
Chapter 3

Temporal Analysis of Rating Datasets

The previous chapter highlighted an important problem with recommender systems: CF evaluation does

not take into account that the data used to compute recommendations is subject to change over time.

In this chapter, we analyse this phenomenon. We begin by introducing the rating datasets we use for

this study in Section 3.1. We then split our analysis into two parts: in Section 3.2, we perform an in-

depth analysis of the ratings that recommender systems receive. In Section 3.3, we investigate how these

changes affect the similarity between users over time (and, consequently, the recommendations that

CF computes). These observations lay the foundations of work we present in the following chapters;

namely, how to use temporal information to improve the accuracy, augment the diversity, and secure the

robustness of recommender systems.

3.1 Rating Datasets
We focus on three explicit-rating datasets: two MovieLens sets (which we refer to as ML-1 and ML-2)

and the Netflix prize set. These datasets have been at the fulcrum of CF research for a number of years,

and can be described as collections of 4-tuples:

[u, i, ru,i, tu,i] (3.1)

Each tuple contains: a user id u, a movie id i, the rating ru,i given by the user to the movie, and the time

tu,i when this rating was input. The motivation behind comparing these datasets extends beyond their

popularity. They all provide users rating the same type of content (movies) with the same scale (1-5

stars)—thus allowing a direct comparison of each dataset’s temporal rating characteristics. However, we

still expect to identify temporal differences between the sets: there are significant differences in each

set’s size in terms of users, items, and ratings. We summarise these differences in Table 3.1. In addition

to each set’s relative size, there are a number of implicit reasons why temporal differences may emerge,

including:

• Motivation: The MovieLens data is sampled from a system built for research purposes1. Netflix,

instead, is a commercial system2 incentivised by financial targets. The system users themselves

1http://www.movielens.org/login
2http://www.netflix.com/
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Dataset Users Movies Ratings Time (Days)

MovieLens-1 943 1,682 100,000 215
MovieLens-2 6,040 3,706 1,000,209 1,036
Netflix 480,189 17,770 100,480,507 2,243

Table 3.1: Users, Items, Ratings in Each Dataset

have different relationships with each system: in the former, they are contributing to research by

rating; in the latter, they are customers who are requesting and receiving DVDs when subscribed.

• Interface: We assume that users are more likely to rate content to which they are exposed; how

and what people rate may thus be dependent on the design and usability of each system’s interface.

• Algorithm: Similarly, we assume that there may be a relationship between what users are recom-

mended and what they rate. The datasets therefore become subject to the CF algorithm that was

in operation when the data was collected.

The rating data alone is not sufficient to understand which of these forces is at play; we are also unaware

of any changes to which each system’s interface or algorithm may have been subject to during the time

span of ratings available. We cannot therefore explicitly discuss the causality of changes we observe in

the data. This point is aggravated by the uncertainty as to whether time was taken into account when

sampling each system’s ratings. The ML-1 documentation states that the dataset has been “cleaned-

up:” users with fewer than 20 ratings or incomplete demographic information were pruned from the set.

However, there is no further mention of the subsampling technique used.

These uncertainties challenge the accuracy of hypotheses that have been verified using these

datasets; in particular, it is difficult to claim that algorithms that yield improved accuracy on one of

these sets will produce similar results once deployed. However, one point remains: recommender sys-

tems are subject to change over time, as new users join the system, new ratings are input, and new movies

are released. The purpose of the following sections is to show that these changes occur, see how they are

visible (in the available data), and examine their impact on conclusions drawn using current evaluative

techniques that do not take them into account.

3.2 Ratings Over Time
We divide our analysis into four groups: we look at the growth of the number of users, items and ratings

over time (Section 3.2.1), how this growth affects summary statistics derived from the ratings (Section

3.2.2), how user rating behaviour changes with time (Section 3.2.3), and the seasonal trends that emerge

when users rate content (Section 3.2.4).

3.2.1 Dataset Growth
In Figures 3.1, 3.2 and 3.3 we visualise the cumulative growth of the number of users, movies, and total

ratings over time for each dataset. In these plots we measure daily changes, since the Netflix timestamp

data only reports the date that users input ratings. TheMovieLens datasets’ timestamps would allow for a

finer grained analysis; however, we opt for daily views in order to consider all three sets simultaneously.
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(a) ML-1 Dataset (b) ML-2 Dataset (c) Netflix Dataset

Figure 3.1: Number of Users Over Time (ML-1, ML-2, Netflix)

(a) ML-1 Dataset (b) ML-2 Dataset (c) Netflix Dataset

Figure 3.2: Number of Movies Over Time (ML-1, ML-2, Netflix)

(a) ML-1 Dataset (b) ML-2 Dataset (c) Netflix Dataset

Figure 3.3: Number of Total Ratings Over Time (ML-1, ML-2, Netflix)

