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Abstract

Probe interval graph¢PIGs) are used as a generalization of interval graphs in physical mapping of
DNA. G =(V, E) is aprobe interval grapi{P1G) with respect to a partitioaP, N) of V if vertices of
G correspond to intervals on a real line and two vertices are adjacent if and only if their corresponding
intervals intersect and at least one of them ijnvertices belonging t& are calledprobesand
vertices belonging t& are callechon-probesOne common approach to studying the structure of a
new family of graphs is to determine if there is a concise family of forbidden induced subgraphs. It
has been shown that there are two forbidden induced subgraphs that characterize tree PIGs. In this
paper we show that having a concise forbidden induced subgraph characterization does not extend to
2-tree PIGs; in particular, we show that there are at least 62 minimal forbidden induced subgraphs for
2-tree PIGs.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction

The probe interval graph(PIG) model was introduced and used in the human genome
project as a more powerful and flexible tool than an interval graph model for the assembly of
contigs in the physical mapping of DNJA6—18] Small fragments of DNA, called clones,
are taken from multiple copies of the same genome, and the problem is to reconstruct the
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arrangement of these clones. In other words, physical mapping of DNA has the goal of
reconstructing relative positions of clones along the original DNA. This problem of finding
whether pairs of clones overlap in a long DNA strand can be modeled by an interval graph
if we are interested in overlap information between each pair of clones; vertices represent
clones and two vertices are adjacent if and only if the clones overlap. In the PIG model,
we can use any subset of clones, called probes, and test for overlap information between a
pair of clones if and only if at least one clone is a probe. This allows flexibility, since not
all DNA fragments need to be known at the time of the construction of a PIG, as is the case
in an interval graph model. Thus, the PIG model can be used in real-time applications with
growing data sets by generating incremental DNA maps which provide useful information
for each further step. We now give a formal definition of this model.

A graphG = (V, E) is anintersection graplof a collection of sets if the vertices &
represent those sets and two distinct vertices are adjacé&htfiand only if their corre-
sponding sets have a non-empty intersectionimierval graphis an intersection graph of
a family of intervals on a real lings = (V, E) is a PIG with respect to a partitiarP, N)
of V if vertices of G correspond to intervals on a real line and two vertices are adjacent if
and only if their corresponding intervals intersect and at least one of thenkjs/ertices
belonging toP are calledorobesand vertices belonging td are callechon-probes

There has been a lot of interest in PIGs lately. They have been shown to be weakly
triangulated, and thus perfedi2]. The hierarchy of graph classes in the neighborhood of
PIGs has been described, and also a new class generalizing chordal graphs to probe chordal
graphs has been introduced in analogy to the generalization of interval graphs to PIGs
[2,1,7,6] There exist two recognition problems for PIGs. The first recognition problem
asks about recognizing, finding and representing possible layouts of the intervals of a PIG
with a given partition of its vertices; we refer to this problem asG@ferecognition problem
(stands fogiven partition). The second recognition problem for PIGs asks if a given graph
is a PIG without knowing a partition of its vertices; we refer to this problem astime
GP recognition problemPolynomial time algorithms for the GP recognition problem have
recently appeared:; in particular, ar®) algorithm[8] and an @n + m log n) algorithm
[10] have been developed, wharés the number of vertices amdis the number of edges
of a graph. An application of an algorithm for constructing a probe interval model occurred
in recognizing circular arc grapl8]. The non-GP recognition problem is unresolved and
is attracting considerable attention.

In studying the structure of a new family of graphs a common approach is to determine
when the graphs can be characterized by a succinct set of forbidden induced subgraphs. We
use the ternkISCto refer to the forbidden induced subgraph characterization for a family
of graphs. In the case of PIGs, as will be seen in the next section, $h&hhas taken
the first step in this direction by studying FISCs for acyclic PIGs, with or without a given
vertex partition. In particular, Sheng solved the non-GP recognition problem for tree PIGs
by showing that tree PIGs can be characterized by two forbidden induced subgraphs. This
result gives hope that there is a succinct FISC for chordal PIGs, or even PIGs themselves.
As a first step in this direction, it is expected that 2-trees, a natural generalization of trees
defined in the next section, will have a succinct FISC. Surprisingly, this is not the case. In
this paper we show that the FISC for 2-tree PIGs contains at least 62 graphs. Thus, it is very
unlikely that there is a concise FISC for PIGs, or even chordal PIGs.
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Fig. 1. Forbidden induced subgraphs for tree PIGs, with the darkened vertices being probes and circled vertices
being either probes or non-probes.

