), Big Island, Hawaii, January 4-8, 2010.
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Figure 4: A, B, C and D are different proteins

For further reading, see N. Przulj and Des Higham, Modelling Protein-
Protein Interaction Networks via a Stickiness Index, Journal of the Royal Society
Interface, volume 3, number 10, pages 711 - 716, 2006.

7 Interplay Between Network Topology and Bi-

ological Functions

7.1 Lethality and Centrality in PPI Networks (Jeong et
al., Nature, 2001)

This study found the phenotypic consequence of singe gene deletion in yeast is
affected by the topological position of it’s protein product in the PPI network.
This study was over a network of 1820 proteins and 2240 interactions - with a
power law distribution (and clearly sparse).

The power law implies that the network is tolerant to random errors, but is
intolerant to the removal of ”hubs” - the top degree-ranked nodes. When these
hubs were removed, the network diameter increased rapidly leaving a less well
connected network.

This study found that topology influences error tolerence: less connected
nodes should be less essential than highly connected nodes. It also found that
highly connected proteins have a central role in the network architecture and
are 3 times more likely to essential than proteins of lower degrees.

7.2 Specificity and Stability in Topology of PPI networks
(Maslov et al., Science, 2002)

This study made use of a yeast PPI network of 3278 proteins and 4549 inter-
actions. This study explored the correlations in the connectivities of nodes by
calculating the likelyhood, p(k0, k1) that two proteins with degrees k0 and k1

are connected to each other. This study found that:

• There is a tendancy of highly connected nodes to interact with low degree
nodes.
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• There is a reduced likelyhood that a pair of hub nodes will interact with
each other.

• There is a tendancy of proteins with degree between 4 and 9 to interact
with each other (this seems to demonstrate that they belong to protein
complexes).

During this study, the average connectivity, k1 of neighbours of a node was
calculated as a function of the degree of that node, k0. This was used to find
that k1 shows a gradual decline with respect to k0, i.e. degree correlation is
negative.

The observed spectrum of degree of hub neighbours is consistent with the
existence of functional modules which are organised around individual hubs -
both the hub and it’s neighbour hubs tend not to be connected directly.

This may imply network robustness through the suppression of the propiga-
tion of attacks over a network: if one hub is damaged, it is unlikely to affect all
other hubs in the network. The reduced branching ratio around hubs provides
a certain degree of protection against attacks of these nodes.

7.3 Gene Essentiality and the Topology of PPI networks
(Coulomb et al., Proceedings of the Royal Society B,
2005)

In this paper, the following mutations were studied in the context of PPI network
topology:

• Lethal: Single gene mutations which cause cell death.

• Synthetically Lethal: Combination of mutations in 2 genes causes cell
death.

• Viable: Cell survives gene mutation.

They found that the strong correlation of gene essentiality and cell robustness
in PPI networks was due to the use of PPI networks which had inherent biases
in them. These included:

• Essential genes tend to be more studied than the viable genes - as such they
may have inflated degrees (or conversely, the viable ones have suppressed
degrees from being under-studied).

• The use of literature curation.

• The biotechnological biases previously discussed.

The study showed that the dispensibility of a gene is only weakly related to
it’s degree, suggesting that network topology has little influence on essentiality &
robustness. More specifically, the average degree of essential and non-essential
genes were 2.2 and 1.8 respectively - a difference factor of only 1.2. Similar
results were found when analysing sythetically lethal and non-essential genes.

The main conclusions of this study were:
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A: Physiological consequences of gene deletions are only weakly related to gene
degrees in PPI networks.

B: k1, the average degree of a node’s neighbours, does not vary significantly
between essential and non-essential genes, irrespective of their degree. This
suggests that the essentiality of a gene does not seem to be rleated to the
average degree of it’s neighbours.

C: Clustering coefficients cannot be reliably associated with gene essentiality.

D: The average distance separating query genes from their synthetically lethal
partners is similar to the average distance separating query genes from the
set of non-essential genes: the distribution of these distances was found to
be almost identical.

These conclusions are compatible with the hypothesis that the network
topology is not under evolutionary constraints, but is instead a consequence
of the construction process of the network. They are, however, at odds with the
previous two studies.

7.4 Functional Topology in PPI Networks

This was a study of a yeast PPI network of 2401 proteins and 11000 interactions.
The hetwork has a power law degree distribution.

Results of this study:

• Viable proteins were found to have degrees half that of lethal ones... al-
though the interactions of the lethal genes tend to be studied more: they
may be proportionally over-represented compraed to the viables in the
network.

• Lethal proteins were found to be more frequent in the top 3% of nodes
(ranked by degree) compared to viable nodes

• Lethals had a higher frequency in the group of proteins which were artic-
ulation points (AP’s) 2 and hubs than did synthetically lethal and viable
proteins.

• It was found that viable proteins tend to be on alternate pathways; this
redundancy may explain why mutations of them were not lethal. This
idea is demonstrated in figure 5, which shows that even though the grey
node has been deleted, interactions still can take place through the other
two paths from the top node to the bottom node.

2Articulation Points, or AP’s are nodes, which if they are removed result in the disruption
of a network’s structure, i.e. part of the network becomes disconnected
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Figure 5: Redundancy in PPI networks
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