Since we do not have sign-up data, we consider that users “join” the system the moment they make their

first rating. Similarly, a movie appears in the system when it is first rated, since we do not know when it

was actually added to the movie database. We assume this to be a justifiable measure of dataset growth

since CF algorithms (that do not include content information) can only compute predictions for movies

that have been rated and users that have rated at least once.
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(a) New Users Per Day (b) New Movies Per Day (c) New Ratings Per Day

Figure 3.4: Non-Cumulative Netflix Daily Growth: the spikes represent days when a lot of

users/movies/ratings were added

(a) New Users Per Day (b) New Movies Per Day (c) New Ratings Per Day

Figure 3.5: Non-Cumulative ML-1 Daily Growth

Each dataset shows varying rates of growth. The number of Netflix users and ratings grow exponen-

tially, while the movies appear in the system at a near-linear pace. The ML-1 set also displays near-linear

growth: the number of users, items, and ratings continues to increase over each time step. The ML-2

dataset distinguishes itself from the other two by being the only one that shows a sharp change in growth

over time. In fact, the majority of the users appear within the first half of the dataset; after this phase

of accelerated growth, user growth halts and the rate at which new ratings and items are added to the

system sharply declines. The ML-1 and Netflix sets, instead, do not exhibit this anomaly and continue

to grow over time, but appear to do so at different rates.

One of the reasons for this apparent difference is the time that each dataset covers: the ML-1 set,

ranging over 215 days, is less than one tenth of the time that the Netflix set (2, 243 days) spans. In

order to account for this difference, we examined how much each dataset grows per day. In Figures 3.4

and 3.5 we plot how many new users, movies, and ratings appear in each day of each dataset. From

this perspective, the two datasets look more similar (differences between them may be explained by

the relative size of each set). Both have peaks, where a large volume of users appears in the system.

Similarly, both item plots (Figures 3.4(b) and 3.5(b)) spike in the early days of the dataset, when the
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Figure 3.6: Sparsity Over Time For Each Dataset: Netflix is the most sparse dataset

incoming ratings are going to items that have not been rated before. The Netflix data, however, continues

to display accelerating growth: Figures 3.4(a) and 3.4(c) shows that the volume of incoming users and

ratings tends to increase over time.

A changing volume of users, movies, and ratings will affect each dataset’s sparsity and rating dis-

tribution. In Figure 3.6, we plot the sparsity over time after normalising the number of days in each

dataset. All of the datasets are consistently over 90% sparse—less than 10% of the potential user-movie

ratings exist—but the Netflix dataset remains the sparsest, with a maximum value near 99%. The ML-1

set, while being the smallest, is also the least sparse (potentially due to the pruning of users with fewer

than 20 ratings). In Figure 3.7, we show how the rating distributions vary with time. If we consider the

datasets in their entirety, the absolute ordering of ratings is equal throughout all datasets: there are more

4 star than 3-star ratings, more 3 stars than 5 star ratings, and a very small proportion of 1 and 2 star

ratings. This seems to imply that people tend to rate what they already like, but tend to also avoid the

“extreme” ratings (1 and 5 stars). However, the Netflix dataset’s distribution (in Figure 3.7(c)) changes:

in the early days of the dataset, there are more 3 stars than 4 stars. Roughly 1000 days into the dataset, the

4 star rating overtakes the 3 star rating. It seems that, at this point, users are responding more positively

to their recommendations; in doing so, they shift the entire distribution of ratings towards the positive

end. However, as we do not have data to know what recommendations users were given, we cannot em-

pirically justify this claim. The main conclusion we make from these observations is that viewing rating

sets from a static viewpoint does not account for the changes that real systems’ data actually undergoes.

In particular, user, item, and rating growth over time implies that the amount of information available to

create recommendations (and thus the value that different users can draw from the system, and potential

accuracy) at different times will be quite large. Many users, who rate items that have not been rated be-

fore, are not simply responding to recommendations but are proactively seeking to rate items, set rating

trends, and respond to rating incentives [HJAK05, WH07a, BLW+04].
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(a) ML-1 Dataset (b) ML-2 Dataset (c) Netflix Dataset

Figure 3.7: Rating Distribution Over Time Of Each Dataset: Netflix is the only dataset with no consistent

ordering between the rating values

(a) ML-1 Dataset (b) ML-2 Dataset (c) Netflix Dataset

Figure 3.8: Datasets’ Global Rating Mean Over Time, Again highlighting the stop in ML-2’s growth

3.2.2 Changing Summary Statistics

While new ratings are added, any summary statistics computed from the available data may fluctuate. In

this section, we consider both global and per-user or item summary statistics. We begin with the global

rating means, in Figure 3.8. The means are computed daily using the entire history of available ratings

to date; we weight all ratings equally, regardless of when they were input (i.e., there is no time decay).