2. Preliminaries

All graphs in this paper are simple. We denote a graplGby (V, E), whereV is the
vertex set ofG andE is the edge set o. We also denot& of G by V(G) andE of
G by E(G). For a subset) of V, we denote byG (U) the subgraph o6 induced by the
vertices ofU, and writeG(U)<1G. The standard definitions gfath lengthandpath size
are used, representing the number of edges and the number of vertices on the path. The
distancebetween vertices andv in G, denoted byi(u, v), is the number of edges on a
shortestuv-path. A graph consisting of a paff, of sizek and a vertex: ¢ V (P) which
is universal toV (Py) is called ak-fan If K; is a complete graph onvertices, a grapls
is obtained bykK ;-bondingof graphsGi and G if vertices of aK; of G, are identified
with the vertices of & ; of Go. The setV(x) = {v € V |vx € E} is theneighborhoodf
vertexx, andN[x] = N (x) U {x} is theclosed neighborhoodf x. An asteroidal triple(AT)
is an independent set of three verticesisuch that there exists a path between each pair
of vertices that avoids the neighborhood of the third vertex. A graph without an AT is called
AT-free Vertices of an AT are calleAT-verticesWe say that a collection of setX, Y, Z}
is anasteroidal collectioAC) ifforall x € X, forally € Y, andforallz € Z, {x, y, z} is
an AT. Each of the setX, Y, andZ is called arasteroidal setAS. We defined PIGs in the
previous section. Aimterval representation/ = {I, |v € V}, of aPIGG = (V, Eg) isa
set of intervals of a real line demonstrating tkais a PI1G; clearly, the intersection graph
H=(V, Eg) of aninterval representatidrof a PIGG is an interval graph, anflg C Ey.
We now give a recursive definition oflatreeG: a complete graph ok vertices, Ky, is a
k-tree if Gis ak-tree, then so i&;’ formed fromG by adding a new vertex adjacent to all
vertices in aKy in G. Thus, a tree is a 1-tree.

As mentioned previously, Sheng has taken the first step in giving a FISC for a restricted
family of PIGs, namely trees. In particular, she proved the follovjir].

Theorem 1 (Shend15]). LetT = (V, P, E) be a tree withP C V andN = V\P.Tis

a PIG with respect to P if and only if (N) is an independent set and T has no induced
subgraph isomorphicto grapi;, i =1, 2, ..., 5in Fig. 1, with darkened vertices in P and
circled verticesin P or N

Theorem 2 (Shend15]). LetT = (V, E) be atree. Then T is a PIG if and only if T has
no induced subgraph isomorphic to graph or Ge in Fig. 1.

Lemma 1 (Shend15]). At least one AT-vertex of an AT in a PIG must be a non-probe
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In order to provide the foundation for our search for a FISC for 2-tree PIGs, we now
present some general structure results of PIGs.

3. Some structure of PIGs
An immediate consequence of Lemma 1 is the following simple corollary:

Corollary 1. At least one AS of an AC of a PIG G must contain all non-probes., Btus
least one AS of a PIG must be an independent set

Proof. Otherwise, there exist probe verticeg X,y € Y, andz € Z such thafx, y, z} is
an all probe AT contradicting Lemma 1]

Claim 1. Let{x, y, z} be an AT of a PIG G. Then in an interval representation ohG
interval corresponding to a vertex fx, v, z} properly contains an interval corresponding
to another vertex ifx, y, z}.

Proof. Denote byl,, I,, and/; intervals corresponding to, y, andz, respectively, in an
interval representation d&. Without loss of generality, lef, < I,. If eitherx ory are
probes, then by the definition of a PIG, they must be adjacent, contradietingz} being
anindependent set. Thus, the interesting case iswher N.Letx, y € N.Sincex € N,

every neighbor ok in G must be a probe. Thus, the neighboixafn everyx, z-path inG

must be a probe. Since by the definition of a PIG, the interval corresponding to the neighbor
of x on everyx, z-path must overlag,, and since every neighbor gfin G is a probe, and
sincel, C I, every neighbor i of x is adjacent irG to y, and thusy hits everyx, z-path

in G contradicting{x, y, z} being an AT inG. [

Claim 2. If {x, y, z} is an all non-probe AT of a PIG Qwith intervals I, = [x1, x2],

I, =[y1, y21, and I; = [z1, z2] corresponding to, y, and z in an interval representation |

of G, and if one of these intervalsayl;, i € {x, y, z}, is properly contained in the interval

[a, b], where a is the minimum of the left-most vertices and b is the maximum of the right-
most vertices of the other two intervailsen there exists a non-probe internal vertesaf a

J, k-path such that; c I,,, wherej, k € {x, y, z}\{i}, j # k.

Proof. Without loss of generality assume that € [x1, z2]. Since the same argument
applies to all arrangements &f, 7,, and I, on the real line, we will consider only one
of them, namely let, N I, # ¢ and let, not overlap/,. Since by Claim 1 no interval
in {I,, I,, I} properly contains another, without loss of generalitydgk y; < x2 < y2.
First, letys < z1, and consider am, z-path P, . in G that avoidsN (y). Sincex, z € N,
the neighbor ok in G and the neighbor afin G onP, ; must both be probe and thus their
corresponding intervals cannot overlap Since the union of the corresponding intervals
in | of the vertices ofP, ., overlapsl,, and sinceP, ; avoidsN (y) in G, there must exist a
non-probe internal vertexof P, . such that’, > I,. Similarly, if z1 < y,, then there must
exist a non-probe internal vertexon anx, z-path such that, > 7,. O
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We now give a structural result ona N partition in a PIG with an AT.

