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Abstract

Probe interval graphs(PIGs) are used as a generalization of interval graphs in physical mapping of
DNA.G= (V ,E) is aprobe interval graph(PIG) with respect to a partition(P,N) ofV if vertices of
Gcorrespond to intervals on a real line and two vertices are adjacent if and only if their corresponding
intervals intersect and at least one of them is inP; vertices belonging toP are calledprobesand
vertices belonging toN are callednon-probes. One common approach to studying the structure of a
new family of graphs is to determine if there is a concise family of forbidden induced subgraphs. It
has been shown that there are two forbidden induced subgraphs that characterize tree PIGs. In this
paper we show that having a concise forbidden induced subgraph characterization does not extend to
2-tree PIGs; in particular, we show that there are at least 62 minimal forbidden induced subgraphs for
2-tree PIGs.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction

Theprobe interval graph(PIG) model was introduced and used in the human genome
project as amore powerful and flexible tool than an interval graphmodel for the assembly of
contigs in the physical mapping of DNA[16–18]. Small fragments of DNA, called clones,
are taken from multiple copies of the same genome, and the problem is to reconstruct the
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arrangement of these clones. In other words, physical mapping of DNA has the goal of
reconstructing relative positions of clones along the original DNA. This problem of finding
whether pairs of clones overlap in a long DNA strand can be modeled by an interval graph
if we are interested in overlap information between each pair of clones; vertices represent
clones and two vertices are adjacent if and only if the clones overlap. In the PIG model,
we can use any subset of clones, called probes, and test for overlap information between a
pair of clones if and only if at least one clone is a probe. This allows flexibility, since not
all DNA fragments need to be known at the time of the construction of a PIG, as is the case
in an interval graph model. Thus, the PIG model can be used in real-time applications with
growing data sets by generating incremental DNA maps which provide useful information
for each further step. We now give a formal definition of this model.
A graphG = (V ,E) is anintersection graphof a collection of sets if the vertices ofG

represent those sets and two distinct vertices are adjacent inG if and only if their corre-
sponding sets have a non-empty intersection. Aninterval graphis an intersection graph of
a family of intervals on a real line.G= (V ,E) is a PIG with respect to a partition(P,N)
of V if vertices ofG correspond to intervals on a real line and two vertices are adjacent if
and only if their corresponding intervals intersect and at least one of them is inP; vertices
belonging toP are calledprobesand vertices belonging toN are callednon-probes.
There has been a lot of interest in PIGs lately. They have been shown to be weakly

triangulated, and thus perfect[12]. The hierarchy of graph classes in the neighborhood of
PIGs has been described, and also a new class generalizing chordal graphs to probe chordal
graphs has been introduced in analogy to the generalization of interval graphs to PIGs
[2,1,7,6]. There exist two recognition problems for PIGs. The first recognition problem
asks about recognizing, finding and representing possible layouts of the intervals of a PIG
with a given partition of its vertices; we refer to this problem as theGP recognition problem
(stands forgivenpartition). The second recognition problem for PIGs asks if a given graph
is a PIG without knowing a partition of its vertices; we refer to this problem as thenon-
GP recognition problem. Polynomial time algorithms for the GP recognition problem have
recently appeared; in particular, an O(n2) algorithm[8] and an O(n+m log n) algorithm
[10] have been developed, wheren is the number of vertices andm is the number of edges
of a graph. An application of an algorithm for constructing a probe interval model occurred
in recognizing circular arc graphs[9]. The non-GP recognition problem is unresolved and
is attracting considerable attention.
In studying the structure of a new family of graphs a common approach is to determine

when the graphs can be characterized by a succinct set of forbidden induced subgraphs.We
use the termFISC to refer to the forbidden induced subgraph characterization for a family
of graphs. In the case of PIGs, as will be seen in the next section, Sheng[15] has taken
the first step in this direction by studying FISCs for acyclic PIGs, with or without a given
vertex partition. In particular, Sheng solved the non-GP recognition problem for tree PIGs
by showing that tree PIGs can be characterized by two forbidden induced subgraphs. This
result gives hope that there is a succinct FISC for chordal PIGs, or even PIGs themselves.
As a first step in this direction, it is expected that 2-trees, a natural generalization of trees
defined in the next section, will have a succinct FISC. Surprisingly, this is not the case. In
this paper we show that the FISC for 2-tree PIGs contains at least 62 graphs. Thus, it is very
unlikely that there is a concise FISC for PIGs, or even chordal PIGs.
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Fig. 1. Forbidden induced subgraphs for tree PIGs, with the darkened vertices being probes and circled vertices
being either probes or non-probes.

2. Preliminaries

All graphs in this paper are simple. We denote a graph byG = (V ,E), whereV is the
vertex set ofG andE is the edge set ofG. We also denoteV of G by V (G) andE of
G by E(G). For a subsetU of V, we denote byG(U) the subgraph ofG induced by the
vertices ofU, and writeG(U)�G. The standard definitions ofpath lengthandpath size
are used, representing the number of edges and the number of vertices on the path. The
distancebetween verticesu andv in G, denoted byd(u, v), is the number of edges on a
shortestuv-path. A graph consisting of a pathPk of sizek and a vertexu /∈V (Pk) which
is universal toV (Pk) is called ak-fan. If Kj is a complete graph onj vertices, a graphG
is obtained byKj -bondingof graphsG1 andG2 if vertices of aKj of G1 are identified
with the vertices of aKj of G2. The setN(x)= {v ∈ V | vx ∈ E} is theneighborhoodof
vertexx, andN [x] =N(x)∪ {x} is theclosed neighborhoodof x. An asteroidal triple(AT)
is an independent set of three vertices inG such that there exists a path between each pair
of vertices that avoids the neighborhood of the third vertex. A graph without anAT is called
AT-free. Vertices of an AT are calledAT-vertices. We say that a collection of sets{X, Y,Z}
is anasteroidal collection(AC) if for all x ∈ X, for all y ∈ Y , and for allz ∈ Z, {x, y, z} is
an AT. Each of the setsX,Y, andZ is called anasteroidal set(AS). We defined PIGs in the
previous section. Aninterval representation, I = {Iv | v ∈ V }, of a PIGG = (V ,EG) is a
set of intervals of a real line demonstrating thatG is a PIG; clearly, the intersection graph
H = (V ,EH ) of an interval representationI of a PIGG is an interval graph, andEG ⊆ EH .
We now give a recursive definition of ak-treeG: a complete graph onk vertices,Kk, is a
k-tree; if G is ak-tree, then so isG′ formed fromG by adding a new vertex adjacent to all
vertices in aKk in G. Thus, a tree is a 1-tree.
As mentioned previously, Sheng has taken the first step in giving a FISC for a restricted

family of PIGs, namely trees. In particular, she proved the following[15].