All of the means consistently fall between 3 and 4 stars, but vary quite widely within this range. For

the Netflix dataset, the most notable time segments are before the first 500 days, where the global mean

rises sharply, falls, and then once again rises, and after the first 1, 500 days have passed, where the mean

begins to grow again. The ML-2 set (Figure 3.8(b)) emphasises the relationship between growth and

change: when the dataset stops receiving new users (as we saw in the previous section), its global mean

stabilises as well.

The standard deviations are shown in Figure 3.9. The Netflix plot (Figure 3.9(c))—like its global

mean—suffers from high fluctuation in the initial days of the dataset, and then decreases from 1.14

to 1.08 in a near-linear fashion. In other words, the ratings become less dispersed around the mean

over time. Given that the mean is between 3 and 4 stars, this translates to a tendency to rate more
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(a) ML-1 Dataset (b) ML-2 Dataset (c) Netflix Dataset

Figure 3.9: Datasets’ Global Rating Variance Over Time

(a) Global Median (b) Global Mode

Figure 3.10: Netflix Rating Median and Mode Over Time

positively. Similarly, the ML-2 standard deviation stops changing when its mean flattens. The ML-1

dataset standard deviation is consistently higher than those we observed in the other datasets; however,

excluding the edges of the 215 days, it remains relatively flat. The peak in the plot coincides with the

dip in the temporal mean.

The problem here is that state of the art research does not factor in this feature of the data. For

example, consider the BellKor solution to the Netflix prize competition [Kor09b]; the foundation of the

ensemble of techniques they used successfully to win the competition was a baseline predictor, which

includes the global rating average: a value that, as we have seen, will change over time. Although

[Kor09b] does account for temporal changes at the user and item level (by binning the data into sequential

windows of varying size), the global baseline prediction is used as a fixed starting value from which to

build predictions. If we consider the range of values that this global mean takes over time, it seems that

the accuracy of this baseline would vary significantly.

To understand why the mean and variance display such change, consider Figure 3.10, which shows

the rating median and mode (i.e. the most frequent rating value) of the Netflix dataset over time. We do

not plot the ML-1 and ML-2 temporal medians and modes, since they do not change: they all remain
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(a) ML-1 Dataset (b) ML-2 Dataset (c) Netflix Dataset

Figure 3.11: Users Binned By Profile Size Over Time

constant at 4 stars. The initial fluctuation in the Netflix mean is mirrored by a change of the rating mode

from 2 to 4 stars. The mode then reverts and stabilises at 3 stars, until it again changes, and remains,

at 4 stars—accounting for the rise of the rating average. The rating median behaves very similarly to

the mode: days after the mode jumps to 4 stars, the median increases from 3 stars to 4 stars, reflecting

the surge in the 4 and 5 star ratings that are input in this time, and accounting for the changes observed

in both the mean and mode. A median of 4 tells us that half of the ratings in the system are 4 and 5

stars; however, more importantly, the change the median displays over time reflects that the distribution

of ratings does not remain consistent. As above, it is impossible to deduce from the data why the global

behaviour changed as we see here; changes to the Netflix interface, recommendation algorithm, user

base, or combinations of these may be, but cannot be confirmed to be, the cause.

While it is possible to explore CF datasets from a global perspective, it is important to remember

that the datasets represent a collection of individuals’ profiles, and that the global state of the dataset can

mask the state and changes that single profiles undergo. For example, as shown in Figure 3.11, if we first

split the users into groups according to each user’s number of ratings, we can then see how the group

sizes fluctuate over time. In Figure 3.11, we bin users into four groups: (black) those with fewer than 10

ratings (excluding those who have yet to rate for the first time), (dark grey) those with 10 − 50 ratings,

(grey) those with 50 − 100 ratings, and (light grey) those with more than 100 ratings. We then plot the

relative group sizes as each dataset grows. These plots highlight the skewed distribution of profile sizes

over time. In fact, the group of users with fewer than 10 ratings each may even be under represented in

the data, although we do see that the Netflix prize data includes the highest proportion of this group.

The above analysis shows that global summary values fluctuate over time, reflecting how the overall

distribution of ratings shifts as more users interact with the system. However, many algorithms that are

used for CF do not use global summary statistics, but rather prefer to formulate predictions using either

the item or user mean rating values. These values are also subject to change, as we show in Figure

3.12, where we plot the average item and user mean ratings over time. Each perspective (item-based

or user-based) of the average means falls into a different range over time. Interestingly, the average

user mean rating is consistently higher than the average movie mean rating; while users tend to rate
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(a) ML-1 Dataset (b) ML-2 Dataset (c) Netflix Dataset

Figure 3.12: Average User and Item Mean Rating Over Time

(a) ML-1 Dataset (b) ML-2 Dataset (c) Netflix Dataset

Figure 3.13: Standard Deviation of Ratings Per User Per Day

positively, there are items that are not liked (and thus rated lower), which pulls down the average item

mean rating. The datasets not only remain sparse, but also do not stabilise (with the exception of ML-

2, which stops growing); recommender systems continuously have to make decisions based on both

incomplete, inaccurate, and changing data, and the range of the changes we observe in the Netflix data

are likely to have a strong impact on the predictability of ratings.