Claim 3. In every AT of a PIGG = (V, Eg) there must exist a non-probe AT vertex u
such that there exists a path between the other two AT-vertices that avaigdsnd has a
non-probe internal vertex

Proof. LetI = {I, |v € V} be an interval representation Gf Let H = (V, Ep) be the
intersection graph df Let{x, y, z} be an AT ofG and without loss of generality lete N.
SinceH is an interval graphtd does not have any ATs, $@, y, z} is not an AT ofH, and
thus we have the following two cases to consider regarghing, z} inH: (1) xy € Ey; (2)
xy ¢ Eg and for every, y-path P, , there exists a vertex € V(P ,) such thaiiz € Ep.
(1) First we consider the case when € Eg. Sincexy ¢ Eg, this means that, y € N,
andl, NI, # ¥. Remember also thate N by assumption. Thus, by Claim 1, no interval
of a vertex in{x, y, z} properly contains an interval of another vertex.in y, z}.

Let I, = [x1, x2], Iy = [y1, y2I, I; = [z1, z2], and sincel, N I, # ¥ and one does not
properly contain the other, without loss of generality assumeaithaty; < x2 < y2. We
now have two cases regarding the positiori ofvith respect td/,.

o First assume that does not overlag,. If y» < z1, consider arx, z-path Py ; in G that
avoidsN (y). Herel, C [x1, z2], and thus by Claim 2, there exists a non-probe internal
vertex onP, ;, as required. It2 < y1, thenl, C [z1, y2], and thus by Claim 2, there
exists a non-probe internal verteof a y, z-path such that, C I, as required.

o If I, overlapsl, (remember that, y,z € N,so by Claim 1[I, ¢ I, andl, ¢ I,), then
we have three possible cases:

o If y1 <z1<y2<z2, thenl, C [x1, z2] and thus, by Claim 2, there must exist a non-
probe internal vertex on anx, z-path such thaf, > I, as required.

o If z1 < y1 < z2 < x2 (this implies that;; < x1, sincel, ¢ I.), thenl, C [z1, y2] and
thus, by Claim 2, there must exist a non-probe internal varter any, z-path such
thatl, O I,, as required.

o If I, N1, C I, thenxy <z1 < y1 <x2 <22 < yo; thisis becausé, ¢ I, andI, ¢ I,
by Claim 1. Now!, C [x1, y2] and thus, by Claim 2, there must exist a non-probe
internal vertexo on anx, y-path such that, > I., as required.

(2) Now consider the case when ¢ Ey anduz € Ey for someu € V(Py ).

o If u¢{x, y}, thensinceiz ¢ E, bothuandzare non-probes, ang N I, # @. Thus, an
internal vertexu of P, , is a non-probe, as required.

e If u € {x, y}, without loss of generality lei = x, then sincexz ¢ Eg, I, N I, # ¢ and
x,z € N.Sincexy ¢ Ey, I, N I, =, y could be a probe or a non-probe. Without loss
of generality letv; < x2 < y1 < y2. By Claim 1,1, ¢ I, and/, ¢ I,. Thus we have only
two cases to consideti < x1 <z2 <xpandxy < z1 <x2 < z2. If 71 < x1 <z2 < x2,then
I, C [z1, y2] and thus, by Claim 2, there exists an internal non-probe vertexay, z-
path such thaf, C I,, as required. Similarly, i1 < z1 < x2 < z2, thenl, C [x1, y2]
and thus, by Claim 2, there exists an internal non-probe vertexax, y-path such that
I, D I, as required. [
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X u y

Fig. 2. The only(P, N)-partition of a 3-sun up to isomorphism.

The following is a straightforward corollary of Claim 3.

Corollary 2. There exists only oneP, N)-partition of vertices of é8-sun up to isomor-
phism

Proof. Consider a 3-sus labeled as irFig. 2 with the AT-verticesx, y, z. By Lemma

1, at least one of, y, andzis a non-probe. Without loss of generality, ket N. Thus,
N(z) ={a,b} C P.If x € N, thenu € P, so all internal vertices of all paths between
AT-vertices are probes contradicting Claim 3. Thusg, P, and similarly,y € P. By Claim

3, ueN. O

4. 2-Tree probe interval graphs
We define a Zpathrecursively in the following way:

e Atriangle, K3, is a 2pathof length one; denote the triangle hy

e fo=10.

e If Alis a 2pathof lengthk (k> 1) with the triangle sequencers . .. 1, a new length
(k + 1) 2-pathis obtained by adding t& a vertexv and edgesv; andvvz, wherevivy
is an edge of\#;—1; the new triangle induced dn, v1, v2} is denoted by 1.

An example of a 2-path is presentedhRig. 3. We say that the triangles and 1,
1<i<k—1, of a2-pathA areconsecutive triangles of And that two triangles aealjacent
if they share an edge. Trianglesandz; of a lengthk 2-path are calleénd trianglesA
vertexv of degree 2 of an end trianglgor ; of a 2-pathA =11 . . . is called arend vertex
of A; if k>2, we denote by, the degree 2 vertex of, and byv, the degree 2 vertex of
1. An edgee of an end triangle containing an end vertex is calleé&at edgeAn edge of
a 2-pathA that is not shared between 2 triangleAadnd is not an end edge éfis called
a side edgeof A. A non-end, non-side edge of a 2-p&hs called aninternal edgeof A.
Clearly, thdengthof a 2-pathA, denoted by(A), is the number of triangles in it. Denote by
A; a 2-path of length. Thedistancebetween two triangles is the number of edges shared
between pairs of consecutive triangles on the shortest 2-path between them.