Theorem 1 (Sheng[15]). Let T = (V , P,E) be a tree withP ⊆ V andN = V \P . T is
a PIG with respect to P if and only ifT (N) is an independent set and T has no induced
subgraph isomorphic to graphGi, i=1,2, . . . ,5 in Fig. 1,with darkened vertices in P and
circled vertices in P or N.

Theorem 2 (Sheng[15]). Let T = (V ,E) be a tree. Then T is a PIG if and only if T has
no induced subgraph isomorphic to graphG4 or G6 in Fig. 1.

Lemma 1 (Sheng[15]). At least one AT-vertex of an AT in a PIG must be a non-probe.
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In order to provide the foundation for our search for a FISC for 2-tree PIGs, we now
present some general structure results of PIGs.

3. Some structure of PIGs

An immediate consequence of Lemma 1 is the following simple corollary:

Corollary 1. At least one AS of an AC of a PIG G must contain all non-probes. Thus, at
least one AS of a PIG must be an independent set.

Proof. Otherwise, there exist probe verticesx ∈ X, y ∈ Y , andz ∈ Z such that{x, y, z} is
an all probe AT contradicting Lemma 1.�

Claim 1. Let {x, y, z} be an AT of a PIG G. Then in an interval representation of G, no
interval corresponding to a vertex in{x, y, z} properly contains an interval corresponding
to another vertex in{x, y, z}.

Proof. Denote byIx, Iy , andIz intervals corresponding tox, y, andz, respectively, in an
interval representation ofG. Without loss of generality, letIx ⊆ Iy . If either x or y are
probes, then by the definition of a PIG, they must be adjacent, contradicting{x, y, z} being
an independent set. Thus, the interesting case is whenx, y ∈ N . Letx, y ∈ N . Sincex ∈ N ,
every neighbor ofx in G must be a probe. Thus, the neighbor ofx on everyx, z-path inG
must be a probe. Since by the definition of a PIG, the interval corresponding to the neighbor
of x on everyx, z-path must overlapIx , and since every neighbor ofx in G is a probe, and
sinceIx ⊆ Iy , every neighbor inG of x is adjacent inG to y, and thusy hits everyx, z-path
in G contradicting{x, y, z} being an AT inG. �

Claim 2. If {x, y, z} is an all non-probe AT of a PIG G, with intervalsIx = [x1, x2],
Iy = [y1, y2], andIz = [z1, z2] corresponding tox, y, and z in an interval representation I
of G, and if one of these intervals, sayIi, i ∈ {x, y, z}, is properly contained in the interval
[a, b], where a is the minimum of the left-most vertices and b is the maximum of the right-
most vertices of the other two intervals, then there exists a non-probe internal vertexv of a
j, k-path such thatIi ⊂ Iv, wherej, k ∈ {x, y, z}\{i}, j �= k.

Proof. Without loss of generality assume thatIy ∈ [x1, z2]. Since the same argument
applies to all arrangements ofIx, Iy, andIz on the real line, we will consider only one
of them, namely letIx ∩ Iy �= ∅ and letIz not overlapIy . Since by Claim 1 no interval
in {Ix, Iy, Iz} properly contains another, without loss of generality letx1<y1<x2<y2.
First, lety2<z1, and consider anx, z-pathPx,z in G that avoidsN(y). Sincex, z ∈ N ,
the neighbor ofx in G and the neighbor ofz in G onPx,z must both be probe and thus their
corresponding intervals cannot overlapIy . Since the union of the corresponding intervals
in I of the vertices ofPx,z overlapsIy , and sincePx,z avoidsN(y) in G, there must exist a
non-probe internal vertexv of Px,z such thatIv ⊃ Iy . Similarly, if z1<y2, then there must
exist a non-probe internal vertexv on anx, z-path such thatIv ⊃ Iy . �
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We now give a structural result on aP,N partition in a PIG with an AT.

Claim 3. In every AT of a PIGG = (V ,EG) there must exist a non-probe AT vertex u
such that there exists a path between the other two AT-vertices that avoidsN(u) and has a
non-probe internal vertex.

Proof. Let I = {Iv | v ∈ V } be an interval representation ofG. LetH = (V ,EH ) be the
intersection graph ofI. Let {x, y, z} be anAT ofGand without loss of generality letz ∈ N .
SinceH is an interval graph,H does not have any ATs, so{x, y, z} is not an AT ofH, and
thus we have the following two cases to consider regarding{x, y, z} in H: (1) xy ∈ EH ; (2)
xy /∈EH and for everyx, y-pathPx,y there exists a vertexu ∈ V (Px,y) such thatuz ∈ EH .
(1) First we consider the case whenxy ∈ EH . Sincexy /∈EG, this means thatx, y ∈ N ,
andIx ∩ Iy �= ∅. Remember also thatz ∈ N by assumption. Thus, by Claim 1, no interval
of a vertex in{x, y, z} properly contains an interval of another vertex in{x, y, z}.
Let Ix = [x1, x2], Iy = [y1, y2], Iz = [z1, z2], and sinceIx ∩ Iy �= ∅ and one does not

properly contain the other, without loss of generality assume thatx1<y1<x2<y2. We
now have two cases regarding the position ofIz with respect toIy .