3.2.3 Temporal User Behaviour
Thus far, our focus has been on the data: how the volume of users, items, and ratings grow and how

summary statistics derived from them will change. Since we are dealing with explicit rating datasets, the

mere act of rating also reveals how users are interacting with the system. To explore how user behaviour

will vary over time, we plotted the standard deviation of the number of ratings input by returning users

(i.e., users who have previously visited the sytem and input ratings at least once) per day in Figure 3.13.

The plots show the high variability in how users interact with the recommender system. Both the ML-2

(Figure 3.13(b)) and Netflix (Figure 3.13(c)) datasets have high initial fluctuation in average user ratings

per week; following this, the mean value flattens out. The ML-1 dataset, instead, has a more steady

stream of average ratings per user, with small peaks corresponding to days that users (on average) rated

more. Both of the MovieLens datasets have a much higher dispersion—many of the bars are over 100—
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(a) ML-1 Dataset (b) ML-2 Dataset (c) Netflix Dataset

Figure 3.14: MovieLens: Average Number of Ratings Per Week (With Standard Deviation)

while the Netflix data (after the initial high period) falls below 50: it seems that users are proactively

rating more in the MovieLens system.

3.2.4 Daily and Weekly Trends
In the previous section, we observed how user rating behaviour fluctuates over time, by looking at the

entire window available for each dataset. However, this same rating behaviour can be further summarised

by relating it to the day of the week when the ratings are input. In Figure 3.14 we plot the average number

of ratings input per day for each dataset. Netflix sees its highest activity at the end of the week, as more

ratings tend to be input on Thursdays, Fridays, and Saturdays than the other days. However, as the two

MovieLens datasets show us, these results are again dependent on the subset of ratings available in the

dataset: both ML datasets come from the same system, yet display very different rating activity. ML-1

rating trends tend to be lower during the weekend, with most ratings being input Wednesdays-Fridays,

while the ML-2 dataset shows us the opposite, where more ratings are received on Mondays than any

other day of the week.

Since the MovieLens timestamps allow us to know the precise moment when each rating was sub-

mitted, we can extract a finer-grained view of user activity over an average day in the system. Instead

of binning ratings according to the day they were input, we binned them by hour, and plot the results in

Figure 3.15. Unlike Figure 3.14, the two datasets now show very similar activity patterns: users tend

to rate movies in the evenings, and the lowest volume of ratings appear roughly between 8am and 3pm;

we assume this may be the cause since the majority of the system users would otherwise be occupied at

work during these hours.

This analysis reflects an important aspect of recommender systems: the data is being produced by

people, who tend to exhibit regular patterns of behaviour. The fact that people are behind the data input

process also bounds the number of ratings we can expect to be input by a single person in a particular

period of time. For example, it seems unlikely for a person to be able to rate 100 movies in less than

a minute; moreover, if they were able to input this number of ratings, we could question the extent to

which this person is providing honest (and thus, not noisy [APO09]) values. We will revisit this result

and use this conclusion when we address the problem of recommender system robustness (Chapter 6).
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(a) ML-1 Dataset (b) ML-2 Dataset

Figure 3.15: MovieLens: Average Number of Ratings Per Hour (With Standard Deviation)

Regardless of how collective behaviour changes over time, the focus of a recommender system is

to harvest user ratings in order to then generate personalised recommendations for each user. As we

have seen before, this operation relies on the assumption of persisting like-mindedness between users. In

other words, changes to the data over time are only important if they affect the quality and accuracy of

ranked recommendations. We begin to explore this facet in the following sections, where we investigate

the extent to which measurable similarity persists over time.

3.3 Similarity Over Time
The various algorithms that have been applied to collaborative filtering contexts operate in different ways,

but all focus on capturing the similarity between users or items as content is rated. For example, nearest-

neighbour algorithms focus on similarity by using explicit similarity metrics and making predictions

with the most similar items (or users), and factorisation methods project item pairs into feature spaces

where the similar pairs will be near one another. In this section, we explore how measurable similarity

changes over time. In Section 3.3.1, we redefine the similarity metrics on which we will focus. We

then look at similarity from two perspectives: the static case (Section 3.3.2), allowing us to visualise

the effects of different similarity weights, and the temporal case (Section 3.3.3), which explores how

similarity changes over time and the consequences of it doing so.