222 N. Przulj, D.G. Corneil/ Discrete Applied Mathematics 150 (2005) 216—231

i7

te
t t
A 11 5 7
S \
\ ~ vV
1 e s e 11

Fig. 3. A 2-path of length 11 with examples @nd trianglest; and#11, end verticesv; andv11, end edges
e1, e, e3, andey, side edges; andsp, and aninternal edge;.
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Fig. 4. A, A3, non-isomorphicd4s, non-isomorphi@ss, and non-isomorphidgs.

Observation 1. There exists ong,, oneAs, two non-isomorphid 4s, three non-isomorphic
Ass, and six non-isomorphidgs.

Proof. By inspection, there are two ways of identifying an edge ofigiwith an edge of
an A1 to obtain anA,, three ways of identifying an edge of @n with an edge of am to

obtain anAs, and six ways of identifying an edge of @m with an edge of ami 1 to obtain
anAe. They are all presented Fig. 4 0O

By identifying a side edge of a5 with an end edge of thé, in all possible ways so that
the resulting 2-tree still has a longest 2-path of length 5, we obtain the two non-isomorphic
2-trees presented Fig. 5. We call graphss; and S, presented ifrig. 5weak2-stars

Claim 4. No weak2-star is a PIG

Proof. Assume a weak 2-star is a PIG. Consider A&sY, Z} of §1 andS» from Fig. 5,
whereX = {x, x1}, Y ={y, y1}, andZ = {z, z1}. None of the ASs, Y, andZ of S; andS»
is an independent set contradicting Corollary 1

Consider a 2-path of length at least 3 of a 2-tréleand denote by, v a side edge oA.
For a vertexv ¢ V (A) of T such thatv1, vvp € E(T) we say that the triangleviv; is an
additional triangle at distancé& from Aand that is anadditional vertex at distanckfrom
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Fig. 5. Weak 2-stars.

A; the number of edges on a shortest 2-path between the triamglg and a triangle oA is

1. Now consider a 2-pathwith an additional trianglev, v at distance 1 frorAin a 2-tree

T. For a vertexu ¢ V(A) U {v} of T such thatuv, uv; € E(T) for exactly one € {1, 2},

we say that the trianglevv; is anadditional triangle at distanc@ from Aand thatu is an
additional vertex at distanc® from A the number of edges on a shortest 2-path between
the trianglexvv; and a triangle ofA is 2. Similarly, we can definadditional triangles at
distance3 or more from AWe will use the phrase aadditional triangle with respect to A

to refer to an additional triangle at distance 1 from A. When it is clear from the context
which A is being considered, we will omit referenceAo

Claim 5. LetT be a2-tree PIG and let A be a longe&tpath of T. T contains no additional
triangles at distanc@ from A

Proof. Assumetothe contrary. Lét=t112...t,,Wherer, ..., t,, are consecutive triangles
of A, and letp be an additional triangle at distance 2 frémLet p be at distance 2 from
somer; of A, and letq be the triangle having an edge in common witaAnd an edge in
common withy;. SinceA is longest, we know that&i <m — 2. But now the subgraph af
induced on the union of the vertices of triangles, 7,1, ;, t;+1, ti+2, ¢, andp is a weak
2-star contradicting being a PIG, by Claim 4. [J

From Claim 5 it follows that if additional triangles with respect to a longest 2-path
a 2-tree PIG exist, then they must be at distance 1 ffofhe next claim determines to
which of theP andN vertex patrtitions of a 2-tree PIG the degree 2 vertices of the additional
triangles belong. Recall that we denotelaythe degree 2 vertex of, and byv,, the degree
2 vertex oft,, in a 2-pathA,,.

Claim 6. LetT be &-tree PIG let A=r11>. . .1, be alonges2-path of T, and let/(A) > 4.
Let t be an additional triangle at distandefrom A. Denote by the degree vertex of t

e Iftis adjacent tar, (or equivalentlyto #,,—1) and ifv € P, thenvy € N (v, € N).
e Iftis adjacent tor; for 3<i <m — 2,thenv € N.
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Fig. 7. The ten non-isomorphic 2-stars.
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Proof. Assume to the contrary. First, lebe adjacent te; andv, v; € P. Let the vertices

in V(1) U V(t2) U V(t3) U V(t4) U {v} be labeled as ifrig. 6A, which illustrates the only
two non-isomorphiciss (by Observation 1) with an additional triangle at distance 1 that is
adjacentta, (or equivalently ta,,_1). Since the subgraph dfinduced or{v, v1, 1, 2, 3, 4}

is a 3-sun with the ATv, v1, 4} and since, v € P, by Corollary 2, we knowthat¥4 € N.
Since 4e N and 45¢ E(T), we must have & P. But now{v, v1, 5} is an all-probe AT in

T contradicting Lemma 1. The proof is the same for the case witeadjacent ta,,_1.