• First assume thatIz does not overlapIy . If y2<z1, consider anx, z-pathPx,z in G that
avoidsN(y). HereIy ⊂ [x1, z2], and thus by Claim 2, there exists a non-probe internal
vertex onPx,z, as required. Ifz2<y1, thenIx ⊂ [z1, y2], and thus by Claim 2, there
exists a non-probe internal vertexv of ay, z-path such thatIx ⊂ Iv, as required.

• If Iz overlapsIy (remember thatx, y, z ∈ N , so by Claim 1,Iz /⊂ Iy andIy /⊂ Iz), then
we have three possible cases:

◦ If y1<z1<y2<z2, thenIy ⊂ [x1, z2] and thus, by Claim 2, there must exist a non-
probe internal vertexv on anx, z-path such thatIv ⊃ Iy , as required.

◦ If z1<y1<z2<x2 (this implies thatz1<x1, sinceIz /⊂ Ix), thenIx ⊂ [z1, y2] and
thus, by Claim 2, there must exist a non-probe internal vertexv on any, z-path such
thatIv ⊃ Ix , as required.

◦ If Ix ∩ Iy ⊂ Iz, thenx1<z1<y1<x2<z2<y2; this is becauseIx /⊂ Iz andIy /⊂ Iz
by Claim 1. NowIz ⊂ [x1, y2] and thus, by Claim 2, there must exist a non-probe
internal vertexv on anx, y-path such thatIv ⊃ Iz, as required.

(2) Now consider the case whenxy /∈EH anduz ∈ EH for someu ∈ V (Px,y).
• If u /∈ {x, y}, then sinceuz /∈EG, bothu andzare non-probes, andIu ∩ Iz �= ∅. Thus, an
internal vertexu of Px,y is a non-probe, as required.

• If u ∈ {x, y}, without loss of generality letu = x, then sincexz /∈EG, Ix ∩ Iz �= ∅ and
x, z ∈ N . Sincexy /∈EH , Ix ∩ Iy = ∅; y could be a probe or a non-probe. Without loss
of generality letx1<x2<y1<y2. By Claim 1,Iz /⊂ Ix andIx /⊂ Iz. Thus we have only
two cases to consider:z1<x1<z2<x2 andx1<z1<x2<z2. If z1<x1<z2<x2, then
Ix ⊂ [z1, y2] and thus, by Claim 2, there exists an internal non-probe vertexv on ay, z-
path such thatIx ⊂ Iv, as required. Similarly, ifx1<z1<x2<z2, thenIz ⊂ [x1, y2]
and thus, by Claim 2, there exists an internal non-probe vertexv on ax, y-path such that
Iv ⊃ Iz, as required. �
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Fig. 2. The only(P,N)-partition of a 3-sun up to isomorphism.

The following is a straightforward corollary of Claim 3.

Corollary 2. There exists only one(P,N)-partition of vertices of a3-sun up to isomor-
phism.

Proof. Consider a 3-sunG labeled as inFig. 2 with the AT-verticesx, y, z. By Lemma
1, at least one ofx, y, andz is a non-probe. Without loss of generality, letz ∈ N . Thus,
N(z) = {a, b} ⊆ P . If x ∈ N , thenu ∈ P , so all internal vertices of all paths between
AT-vertices are probes contradicting Claim 3. Thus,x ∈ P , and similarly,y ∈ P . By Claim
3, u ∈ N . �

4. 2-Tree probe interval graphs

We define a 2-pathrecursively in the following way:

• A triangle,K3, is a 2-pathof length one; denote the triangle byt1.
• t0 = ∅.
• If A is a 2-pathof lengthk (k�1) with the triangle sequencet1t2 . . . tk, a new length
(k + 1) 2-path is obtained by adding toA a vertexv and edgesvv1 andvv2, wherev1v2
is an edge oftk\tk−1; the new triangle induced on{v, v1, v2} is denoted bytk+1.

An example of a 2-path is presented inFig. 3. We say that the trianglesti and ti+1,
1� i�k−1, of a 2-pathAareconsecutive triangles of A, and that two triangles areadjacent
if they share an edge. Trianglest1 and tk of a lengthk 2-path are calledend triangles. A
vertexv of degree 2 of an end trianglet1 or tk of a 2-pathA= t1 . . . tk is called anend vertex
of A; if k�2, we denote byv1 the degree 2 vertex oft1, and byvk the degree 2 vertex of
tk. An edgeeof an end triangle containing an end vertex is called anend edge. An edge of
a 2-pathA that is not shared between 2 triangles ofA and is not an end edge ofA is called
a side edgeof A. A non-end, non-side edge of a 2-pathA is called aninternal edgeof A.
Clearly, thelengthof a 2-pathA, denoted byl(A), is the number of triangles in it. Denote by
Ai a 2-path of lengthi. Thedistancebetween two triangles is the number of edges shared
between pairs of consecutive triangles on the shortest 2-path between them.
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Observation 1. There exists oneA2,oneA3, two non-isomorphicA4s, three non-isomorphic
A5s, and six non-isomorphicA6s.

Proof. By inspection, there are two ways of identifying an edge of anA3 with an edge of
anA1 to obtain anA4, three ways of identifying an edge of anA4 with an edge of anA1 to
obtain anA5, and six ways of identifying an edge of anA5 with an edge of anA1 to obtain
anA6. They are all presented inFig. 4. �

By identifying a side edge of anA5 with an end edge of theA2 in all possible ways so that
the resulting 2-tree still has a longest 2-path of length 5, we obtain the two non-isomorphic
2-trees presented inFig. 5. We call graphsS1 andS2 presented inFig. 5weak2-stars.

Claim 4. No weak2-star is a PIG.