3.3.1 Similarity Measures

We focus on three metrics: the Pearson Correlation Coefficient (PCC), the Vector (or Cosine) Similar-

ity, and the Jaccard distance. The simplest similarity measure between two user profiles—the Jaccard

distance—can be derived using information that disregards the actual ratings themselves, but considers

two other factors. The act of rating an item is a conscious decision made by human users, and represents

a judgment on a product that has been “consumed” (viewed, listened to, etc.). Therefore, when two users

have selected the same product, they already share a common characteristic: their choice to consume

and rate that product. This similarity measure disregards each user’s judgment of the item, and weights
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users according to the proportion of co-rated items:

wa,b =
|Ra,i ∩i Rb,i|

|Ra,i ∪i Rb,i|
(3.2)

The Cosine similarity measure works by comparing the intersection of two users’ profiles as vectors of

ratings:

wa,b =
Ra •Rb

||Ra||||Rb||
=

∑

i ra,i × rb,i
√

∑

r2a,i

√

∑

r2b,i

(3.3)

The PCC aims to measure the degree of agreement between two users by measuring the extent to which

a linear relationship exists between the two users’ historical ratings [HKBR99].

wa,b =
ΣN

i=1(ra,i − r̄a)(rb,i − r̄b)
√

ΣN
i=1(ra,i − r̄a)2ΣN

i=1(rb,i − r̄b)2
(3.4)

We also include two variations of the PCC—the weighted PCC, where users who have co-rated n items

(fewer than a threshold value x = 50 [HKBR99]) have their similarity scaled by n
x
, and the constrained

PCC, where user ratings are normalised with the rating scale mid point (2.5 stars) rather than each users’

mean rating—making a total of five similarity measures.

3.3.2 Static Similarity
The intuition behind similarity metrics is that if they are well-suited to the problem at hand (i.e., finding

good neighbours for users or items) then they will lead to better kNN predictions and, as a consequence,

better recommendations. However, there is a problem with similarity measures that is best demonstrated

with an example. If Alice’s rating history for five items, on a five-point rating scale, is [2, 3, 1, 5, 3], and

Bob’s rating history for the same items is [4, 1, 3, 2, 3], then the Cosine similarity will be about 0.76.

The PCC will return −0.50, while adding significance-weighting will produce −0.05. Other methods

will result in equally different values. There is no consensus between the different methods as to how

similar Alice and Bob are. Just as the relationship between Alice and Bob will change from good to bad

depending on how they compute their similarity, selecting different coefficients will alter the weightings

of all the user-pairs in the community. The relative ordering of similarity will also change: given three

users (a, b, c), with wa,b < wa,c when using the PCC does not imply that wa,b < wa,c will remain true

when using the Cosine similarity. The similarity values will, in turn, affect the prediction accuracy and

coverage of the CF process.

We investigated the nature of these different similarity measures by looking at their distribution over

the full range of available neighbours in the MovieLens-1 dataset. We focus on this dataset since, as we

found in Figure 3.6, it is consistently the least sparse; similarity values derived from this dataset are thus

assumed to be more reliable. We first computed all the coefficients between every pair of users, using all

available profile information. We then plotted the proportion of the total number of coefficients that fell

within a given range (in bins of size 0.05) to be able to see how these coefficients are shared out among all

the available user pairs in Figure 3.16 and 3.17. The PCC distribution has two interesting peaks: one in

the range of (0, 0.05), and the other between (−1.0,−0.95). In other words, a relatively high proportion

of coefficients fall between the two ranges covered by these points: many users are either not similar or
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(a) PCC Distribution (b) Weighted-PCC Distribution (c) Constrained-PCC Distribution

Figure 3.16: ML-1 PCC, Weighted-PCC & Constrained-PCC Similarity Distribution

(a) Jaccard Distribution (b) Cosine Distribution

Figure 3.17: ML-1 Jaccard & Cosine Similarity Distribution

very dissimilar to one another. Applying significanceweighting to the coefficient changes the distribution

drastically, by increasing the frequency of neighbours who have very low correlation. Nearly half of the

user pairs are valued within (0, 0.05), which implies that a high proportion of recommendations are

weighted extremely lightly. The constrained-PCC skews the entire distribution toward the positive end;

it seems thus that this variation of the PCC will increase the similarity between pairs of users that may

otherwise have been deemed minimally similar with the standard PCC.

On the other hand, the similarity distributions based on the Jaccard distance peaks at 0, for the num-

ber of users who do not share any rated items. The rest of the user-pairs all share a positive similarity.

Since this coefficient is derived using the number of co-rated items that the user-pair share, this coeffi-

cient cannot be negative, and thus a community of recommenders in this scenario will only have positive

links. The Cosine distribution had the largest number of coefficients within a very high range: 0.78, or

nearly 80%, of the community is weighted between 0.9 and 1.0. This is the result of summing the pro-

portion of coefficients between (0.9, 0.95), 0.32, and (0.95, 1.0), 0.46. In other words, vector-similarity

weights will favour neighbour recommendations much higher than, for example, the Jaccard distance.