Now assume thatis adjacent te; for 3<i <m — 2 andv € P. Clearly,m >5. Label the
vertices ofV (£;_2) UV (t;_1) UV (£;) UV (t;+1) UV (ti12) U{v} as inFig. 6B, which illustrates
the only three non-isomorphitss (by Observation 1) with an additional triangle at distance
1 that is adjacent to theigs. Clearly, the subgraph dfinduced on{1, 2, 3,4, 5, v} is a
3-sun, and sincév, 3, 5} is an AT, if we assume that € P, then by Lemma 1, either
3 € N, or5¢ N.Without loss of generality, let & N. Then by Corollary 2, vertex 2 is
also inN. Since 2536 € E(T), 5,6 € P. But now we have an all probe A, 5,6} in T
contradicting Lemma 1. [

We call a graph obtained by&,-bonding of an end edge of atg with the internal edge
e=13NrofanAg=11...1ts a 2sstar. There exist two ways of identifying an end edge of
an Az with the edgee =13 N 74 of an A% from Fig. 4to obtain 2-stars3 and S4 presented
in Fig. 7, two ways of identifying an end edge of @ with the edge: = 13 N 74 of an Ag
from Fig. 4to obtain 2-starss andSg presented irfrig. 7, and four ways of identifying an
end edge of an3 with the edger = 13 N 14 of each ofA3, A3, A, andA$ from Fig. 4to
obtain sixteen more 2-stars. In this way we constructed twenty 2-stars in total. However,
many of them are isomorphic (we tested these isomorphisms manually, as well as by using
McKay’s Nauti 2.0 softwarg11]). Thus, the following claim holds.
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Claim 7. There exist ten non-isomorph&stars. They are denoted I#g, ..., S12 and
presented in Fig. 7.

Note thatSg presented irFig. 7 contains an induced 4 presented irFig. 1, which is a
non-PIG tree, by Theorem 2. Thus, from now on, we excliydeom the set of 2-stars, since
our goal here is to describe non-PIG 2-trees that do not contain non-PIG trees as induced
subgraphs.

Claim 8. No2-staris a PIG

Proof. This is because no AS of the AX, Y, Z} of any of the 2-stars is independent, and
thus every 2-star has an all probe AT contradicting Lemmall.

Similar to the definition of additional triangles, we now define triangles that “grow off”
an internal edge of a longest 2-path of a 2-tree PIG, rather than off a side edge as was the
case for additional triangles. Consider a 2-patif length at least 2 of a 2-tréeand denote
by v1v2 an internal edge oA. For a vertexv ¢ V (A) of T such thatvvy, vvy € E(T) we
say that the trianglevyvz is anextra triangle at distancé& from Aand thatv is anextra
vertex at distancé from A the number of edges on a shortest 2-path between the triangle
vvivz and a triangle of\ is one. Now consider a 2-pathwith an extra triangleviv, at
distance 1 fronA in a 2-treeT. For a vertex: ¢ V (A) U {v} of T such thauv, uv; € E(T)
for exactly one € {1, 2}, we say that the trianglevv; is anextra triangle at distance@
from Aand thatu is anextra vertex at distanc2 from A the number of edges on a shortest
2-path between the triangleyv; and a triangle oA is two. Similarly, we define aextra
triangle at distanced from Aas the trianglevux wherew ¢ V(A) U {u, v} andx € {v, v1},
and anextra vertexw at distance 3rom A We will use the phrase agxtra triangle with
respect to Ao refer to an extra triangle at distance 1 from A. When it is clear from the
context whatA is being considered, we will omit referenceAo

Claim 9. A2-tree PIG T does not contain any extra triangles at distaBoe more from a
longest2-path A of T

Proof. OtherwiseT would contain aninduced 2-star contradicting it being a PIG, by Claim
8. In particular, ift is an extra triangle that is at distance 3 frApand if two shortest 2-paths
betweert and a triangle oA =11 ..., aretpqt; andipqt; 1, wheret; ands; 1 are two
consecutive triangles @, then we know that i <i +1<m —2, since otherwisAwould

not have been a longest 2-pathidtlearly, > 6). But now a subgraph dfinduced on the
vertices inV (t;—2) UV (t;i—) UV () UV (ti41) UV (ti42) UV (Ii43) UV (p) U V() U V (1)

is a 2-star, contradicting being a PIG, by Claim 8. [

From Claim 9 it follows that if extra triangles with respect to a longest 2-pgatf
a 2-tree PIG exist, then they must be at distance 1 or 2 #offihe next claim deter-
mines the partition to which the degree 2 vertices of the distance 2 extra triangles of
belong. As before, we denote hy the degree 2 vertex of, and byv,, the degree 2
vertex oft,,.
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6  Sigi0 L...4

Fig. 8. Twenty-seven minimal forbidden induced subgraphs for 2-tree PIGs resulting from Claim 11.