Proof. Assume a weak 2-star is a PIG. Consider ACs{X, Y,Z} of S1 andS2 from Fig. 5,
whereX= {x, x1}, Y = {y, y1}, andZ= {z, z1}. None of theASsX, Y , andZ of S1 andS2
is an independent set contradicting Corollary 1.�

Consider a 2-pathA of length at least 3 of a 2-treeT and denote byv1v2 a side edge ofA.
For a vertexv /∈V (A) of T such thatvv1, vv2 ∈ E(T ) we say that the trianglevv1v2 is an
additional triangle at distance1 from Aand thatv is anadditional vertex at distance1 from
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Fig. 5. Weak 2-stars.

A; the number of edges on a shortest 2-path between the trianglevv1v2 and a triangle ofA is
1. Now consider a 2-pathAwith an additional trianglevv1v2 at distance 1 fromA in a 2-tree
T. For a vertexu /∈V (A) ∪ {v} of T such thatuv, uvi ∈ E(T ) for exactly onei ∈ {1,2},
we say that the triangleuvvi is anadditional triangle at distance2 from Aand thatu is an
additional vertex at distance2 from A; the number of edges on a shortest 2-path between
the triangleuvvi and a triangle ofA is 2. Similarly, we can defineadditional triangles at
distance3 or more from A. We will use the phrase anadditional triangle with respect to A
to refer to an additional triangle at distancei�1 fromA. When it is clear from the context
whichA is being considered, we will omit reference toA.

Claim 5. Let T be a2-tree PIG and let A be a longest2-path of T. T contains no additional
triangles at distance2 from A.

Proof. Assume to thecontrary. LetA=t1t2 . . . tm, wheret1, . . . , tm are consecutive triangles
of A, and letp be an additional triangle at distance 2 fromA. Let p be at distance 2 from
someti of A, and letq be the triangle having an edge in common withp and an edge in
common withti . SinceA is longest, we know that 3� i�m−2. But now the subgraph ofT
induced on the union of the vertices of trianglesti−2, ti−1, ti , ti+1, ti+2, q, andp is a weak
2-star contradictingT being a PIG, by Claim 4. �

From Claim 5 it follows that if additional triangles with respect to a longest 2-pathA of
a 2-tree PIG exist, then they must be at distance 1 fromA. The next claim determines to
which of thePandN vertex partitions of a 2-tree PIG the degree 2 vertices of the additional
triangles belong. Recall that we denote byv1 the degree 2 vertex oft1, and byvm the degree
2 vertex oftm in a 2-pathAm.

Claim 6. Let T be a2-tree PIG, letA= t1t2 . . . tm be a longest2-path of T, and letl(A)�4.
Let t be an additional triangle at distance1 from A. Denote byv the degree2 vertex of t.

• If t is adjacent tot2 (or equivalently, to tm−1) and ifv ∈ P , thenv1 ∈ N (vm ∈ N ).
• If t is adjacent toti for 3� i�m− 2, thenv ∈ N .
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Proof. Assume to the contrary. First, lett be adjacent tot2 andv, v1 ∈ P . Let the vertices
in V (t1) ∪ V (t2) ∪ V (t3) ∪ V (t4) ∪ {v} be labeled as inFig. 6A, which illustrates the only
two non-isomorphicA4s (by Observation 1) with an additional triangle at distance 1 that is
adjacent tot2 (or equivalently totm−1). Since the subgraph ofT induced on{v, v1,1,2,3,4}
is a 3-sunwith theAT{v, v1,4} and sincev, v1 ∈ P , by Corollary 2, we know that 1,4 ∈ N .
Since 4∈ N and 45∈ E(T ), we must have 5∈ P . But now{v, v1,5} is an all-probeAT in
T contradicting Lemma 1. The proof is the same for the case whent is adjacent totm−1.
Now assume thatt is adjacent toti for 3� i�m−2 andv ∈ P . Clearly,m�5. Label the

vertices ofV (ti−2)∪V (ti−1)∪V (ti)∪V (ti+1)∪V (ti+2)∪{v} as inFig. 6B,which illustrates
the only three non-isomorphicA5s (byObservation 1) with an additional triangle at distance
1 that is adjacent to theirt3s. Clearly, the subgraph ofT induced on{1,2,3,4,5, v} is a
3-sun, and since{v,3,5} is an AT, if we assume thatv ∈ P , then by Lemma 1, either
3 ∈ N , or 5 ∈ N . Without loss of generality, let 3∈ N . Then by Corollary 2, vertex 2 is
also inN. Since 25,36 ∈ E(T ), 5,6 ∈ P . But now we have an all probe AT{v,5,6} in T
contradicting Lemma 1. �

We call a graph obtained by aK2-bonding of an end edge of anA3 with the internal edge
e= t3 ∩ t4 of anA6 = t1 . . . t6 a 2-star. There exist two ways of identifying an end edge of
anA3 with the edgee = t3 ∩ t4 of anA1

6 from Fig. 4 to obtain 2-starsS3 andS4 presented
in Fig. 7, two ways of identifying an end edge of anA3 with the edgee = t3 ∩ t4 of anA4

6
fromFig. 4to obtain 2-starsS5 andS6 presented inFig. 7, and four ways of identifying an
end edge of anA3 with the edgee = t3 ∩ t4 of each ofA2

6, A
3
6, A

5
6, andA

6
6 from Fig. 4 to

obtain sixteen more 2-stars. In this way we constructed twenty 2-stars in total. However,
many of them are isomorphic (we tested these isomorphisms manually, as well as by using
McKay’sNauti2.0 software[11]). Thus, the following claim holds.
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Claim 7. There exist ten non-isomorphic2-stars. They are denoted byS3, . . . , S12 and
presented in Fig. 7.

Note thatS9 presented inFig. 7contains an inducedG4 presented inFig. 1, which is a
non-PIG tree, byTheorem2. Thus, fromnowon, we excludeS9 from the set of 2-stars, since
our goal here is to describe non-PIG 2-trees that do not contain non-PIG trees as induced
subgraphs.