Finding that the majority of the population share similar coefficients may imply that the population is
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neighbourhood Co-Rated PCC Weighted-PCC R(0.5, 1.0) R(-1.0,1.0) Constant(1.0)

1 0.9449 1.1150 0.9596 1.0665 1.0341 1.0406
10 0.8498 1.0455 0.8277 0.9595 0.9689 0.9495
30 0.7979 0.9464 0.7847 0.8903 0.8848 0.9108
50 0.7852 0.9007 0.7733 0.8584 0.8498 0.8922
100 0.7759 0.8136 0.7647 0.8222 0.8153 0.8511
153 0.7725 0.7817 0.7638 0.8053 0.8024 0.8243
229 0.7717 0.7716 0.7679 0.7919 0.8058 0.7992
459 0.7718 0.8073 0.8025 0.7773 0.7812 0.7769

Table 3.2: MAE Prediction Error, MovieLens u1 Subset

Dataset Co-Rated PCC Weighted-PCC R(0.5,1.0) R(-1.0,1.0) Constant(1.0)

u1 0.7718 0.8073 0.8025 0.7773 0.7812 0.7769
u2 0.7559 0.7953 0.7903 0.7630 0.7666 0.7628
u3 0.7490 0.7801 0.7775 0.7554 0.7563 0.7551
u4 0.7463 0.7792 0.7747 0.7534 0.7554 0.7531
u5 0.7501 0.7824 0.7784 0.7573 0.7595 0.7573

Average 0.7548 0.7889 0.7847 0.7613 0.7638 0.7610

Table 3.3: MAE Prediction Error For All MovieLens Subsets

full of very similar users, but following this same analysis using the PCC yielded quite opposing results.

Once again, we found that the distribution given by each similarity measure does not agree with any of

the others. There does not seem to be any unifying behaviour or descriptive characteristics, in terms of

coefficient distribution, of the dataset, as the method for computing the coefficients is varied.

Any attempt at finding the “best” user weighting, to date, can only be done by conducting an anal-

ysis on comparative results of different techniques applied to the same dataset of user ratings; there

is no way of measuring how close these algorithms are to an optimal answer. We can, however, pro-

duce a worst-case scenario: we construct a similarity matrix based on random values, and observe how

accurately this scenario can generate predicted ratings. Random-based similarity does not use any in-

formation from the dataset to find like-minded peers; it simply is a set of uniformly distributed random

values on a pre-defined range. We thus expected that the error reported on the prediction set would be

devastatingly worse than when any similarity measures were used, since use of random numbers does

not consider how much users have co-rated items or how much their ratings agree with each other.

In order to see how accurate predictions are with different similarity metrics, we measured the

mean absolute error (MAE) of the predicted ratings only in the case when a prediction was made. If no

information was available, typical experiments will simply return the user mean, and this value is not

used when finding the MAE of the predictions. Since MAE measures the mean absolute deviation from

the actual ratings, and the MovieLens dataset uses a five-point rating scale, the error measures can be

expected to fall between 0, or perfect prediction, and 4.

We experimented with three ranges of random-similarity: (−1.0, 1.0), or randomly assigning re-
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lationships so that the distribution of coefficients over all user pairs is uniform over the full similarity

scale; (0.5, 1.0), i.e. giving all the user-pairs high similarity relationships; and all 1.0, giving all user

pairs perfect correlation.

Table 3.2 shows the prediction error results as k is increased, when using a subset of the MovieLens

data (named u1). However, as we have seen, prediction results are dependent on the data that is being

used. We therefore cross-validate our results by averaging the prediction error across five subsets of

the ML-1 dataset (named u1, u2, u3, u4, u5). The most accurate results were obtained when predicted

ratings were derived using all of the community members’ ratings; Table 3.3 shows the prediction results

for all subsets, when using this value.

To our surprise, the results of the experiments using random-valued and constant relationships were

not only comparable to the performance of the correlation coefficients, but on average they also per-

formed slightly better than the tested similarity measures. Such results would be expected if there were

a certain degree of homogeneity amongst the community members, regardless of whether the specific

correlation values agreed or not. A simple popularity-based recommender, which returns the average

rating of an item (using all available ratings of it) also produces comparable performance. The average

MAE over all data subsets, in this case, is 0.8182, which is 0.04 less than the weighted-PCC’s accuracy.

The datasets may be to blame for the results; they may be too small, or not representative enough

of a heterogeneous set of users. The MovieLens dataset we used does comply with the “long-tailed”

characteristic of user-ratings; however, little more is known of what qualifies a rating dataset as appro-

priate. Repeating the above experiments with the Netflix dataset produced different results. Nearly all

predictions were not covered, since randomly assigning neighbours to each user did not produce useful

neighbourhoods. However, if we tune the experiment to account for the larger dataset size by selecting

neighbours randomly from the pool of users who have rated the item that needs to be predicted, we again

see similar results to the above. These results are another sign that the dominant error measures used

to compare collaborative filtering algorithms may not be sufficient. Traditional similarity-based kNN

cannot be differentiated from the output of random-similarity kNN. The results further highlight the fact

that the current similarity measures are not strong enough to select the best neighbours. In the following

section we will see that this result persists over time.