Claim 10. LetT be a-tree PIG let A =1117.. . . t,, be alongesR-path of T, and letm > 4.
Let t be an extra triangle at distan&from A. Denote by the degree vertex of t. If tis
at distance? from r, andr3 (or equivalentlyfromz,,_1 andz,_») then

e if v e P,thenvy € N (v, € N);
e if m =4andv € P, then eithen1, or v,,, or both are non-probe

If tis at distance? from#; andz; 1, for 3<i <m — 3(m >6), thenv € N.

Proof. If m = 4 and if all three vertices, v1 andv4 are probe, than they form an all
probe AT inT contradicting Lemma 1. Lekz >5 and lett be at distance 2 from and
13 (or equivalently frony,,_1 andz,_2). Denote byu, w the vertices ofV (r5)\ V (13) (or
vertices ofV (t,,,—4)\ V (t;,—2), if t,,_1 andt,,,_» are being considered). NO\&, Y, Z} where
X={v1}, Y ={v}, Z={u, w}isanAC, so ifv € P, sinceZ is not independentj; must
be a non-probe, by Lemma 1.

We now consider the case wherns at distance 2 from; and 1 for 3<i<m —
3(m>6). Let u1, wy be the vertices oV (t,_2)\V (¢;), and letus, wy be the vertices of
V(t;+3)\V (ti+1). Now{X, Y, Z}isan AC, whereX = {u1, w1}, Y = {u2, w2}, andZ = {v},
so sinceX andY are not independent, must be a non-probe, by Lemma 1]

We now describe some structure of 2-tree PIGs that is forced by the existence of additional
and extra triangles with respect to their longest 2-paths.

Claim 11. Lets’ be an additional triangle at distanckfrom a longesR-pathA =1, ... 1,
of a2-tree PIG T, and lets” be an extra triangle at distanczfrom A. Lett’ be adjacent to
the triangler; and lets” be at distanc from; andz; 1 of Afor3<i <m — 3(m >6), let
v’ be the degree vertex oft’, let v” be the degre@ vertex oft”, and let s be the vertex in
t; thatis notins’. Thenv”s ¢ E(T).

Proof. By Claim 6,v" € N. Thus,s € N, by Corollary 2 applied to the 3-sun induced on
vertices oft;_1 U ; Utip1 Ut Also,v” € N, by Claim 10. Now, since, v” € N, they
cannot be adjacent.[]

Corollary 3. The twenty-seventees presented iRig. 8 are minimal non-PIGs

Proof. Firstwe show that none of the graphgig. 8are PIGs. Notice that verticesand 7
in graphsSy3, S1,, andSi,, as well as verticeaand 8 in graphsig, 15, andSig violate the
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conditions of Claim 11 and thus these graphs are not PIGs. We reason abouﬁgﬁaﬁﬁ@
andS’17 (i, j,1>2) as follows. Assume they are PIGs. By Clainube N, which implies
thats € N by applying Corollary 2 to the 3-sun induced on verti¢gs2, 31, 32, a, s} in
S, 815 andSi,. This further implies that all neighbors efare inP in these graphs, and
thus, ifi, j, 1 >3, the graph induced on vertices, 3,1, 3,-2,4,5,6, 7 in 514(” =i)and
S{5(n =j), and vertice$3;, 3/_1, 32,5, 6, 7, 8} in 5117 isisomorphic to graply's in Fig. 1
with vertex 3 (n =i, j, [ for graph§i4, Si5, andSlN, respectively) corresponding to vertex
w of G5 and being a probe, contradicting Theorem 1; similarly, jf / = 2, then the graph
induced on vertices;33y, 2, 4, 5, 6, 7 in §2, andSZ;, as well as vertices;331, 2, 5, 6, 7, 8
in S is isomorphic toGs with 3; € P contradicting Theorem 1. In grapl§s§s and 75
presented ifrig. 8 a, s € N by Claim 6 and Corollary 2, and thys, y, z} is an all-probe
AT contradicting Lemma 1, wheree X,y € Y,andz € Z.

Itis straightforward to verify that the graphs presenteBigh 8are non-isomorphic, and
that they are minimal non-PIGs (deletion of any vertex from these graphs yields a PIG).

O

Note that all graphs presentedhig. 8 apart fromS13 contain a fan of some small size.
We cannot insert a fan int§; 3 in the same way we did in the other graph$-ig. 8for the
following reasons. If we insert lafan next to vertex 3 thenS’l‘3 would contain two trees
isomorphic toGs presented ifrig. 1, one induced on vertices 8, 7, 6, 3;, 31, 3x—2 (or
in the case that = 2, induced on vertices, B, 7, 6, 3, 31, a), and the other induced on
vertices 01, s, 31, a, 4, 5. The vertex gin the first copy ofGs in S’l‘3 corresponds to the
vertexw of Gs in Fig. 1, and so does the vertsin the second copy afs in S’{g. However,
3¢ ands are adjacent ir$’1‘3, which contradicts the condition of Theorem 1 that they both
have to be non-probe. No fans larger than the ones indicatéd.iBcan be inserted into the
other graphs irFig. 8, since otherwise removal of the vertex 3, would yield a non-PIG
contradicting the minimality of these graphs.