Claim 8. No2-star is a PIG.

Proof. This is because noAS of theAC{X, Y,Z} of any of the 2-stars is independent, and
thus every 2-star has an all probe AT contradicting Lemma 1.�

Similar to the definition of additional triangles, we now define triangles that “grow off”
an internal edge of a longest 2-path of a 2-tree PIG, rather than off a side edge as was the
case for additional triangles. Consider a 2-pathAof length at least 2 of a 2-treeTand denote
by v1v2 an internal edge ofA. For a vertexv /∈V (A) of T such thatvv1, vv2 ∈ E(T ) we
say that the trianglevv1v2 is anextra triangle at distance1 from Aand thatv is anextra
vertex at distance1 from A; the number of edges on a shortest 2-path between the triangle
vv1v2 and a triangle ofA is one. Now consider a 2-pathA with an extra trianglevv1v2 at
distance 1 fromA in a 2-treeT. For a vertexu /∈V (A)∪ {v} of T such thatuv, uvi ∈ E(T )
for exactly onei ∈ {1,2}, we say that the triangleuvvi is anextra triangle at distance2
from Aand thatu is anextra vertex at distance2 from A; the number of edges on a shortest
2-path between the triangleuvvi and a triangle ofA is two. Similarly, we define anextra
triangle at distance3 from Aas the trianglewux wherew /∈V (A)∪ {u, v} andx ∈ {v, v1},
and anextra vertexw at distance 3from A. We will use the phrase anextra triangle with
respect to Ato refer to an extra triangle at distancei�1 fromA. When it is clear from the
context whatA is being considered, we will omit reference toA.

Claim 9. A 2-tree PIG T does not contain any extra triangles at distance3 or more from a
longest2-path A of T.

Proof. Otherwise,Twould contain an induced 2-star contradicting it being a PIG, byClaim
8. In particular, ift is an extra triangle that is at distance 3 fromA, and if two shortest 2-paths
betweent and a triangle ofA = t1 . . . tm aretpqti andtpqti+1, whereti andti+1 are two
consecutive triangles ofA, then we know that 3� i < i+1�m−2, since otherwiseAwould
not have been a longest 2-path ofT (clearly,m�6). But now a subgraph ofT induced on the
vertices inV (ti−2)∪V (ti−1)∪V (ti)∪V (ti+1)∪V (ti+2)∪V (ti+3)∪V (p)∪V (q)∪V (t)
is a 2-star, contradictingT being a PIG, by Claim 8. �

From Claim 9 it follows that if extra triangles with respect to a longest 2-pathA of
a 2-tree PIG exist, then they must be at distance 1 or 2 fromA. The next claim deter-
mines the partition to which the degree 2 vertices of the distance 2 extra triangles ofA
belong. As before, we denote byv1 the degree 2 vertex oft1, and byvm the degree 2
vertex oftm.
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Fig. 8. Twenty-seven minimal forbidden induced subgraphs for 2-tree PIGs resulting from Claim 11.

Claim 10. Let T be a2-tree PIG, letA= t1t2 . . . tm be a longest2-path of T, and letm�4.
Let t be an extra triangle at distance2 from A. Denote byv the degree2 vertex of t. If t is
at distance2 from t2 andt3 (or equivalently, from tm−1 andtm−2) then:

• if v ∈ P , thenv1 ∈ N (vm ∈ N );
• if m= 4 andv ∈ P , then eitherv1, or vm, or both are non-probe.

If t is at distance2 from ti andti+1, for 3� i�m− 3(m�6), thenv ∈ N .
Proof. If m = 4 and if all three verticesv, v1 and v4 are probe, than they form an all
probe AT inT contradicting Lemma 1. Letm�5 and lett be at distance 2 fromt2 and
t3 (or equivalently fromtm−1 and tm−2). Denote byu,w the vertices ofV (t5)\V (t3) (or
vertices ofV (tm−4)\V (tm−2), if tm−1 andtm−2 are being considered). Now{X, Y,Z}where
X = {v1}, Y = {v}, Z = {u,w} is an AC, so ifv ∈ P , sinceZ is not independent,v1 must
be a non-probe, by Lemma 1.
We now consider the case whent is at distance 2 fromti and ti+1 for 3� i�m −

3(m�6). Let u1, w1 be the vertices ofV (ti−2)\V (ti), and letu2, w2 be the vertices of
V (ti+3)\V (ti+1). Now {X, Y,Z} is anAC, whereX={u1, w1}, Y ={u2, w2}, andZ={v},
so sinceX andYare not independent,v must be a non-probe, by Lemma 1.�

Wenowdescribe somestructure of 2-treePIGs that is forcedby the existenceof additional
and extra triangles with respect to their longest 2-paths.

Claim 11. Let t ′ be an additional triangle at distance1 from a longest2-pathA= t1 . . . tm
of a2-tree PIG T, and lett ′′ be an extra triangle at distance2 from A. Lett ′ be adjacent to
the triangleti and lett ′′ be at distance2 from ti andti+1 of A for3� i�m− 3(m�6), let
v′ be the degree2 vertex oft ′, let v′′ be the degree2 vertex oft ′′, and let s be the vertex in
ti that is not int ′. Thenv′′s /∈E(T ).

Proof. By Claim 6,v′ ∈ N . Thus,s ∈ N , by Corollary 2 applied to the 3-sun induced on
vertices ofti−1 ∪ ti ∪ ti+1 ∪ t ′. Also, v′′ ∈ N , by Claim 10. Now, sinces, v′′ ∈ N , they
cannot be adjacent.�

Corollary 3. The twenty-seven 2-trees presented inFig. 8 are minimal non-PIGs.