3.3.3 Temporal Similarity

An analysis of the distribution of correlation coefficients in the community of recommendersmay, at first

glance, seem inappropriate, since the coefficient values will change over time, as they are recomputed

with growing user profiles. In this section, we examine how they got there, by looking at how similarity

between users changes over time.

A useful means of analysing how similarity changes over time is to consider the act of computing

similarity between all users as a process that generates a graph. In this case, each user is a node. Links to

other nodes are weighted according to how similar the user-pair is, and (in the case of kNN prediction)

the algorithm imposes the restriction that each node can only link itself to the k most similar neighbours;

the out-degree of each node is limited. From this perspective, similarity graphs are a constrained implicit
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social network between the users in the system. The network is implicit since the users are not actively

involved in selecting who they want to link to, and is constrained since the k parameter places an upper

bound on the number of neighbours each user can have.

Observing similarity computation as a graph-generating process paves the way for a wide range

of analysis that can be performed on recommender systems, drawing from methods described in graph

theory and previous work on (explicit) social network analysis [BA02, MAA08]. The aim of analysing

the graph generated by a filtering algorithm is to understand how the rating data is being manipulated in

order to derive predictions. Furthermore, iterative updates of a recommender system can be viewed as

re-generating the user graph. Changes in the graph when updates are computed will highlight how these

systems perform over time, and give insight into why the parameters and methods that can be used to

produce different accuracy results.

In the following sections, we explore the emergent properties of dynamic, temporal user-user simi-

larity graphs, by decomposing the analysis into four separate stages:

• Node Pairs: Drawing from the growth of both nodes and rating information, we explore how

similarity between a pair of nodes evolves over time. This analysis allows us to classify similarity

measures into three groups, based on how they evolve the relationship between a pair of nodes:

incremental, corrective, and near-randommeasures.

• Node Neighbourhoods: We have already mentioned that a kNN algorithm imposes restrictions

on the graph, by allowing nodes to point to a pre-defined number of neighbours. We project this

restriction onto the temporal scale, and observe the volatility of user neighbourhoods as profiles

grow and similarities are re-computed.

• Community Graphs: The last section of our analysis considers the entire community of users.

We computed properties such as connectness, average path length, and the in-degree distribution

of links, to find that similarity graphs display the small-world, scale-free characteristic that is

common to social networks. In other words, CF algorithms intrinsically favour some users over

others; we refer to these as power users, and perform experiments that aim to collect the influence

they exert on the predictive accuracy of the kNN algorithm.

User Pairs Over Time
Based on the way the datasets change over time, we first turn our attention to how the relationship

between a pair of nodes will evolve. The primary concern of collaborative filtering, based on the user

profiles explored above, is to predict how much users will rate items, in order to offer the top-N of

these predictions as recommendations. As reviewed in Chapter 2, predictions are often computed as a

weighted average of deviations from neighbour means [HKBR99]:

pa,i = r̄a +
Σ(rb,i − r̄b)× wa,b

Σwa,b
(3.5)

In other words, a prediction pa,i of item i for user a is an average of the set of deviations (rb,i − r̄b)

from each neighbour’s mean rating r̄b, weighted according to the similarity wa,b between the user a, and
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Figure 3.18: Similarity Between User 1 and 30: Similarity depends on how you measure it

neighbour b. All methods share the fact that they weight the contribution of each neighbour according to

the degree of similarity shared with the current user: similarity is central to this process.

As we saw in Section 3.3.2, various similarity metrics offer different ways of computing similarity

and will equally produce differing values. Despite this disagreement between similarity measures, one

would expect the similarity between pairs of users to converge. As ratings are added to one of the

two profiles, the similarity measure is computed on more information and should become more refined.

However, some similarity measures do not display this behaviour.

We can consider a small example: users 1 and 30 from the ML-1 dataset. We chose this pair of

users since their profiles have a large overlap over time (126 days), allowing for an extended view of

their similarity’s progression. If we order their profiles temporally, and then iteratively re-compute the

similarity between the two as each user inputs a rating, we can observe how similarity evolves over

time. Figure 3.18 shows the results of this experiment; in this case all measures return positive similarity

between the users. The similarity for all measures begins at zero, when there is no overlap between

the two users’ profiles. Once they begin to co-rate items, the Cosine measure skyrockets to near 1.0,

or perfect similarity. Over time, it very gradually degrades. The PCC measure also displays a large

shift away from zero when the profile overlap begins and then both returns toward zero and jumps back

up as the overlap increases. Only the wPCC and Jaccard measures grow slowly, without large shifts in

similarity from one measurement to the next.