Claim 12. Lett be an extra triangle at distandefrom a longesR-pathA =11 ...1, ofa
2-tree PIG T, and let t be adjacent tg andz; 1 of A for 3<i<m — 3(m >6). There do
not exist in T two extra triangleg andz, at distance2 from A such that they are adjacent
to different edges of t. f=2ori =m — 2, then

e exactly one of; andr, must have its degre®vertex a probg

e ifin additionm = 5 and the vertices of T are denoted agHig. 9 (T can be any one of
T1, T2, and T3 in Fig. 9), or if m =4 and T = T»\{7}, whereT5 is presented in Fig. 9
thenv] € N andvj, € P.

Proof. Assume to the contrary. Denote bjthe degree 2 vertex of and byv,, the degree
2 vertex oft,. First, let 3<i <m — 3(m >6). Now the subgrapBof T induced on the union
of the vertices of triangles, ¢, #;, andz; is a 3-sun, but by Claim 10 two of its AT-vertices
v) andv), are non-probe, contradicting Corollary 2.

Now leti = 2 (or equivalentlyy = m — 2). Denote a subset of the verticesToas in
Fig. 9 (T can be any one ofy, T2, andT3). If both v; andv), are non-probes, then the
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Fig. 9. The three (valid) 2-tree PIGs with two extra triangles at distance 2 from a longest 2-path . . 15 such
that they are adjacent to the same extra triangle.

2 3 AS
D :
A
Sio S0 S S S3 Sa

Fig. 10. Six minimal forbidden induced subgraphs for 2-tree PIGs resulting from Claim 12.

3-sunSinduced on the set of verticd®, 3, 4, v}, v, v5} has two non-probe AT-vertices
contradicting Corollary 2. If both; and v, are probes, then by Corollary 2 applied to
S 2 € N and thus 1le P; this contradicts Claim 10 which says that vertex 1 must be a
non-probe, since;, v, € P. Thus, one ok} andv, must be a probe and the other one
non-probe. Note that is =5, we must have] € N andv), € P, since otherwise we would
have 3e N and thus le P, contradicting Claim 10 (another way to see this is: if we would
havev, € N,v; € P, then eithef1, vy, 6},0r {1, vy, 7}, or both would form an all-probe
AT contradicting Lemma 1). Iz =4, in the 2-tree PI@1\{7} = T3\ {7} presented iffrig. 9

we can have;, € N, v; € P, inwhich case & N, by Claim 10. However, ifn =4 and in
T>\{7} we havev, € N andv] € P, thenT>\{7} would contain an all probe ATv}, 1, 6}
contradicting Lemma 1; thus we must havee P andv; € N in T2\{7}. O

Corollary 4. The six2-trees presented iRig. 10are minimal non-PIGs

Proof. There are six non-isomorphiggs, by Observation 1. Using the same notation as

in Claim 12, since the “addition” of, #;, andz, to each of the six non-isomorphitss

does not increase the length of the longest path in the resulting graph, we conclude that
the six 2-trees presented Kig. 10 are non-isomorphic. They are non-PIGs, since they
violate the conditions of Claim 12. It is easy to see that the removal of any vertexSfrom

i €{19,...,24} yields a PIG, that is§1g, ..., S24 are minimal non-PIGs. (O

Claim 13. Letv] andv; be the degree vertices of two different additional triangle$
andr;, at distancel from a longes-pathA =1, .. .1, of a2-tree PIG T. Let; be adjacent
to#; and letr; be adjacent to; of A, 3<i < j <m — 2, and denote by; ands; the vertices
in V(&)\V(r) and V (1,)\V (13), respectively. Then]ss, vis) ¢ E(T).
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ch

S L. 5}

(A) Ss

Fig. 11. (A) Eleven minimal forbidden induced subgraphs for 2-tree PIGs resulting from Claim 13. (B) Five
minimal forbidden induced subgraphs for 2-tree PIGs resulting from Claim 14.

Proof. If to the contrarywys; € E(T), then at least one af}, s; must be a probe which
contradicts the fact that both of them must be non-probe N by Claim 6, and, € N by
Corollary 2 since it belongs to the 3-sun formed by the union of triangles ;. 11, 15,
and sinca, € N, by Claim 6. [J

Corollary 5. The eleven 2rees presented iRig. 11A are minimal non-PIGs

Proof. Itfollows directly from Claim 13 that graph$ps, She, Sh-. i € {1, ..., 5} presented

in Fig. 11A are not PIGs, since vertices, s1, a2, andsz in So5 as well as vertices;, s, a,

and 3 in graphssSis andsk- violate the condition described in Claim 13. Itis easy to see that
these graphs are minimal non-PIGs, since removal of any vertex from any of them yields a
PIG. O

Similar to the explanation given after the proof of Corollary 3, no fans can be inserted
in the graphS»s in Fig. 11A, and no fan larger than a 5-fan can be inserted in the other two
graphs in the same figure.