Proof. First we show that none of the graphs inFig. 8are PIGs. Notice that verticesaand 7
in graphsS13, S114, andS

1
15, as well as verticesaand 8 in graphsS

1
16, S

1
17, andS

1
18 violate the
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conditions of Claim 11 and thus these graphs are not PIGs.We reason about graphsSi14, S
j

15,
andSl17 (i, j, l�2) as follows. Assume they are PIGs. By Claim 6,a ∈ N , which implies
that s ∈ N by applying Corollary 2 to the 3-sun induced on vertices{1,2,31,32, a, s} in
Si14, S

j

15 andS
l
17. This further implies that all neighbors ofs are inP in these graphs, and

thus, if i, j, l�3, the graph induced on vertices 3n,3n−1,3n−2,4,5,6,7 in Si14(n= i) and
S
j

15(n=j), and vertices{3l ,3l−1,3l−2,5,6,7,8} in Sl17 is isomorphic to graphG5 in Fig. 1

with vertex 3n (n= i, j, l for graphsSi14, Sj15, andSl17, respectively) corresponding to vertex
w ofG5 and being a probe, contradicting Theorem 1; similarly, ifi, j, l= 2, then the graph
induced on vertices 32,31,2,4,5,6,7 inS214 andS

2
15, as well as vertices 32,31,2,5,6,7,8

in S217 is isomorphic toG5 with 32 ∈ P contradicting Theorem 1. In graphsSk16 andS
m
18

presented inFig. 8, a, s ∈ N by Claim 6 and Corollary 2, and thus{x, y, z} is an all-probe
AT contradicting Lemma 1, wherex ∈ X, y ∈ Y , andz ∈ Z.
It is straightforward to verify that the graphs presented inFig. 8are non-isomorphic, and

that they are minimal non-PIGs (deletion of any vertex from these graphs yields a PIG).
�

Note that all graphs presented inFig. 8apart fromS13 contain a fan of some small size.
We cannot insert a fan intoS13 in the same way we did in the other graphs inFig. 8for the
following reasons. If we insert ak-fan next to vertex 31, thenSk13 would contain two trees
isomorphic toG5 presented inFig. 1, one induced on vertices 5,8,7,6,3k,3k−1,3k−2 (or
in the case thatk = 2, induced on vertices 5,8,7,6,32,31, a), and the other induced on
vertices 0,1, s,31, a,4,5. The vertex 3k in the first copy ofG5 in Sk13 corresponds to the
vertexwofG5 in Fig. 1, and so does the vertexs in the second copy ofG5 in Sk13. However,
3k ands are adjacent inSk13, which contradicts the condition of Theorem 1 that they both
have to be non-probe. No fans larger than the ones indicated inFig. 8can be inserted into the
other graphs inFig. 8, since otherwise removal of the vertex 3�k/2� would yield a non-PIG
contradicting the minimality of these graphs.

Claim 12. Let t be an extra triangle at distance1 from a longest2-pathA= t1 . . . tm of a
2-tree PIG T, and let t be adjacent toti and ti+1 of A, for 3� i�m − 3(m�6). There do
not exist in T two extra trianglest ′1 and t ′2 at distance2 from A such that they are adjacent
to different edges of t. Ifi = 2 or i =m− 2, then:

• exactly one oft ′1 andt ′2 must have its degree2 vertex a probe;
• if in additionm = 5 and the vertices of T are denoted as inFig. 9 (T can be any one of
T1, T2, andT3 in Fig. 9), or if m = 4 andT = T2\{7}, whereT2 is presented in Fig. 9,
thenv′

1 ∈ N andv′
2 ∈ P .

Proof. Assume to the contrary. Denote byv′
1 the degree 2 vertex oft

′
1 and byv

′
2 the degree

2 vertex oft ′2. First, let 3� i�m−3(m�6). Now the subgraphSof T induced on the union
of the vertices of trianglesti , t, t ′1, andt ′2 is a 3-sun, but by Claim 10 two of its AT-vertices
v′
1 andv

′
2 are non-probe, contradicting Corollary 2.

Now let i = 2 (or equivalentlyi = m − 2). Denote a subset of the vertices ofT as in
Fig. 9 (T can be any one ofT1, T2, andT3). If both v′

1 andv
′
2 are non-probes, then the
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Fig. 9. The three (valid) 2-tree PIGs with two extra triangles at distance 2 from a longest 2-pathA= t1 . . . t5 such
that they are adjacent to the same extra triangle.
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Fig. 10. Six minimal forbidden induced subgraphs for 2-tree PIGs resulting from Claim 12.

3-sunS induced on the set of vertices{2,3,4, v′
1, v, v

′
2} has two non-probe AT-vertices

contradicting Corollary 2. If bothv′
1 andv

′
2 are probes, then by Corollary 2 applied to

S, 2 ∈ N and thus 1∈ P ; this contradicts Claim 10 which says that vertex 1 must be a
non-probe, sincev′

1, v
′
2 ∈ P . Thus, one ofv′

1 andv
′
2 must be a probe and the other one

non-probe. Note that ifm=5, wemust havev′
1 ∈ N andv′

2 ∈ P , since otherwise we would
have 3∈ N and thus 1∈ P , contradicting Claim 10 (another way to see this is: if we would
havev′

2 ∈ N, v′
1 ∈ P , then either{1, v′

1,6},or {1, v1,7}, or both would form an all-probe
AT contradicting Lemma 1). Ifm=4, in the 2-tree PIGT1\{7}=T3\{7} presented inFig. 9
we can havev′

2 ∈ N, v′
1 ∈ P , in which case 6∈ N , by Claim 10. However, ifm= 4 and in

T2\{7} we havev′
2 ∈ N andv′

1 ∈ P , thenT2\{7} would contain an all probe AT{v′
1,1,6}

contradicting Lemma 1; thus we must havev′
2 ∈ P andv′

1 ∈ N in T2\{7}. �

Corollary 4. The six2-trees presented inFig. 10are minimal non-PIGs.

Proof. There are six non-isomorphicA6s, by Observation 1. Using the same notation as
in Claim 12, since the “addition” oft, t ′1, and t ′2 to each of the six non-isomorphicA6s
does not increase the length of the longest path in the resulting graph, we conclude that
the six 2-trees presented inFig. 10 are non-isomorphic. They are non-PIGs, since they
violate the conditions of Claim 12. It is easy to see that the removal of any vertex fromSi ,
i ∈ {19, . . . ,24} yields a PIG, that is,S19, . . . , S24 are minimal non-PIGs. �

Claim 13. Let v′
1 andv′

2 be the degree2 vertices of two different additional trianglest ′1
andt ′2 at distance1 from a longest2-pathA= t1 . . . tm of a2-tree PIG T. Lett ′1 be adjacent
to ti and lett ′2 be adjacent totj of A, 3� i < j�m−2,and denote bys′1 ands′2 the vertices
in V (ti)\V (t ′1) andV (tj )\V (t ′2), respectively. Thenv′

1s
′
2, v

′
2s

′
1 /∈E(T ).
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Fig. 11. (A) Eleven minimal forbidden induced subgraphs for 2-tree PIGs resulting from Claim 13. (B) Five
minimal forbidden induced subgraphs for 2-tree PIGs resulting from Claim 14.

Proof. If to the contrary,v′
1s

′
2 ∈ E(T ), then at least one ofv′

1, s
′
2 must be a probe which

contradicts the fact that both of themmust be non-probe:v′
1 ∈ N by Claim 6, ands′2 ∈ N by

Corollary 2 since it belongs to the 3-sun formed by the union of trianglestj−1, tj , tj+1, t
′
2,

and sincev′
2 ∈ N , by Claim 6. �

Corollary 5. The eleven 2-trees presented inFig. 11A are minimal non-PIGs.

Proof. It follows directly fromClaim 13 that graphsS25, Si26, S
i
27, i ∈ {1, . . . ,5} presented

in Fig. 11A are not PIGs, since verticesa1, s1, a2, ands2 in S25 as well as verticesa1, s, a2,
and 3i in graphsSi26 andS

i
27 violate the condition described in Claim 13. It is easy to see that

these graphs are minimal non-PIGs, since removal of any vertex from any of them yields a
PIG. �

Similar to the explanation given after the proof of Corollary 3, no fans can be inserted
in the graphS25 in Fig. 11A, and no fan larger than a 5-fan can be inserted in the other two
graphs in the same figure.

Claim 14. Let t ′1 and t ′2 be additional triangles at distance one from a longest2-path
A = t1 . . . tm of a 2-tree T that are adjacent to trianglesti and ti+2 of A, respectively,
3� i < i+2�m−1,such that there exists a vertex u which satisfies{u}=V (ti)∩V (ti+2)

and{u} = V (t ′1) ∩ V (t ′2). Then T is not a PIG.

Proof. Denote bya1 the degree 2 vertex oft ′1, by a2 the degree 2 vertex oft ′2, by s1 the
vertex inV (ti)\V (t ′1), and bys2 the vertex inV (ti+2)\V (t ′2). Clearly,s1s2 ∈ E(T ), by
definition ofA andu. Assume thatT is a PIG. Sincet ′1 is adjacent toti , 3� i�m − 3, by
Claim 6,a1 ∈ N . Consider the position of the vertexa2 with respect toA.
• If i + 2�m − 2, by Claim 6, we conclude thata2 ∈ N . In this case, boths1 ands2 are
non-probe, because the subgraph ofT induced onV (ti−1)∪V (ti)∪V (ti+1)∪V (t ′1) is a
3-sun with anAT vertexa1 being a non-probe, and thus by Corollary 2,s1 ∈ N ; similarly,
the subgraph ofT induced onV (ti+1)∪V (ti+2)∪V (ti+3)∪V (t ′2) is a 3-sun with anAT
vertexa2 being a non-probe, and thus by Corollary 2,s2 ∈ N . This contradictss1 ands2
being adjacent.

• If i + 2 = m − 1 anda2 ∈ N , the same argument as above leads to a contradiction.
If a2 ∈ P , then the following argument leads to a contradiction. We know thatu, as a
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neighbor ofa1 ∈ N , is in P. Thus, sincea2 is also a probe, in the 3-sun induced on
V (tm−2) ∪ V (tm−1) ∪ V (tm) ∪ V (t ′2), by Corollary 2,vm ∈ P , wherevm is the degree 2
vertex oftm. Since in the 3-sun inducedon the vertices ofV (ti−1)∪V (ti)∪V (ti+1)∪V (t ′1)
we know thata1, s1 ∈ N (the proof is above), this implies that all neighbors ofs1 must
be probe. Consider the neighborvi−1 ∈ V (ti−1)\V (ti) of s1. Now vertices{a2, vm, vi−1}
form an all-probe AT inT contradicting Lemma 1. �

Corollary 6. The five2-trees presented in Fig. 11B are minimal forbidden induced sub-
graphs for2-tree PIGs.

Proof. The proof that these graphsS128 andS29 are not PIG follows directly fromClaim 14.
For graphsSi28, i ∈ {2, . . . ,4}, the proof is similar to the proof of Claim 14: it is easy to see
thata1, s1 ∈ N byClaim 6 andCorollary 2, and thus all neighbors ofs1 are probe; alsovm−1
is a non-probe, by Corollary 2 applied to the 3-sun induced on{s1, s2, vm, vm−1, a2, ui},
sinces1 ∈ N , and thusvm, a2 ∈ P as neighbors ofs1; now {vm, a2, v1} form an all probe
AT in Si28, i ∈ {2, . . . ,4} contradicting Lemma 1.
It is easy to see that the removal of any vertex fromany of these graphsmakes the resulting

graph PIG, that is, these graphs are minimal non-PIG 2-trees.�

Similar to the explanation given after the proof of Corollary 3, no fans can be inserted in
the graphS29 in Fig. 11B, and no fan larger than a 4-fan can be inserted in the other graph
in the same figure.
Combining Theorem 2, Claims 4, 8, and Corollaries 3–6, we have the following:

Theorem 3. There exist at least 62 graphs in the forbidden induced subgraph characteri-
zation for2-tree PIGs.