Claim 14. Letr; and t, be additional triangles at distance one from a long2gtath
A=1mn...1, of a2ree T that are adjacent to triangles and ;12 of A, respectively
3<i <i+2<m —1,such that there exists a vertex u which satisfigs=V (z;) N V (t;12)
and{u} = V(1) N V(t;). Then T is not a PIG

Proof. Denote bya; the degree 2 vertex af, by a> the degree 2 vertex af, by s1 the
vertex inV (1;)\V (1), and bys, the vertex inV (1;4:2)\V (15). Clearly,s1so € E(T), by
definition of A andu. Assume thaT is a PIG. Since; is adjacent ta;, 3<i<m — 3, by
Claim 6,a1 € N. Consider the position of the verteyx with respect tA.

e If i +2<m — 2, by Claim 6, we conclude thap € N. In this case, both; ands» are
non-probe, because the subgrapfi afduced onV (r;_1) UV (t;) UV (1i11) UV (17) is a
3-sun with an AT vertex; being a non-probe, and thus by Corollargy2¢ N; similarly,
the subgraph of induced onV (7;1.1) U V (t;12) U V (t;13) U V (15) is a 3-sun with an AT
vertexaz being a non-probe, and thus by Corollary2e N. This contradicts; ands»
being adjacent.

e If i +2=m — 1 anday € N, the same argument as above leads to a contradiction.
If a; € P, then the following argument leads to a contradiction. We know thas a
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neighbor ofa; € N, is in P. Thus, sinces; is also a probe, in the 3-sun induced on
V(tm—2) U V(ty_1) UV (t,) UV(t), by Corollary 2,v,, € P, wherev,, is the degree 2
vertex oft,. Since inthe 3-suninduced onthe vertice® of, _1) UV (1) UV (1;1.1)UV (17)

we know thatai, s1 € N (the proof is above), this implies that all neighborsspmust
be probe. Consider the neighhgri € V(1;—1)\V (#;) of s1. Now vertice§az, v, vi—1}
form an all-probe AT inl contradicting Lemma 1. [

Corollary 6. The five2-trees presented in Fig. 11B are minimal forbidden induced sub-
graphs for2-tree PIGs

Proof. The proof that these grapb’%8 andSag are not PIG follows directly from Claim 14.
For graphssés, i €{2,...,4},the proofis similar to the proof of Claim 14: it is easy to see
thatas, s1 € N by Claim 6 and Corollary 2, and thus all neighborsgdire probe; also,, 1
is a non-probe, by Corollary 2 applied to the 3-sun inducedsenss, vy, v,—1, az, u;},
sinces; € N, and thusy,,, a2 € P as neighbors af1; now {v,,, a2, v1} form an all probe
AT in She,i € {2, ..., 4} contradicting Lemma 1.
Itis easy to see that the removal of any vertex from any of these graphs makes the resulting
graph PIG, that is, these graphs are minimal non-PIG 2-trees.

Similar to the explanation given after the proof of Corollary 3, no fans can be inserted in
the graphS»g in Fig. 11B, and no fan larger than a 4-fan can be inserted in the other graph
in the same figure.

Combining Theorem 2, Claims 4, 8, and Corollaries 3—6, we have the following:

Theorem 3. There exist at least 62 graphs in the forbidden induced subgraph characteri-
zation for2-tree PIGs

5. Conclusions and future work

We have shown that the FISC for 2-tree PIGs contains at least 62 graphs. It is possible
that this list is complete. However, the key point is that this FISC is not concise and thus
does not seem to give much insight into the structure of 2-tree PIGs.

Itis interesting to note that 13 out of 14 forbidden induced subgraphs for PIGs described
in Theorem 2, Claim 4, and Claim 8 haasteroidal triples of edges structure introduced
by Muller [13]: three edgess, ¢2, andes of a graphG form an asteroidal triple of edges
(ATE) if for any two of them there is a path from the vertex set of one to the vertex set
of the other that avoids the neighborhood of the third edge, where a neighborhood of an
edgee = uv is N (u) U N (v). However, the remaining 49 forbidden induced subgraphs for
PIGs do not have ATEs and it is not clear if other more general structures occur in these
subgraphs. Note that our Corollary 1 is similar to the previously shown result that PIGs
cannot have ATEE3]. Other related results that have appeared recently include a FISC for
treeunit PIGs[5] andunit interval bigraphg4]; in unit PIGs all intervals in an interval
representation of a PIG are of the same length, while unit interval bigraphs are bipartite
intersection graphs of two distinct families of the same length intervals with two vertices
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adjacent if and only if their corresponding intervals overlap and each interval belongs to a
distinct family.

Sheng's FISC for tree PIG45] implies the existence of an efficient algorithm for solving
the non-GP recognition problem for tree PIGs. Using Shamir and Tsur’s subtree isomor-
phism algorithm14] to determine if each of the two trees in the FISC for tree PIGs (the
graphsG4 andGg presented irkig. 1) is present in a tre€ yields an Qn) algorithm for
determining ifT is a PIG, whera is the number of vertices ifi. The problem of efficient
non-GP recognition of 2-tree PIGs remains open even if we know a complete FISC for 2-tree
PIGs. The more general problems of non-GP recognitiok-toée PIGs for any positive
integerk, chordal PIGs, and PIGs in general remain open as well.
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