5. Conclusions and future work

We have shown that the FISC for 2-tree PIGs contains at least 62 graphs. It is possible
that this list is complete. However, the key point is that this FISC is not concise and thus
does not seem to give much insight into the structure of 2-tree PIGs.
It is interesting to note that 13 out of 14 forbidden induced subgraphs for PIGs described

in Theorem 2, Claim 4, and Claim 8 haveasteroidal triples of edges, a structure introduced
by Müller [13]: three edgese1, e2, ande3 of a graphG form an asteroidal triple of edges
(ATE) if for any two of them there is a path from the vertex set of one to the vertex set
of the other that avoids the neighborhood of the third edge, where a neighborhood of an
edgee = uv isN(u) ∪N(v). However, the remaining 49 forbidden induced subgraphs for
PIGs do not have ATEs and it is not clear if other more general structures occur in these
subgraphs. Note that our Corollary 1 is similar to the previously shown result that PIGs
cannot have ATEs[3]. Other related results that have appeared recently include a FISC for
treeunit PIGs [5] andunit interval bigraphs[4]; in unit PIGs all intervals in an interval
representation of a PIG are of the same length, while unit interval bigraphs are bipartite
intersection graphs of two distinct families of the same length intervals with two vertices
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adjacent if and only if their corresponding intervals overlap and each interval belongs to a
distinct family.
Sheng’s FISC for tree PIGs[15] implies the existence of an efficient algorithm for solving

the non-GP recognition problem for tree PIGs. Using Shamir and Tsur’s subtree isomor-
phism algorithm[14] to determine if each of the two trees in the FISC for tree PIGs (the
graphsG4 andG6 presented inFig. 1) is present in a treeT yields an O(n) algorithm for
determining ifT is a PIG, wheren is the number of vertices inT. The problem of efficient
non-GP recognition of 2-treePIGs remains open even if we knowa complete FISC for 2-tree
PIGs. The more general problems of non-GP recognition ofk-tree PIGs for any positive
integerk, chordal PIGs, and PIGs in general remain open as well.

Acknowledgements

The authors wish to thank the Natural Science and Engineering Research Council of
Canada for financial assistance.We thank the anonymous referee for helpful comments and
suggestions.

References

[1] A. Berry, M.C. Golumbic, M. Lipshteyn, Cycle-bicolorable graphs and triangulating chordal probe graphs,
Combinatorics, Graph Theory and Computing Conference, 2004.

[2] A. Berry, M.C. Golumbic, M. Lipshteyn, Two tricks to triangulate chordal probe graphs in polynomial time,
Proceedings of the FifteenthAnnual ACM-SIAM Symposium on DiscreteAlgorithms (SODA 04), 2004, pp.
962–969.

[3] D.E. Brown, S.C. Flink, J.R. Lundgren, Interval k-graphs, Congr. Numer. 156 (2002) 5–16.
[4] D.E. Brown, J.R. Lundgren, Several characterizations for unit interval bigraphs, preprint, 2004.
[5] D.E. Brown, J.R. Lundgren, Li Sheng, Cycle-free unit probe interval graphs, preprint, 2004.
[6] M.C. Golumbic, M. Lipshteyn, On the hierarchy of interval, probe and tolerance graphs, Congr. Numer. (153)

(2001) 97–106.
[7] M.C.Golumbic,M. Lipshteyn,Chordal probe graphs,Twenty-ninethWorkshoponGraphTheoreticConcepts

in Computer Science (WG 2003), 2003, pp. 249–260.
[8] J.L. Johnson, J.P. Spinrad,A polynomial time recognition algorithm for probe interval graphs, Proceedings of

theTwelfthAnnualACM-SIAMSymposium onDiscreteAlgorithms (SODA01), vol. 12, 2001, pp. 477–486.
[9] R.M. McConnell, Linear-time recognition of circular-arc graphs, Proceedings of the Forty-second Annual

IEEE Symposium on Foundations of Computer Science (FOCS 01), 2001, pp. 386–394.
[10] R.M. McConnell, J.P. Spinrad, Construction of probe interval models, Proceedings of the Thirteenth Annual

ACM-SIAM Symposium on Discrete Algorithms (SODA 02), 2002, pp. 866–875.
[11] B. McKay, Nauty version 2.0,http://cs.anu.edu.au/∼bdm/nauty.
[12] F.R. McMorris, Chi Wang, P. Zhang, On probe interval graphs, Discrete Appl. Math. 88 (1998) 315–324.
[13] H. Müller, Recognizing interval digraphs and interval bigraphs in polynomial time, Discrete Appl. Math. 78

(1997) 189–205.
[14] R. Shamir, D. Tsur, Faster subtree isomorphism, J. Algorithms 33 (1999) 267–280.
[15] Li Sheng, Cycle free probe interval graphs, Congr. Numer. 140 (1999) 33–42.
[16] P. Zhang, Probe interval graphs and its applications to physical mapping of DNA, Manuscript, 1994.
[17] P. Zhang, Methods of mapping DNA fragments, United States Patent, Online available at

http://www.cc.columbia.edu/cu/cie/techlists/patents/5667970.htm, 1997.
[18] P. Zhang, E.A. Schon, S.F. Fischer, J.Weiss, E. Cayanis, S. Kistler, P.E. Bourne,An algorithm based on graph

theory for the assembly of contigs in physical mapping of DNA, Comput. Appl. Biosci. 10 (1994) 309–317.

http://cs.anu.edu.au/~bdm/nauty
http://www.cc.columbia.edu/cu/cie/techlists/patents/5667970.htm

	2-Tree probe interval graphs have a large obstruction set
	Introduction
	Preliminaries
	Some structure of PIGs
	2-Tree probe interval graphs
	Conclusions and future work
	Acknowledgements
	References