This example displays how the similarity between this particular pair of users progresses. In order to

be able to generalise these results, we next aimed to analyse how the similarity of user 1’s profile evolves

relative to any other user in the system. There are a number of ways this evolution can be visualised; in

this work we plot the similarity at time t, sim(t) against the similarity at the time of the next update,

sim(t+1). This way we disregard the actual time between one update and the next, and favour focusing

on how the similarity itself between a pair of users evolves. This method also allowed us to plot the

similarity of one user compared to all others in the dataset, as we have done in Figure 3.19. These four

images show the similarity of user 1 in the ML-1 dataset compared to the rest of the community, using

different similarity measures. These results are similar to those we observed between the pair of users
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(a) Jaccard (b) Weighted Pearson

(c) Cosine (d) Pearson

Figure 3.19: Evolution of Similarity for the Jaccard, wPCC, Cosine and PCC Similarity Masures, Com-

paring User 1 to All Other Users in the System

we examined before.

The first point to notice is that the range of values returned by the different similarity measures

is not the same; some measures return values between 0.0 and 1.0, while others report values between

−1.0 and 1.0. However, the more important aspect of these plots is the variance the points have from

the diagonal, or the line y = x. If a point is on the diagonal it means that the similarity between the pair

of users at time (t + 1) is the same as it was at time t; nothing has changed. Similarly, if the point is

below the diagonal then the pair is less similar that it was before, and a point above the diagonal implies

that the measured similarity has grown. Therefore, the distance that these points have from the diagonal

represents the extent to which similarity between the pair changed from one update to the next. As is

visible in the plots of Figure 3.19, the greatest distance from the diagonal is reported in both the Cosine

and PCC measures. These reflect the observations that were made when we compared user 1 and 30.

Furthermore, they are representative of plots we created for other members of the community; these are

not included here due to lack of space. The way that these methods evolve similarity between a pair of

users follows one of three patterns. This allows for similarity measures to be classified according to their

temporal behaviour:
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k COR wPCC PCC Cosine

ML-1 Dataset: 943 Users

1 2.48±2.3 2.54±2.3 4.94±6.5 10.59±16.8
10 22.22±16.3 22.18±16.2 25.15±19.9 35.80±41.4
20 42.06±28.6 42.12±27.9 41.73±26.4 49.88±45.3
100 171.80±87.9 168.99±83.9 156.27±67.4 159.03±69.9
150 237.86±109.4 230.23±104.9 216.94±88.6 221.16±87.1

ML-2 Dataset: 6040 Users

1 1.69±1.1 1.74±1.2 3.51±3.8 3.16±5.1
10 16.75±9.3 16.85±9.4 22.75±19.0 34.68±36.2
20 33.22±17.7 33.33±18.1 40.08±28.2 60.02±54.6
100 160.26±79.1 160.93±79.9 161.68±77.4 187.02±118.3
150 236.97±113.6 237.99±114.5 231.35±102.6 255.23±142.9

Table 3.4: Average Unique Recommenders in Users’ Neighbourhoods

• Incremental: In this case, as we observed with the Jaccard and wPCC methods, similarity begins

at zero and slowly converges towards the final value. The difference between one step and the next

is minimal, and therefore the relationship between a pair of nodes can be described as growing.

• Corrective: The Cosine method is noteworthy because similarity “jumps” from zero to near-

perfect. However, once it has made this jump, the similarity between the pair tends to degrade, as

can be observed by number of datapoints that fall below the diagonal on the graph. Therefore, this

measure corrects its result after the initial jump.

• Near-random: The last class of similarity measures includes the PCC, and displays an exceeding

amount of near-random behaviour. In other words, if similarity at time t is 0.0, or incomparable,

and at time (t + 1) there is measurable similarity, the PCC returns values over the entire range

of similarity. Once it has made this jump from zero in either direction, it is not guaranteed to be

well-behaved; as the plot shows, it may very well make a large jump again.

Dynamic Neighbourhoods
Now that we have observed how similarity evolves between a pair of nodes, we can widen the scope

of our analysis and consider user neighbourhoods. The importance of measuring similarity of all user

pairs is to be able to create a subjective ranking for each user of everyone else, and then to pick the top-k

to form the user neighbourhood. The often-cited assumption of collaborative filtering is that users who

have been like-minded in the past will continue sharing opinions in the future; this assumption has thus

paved the way for learning algorithms to be applied to the problem of predicting ratings. If we project

this assumption onto a longer time period, we would expect groups of users to naturally emerge from

the data. In particular, when applying user-user kNN CF, as we do in this work, we would expect each

user’s neighbourhood to converge on a fixed set of neighbours over time.

To measure this property, we ran a modified CF experiment that includes the idea of system updates.

The system begins at the time of the first rating in the dataset and is updated daily. While this value
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Figure 3.20: ML-1 User 1: New Relationships Left Over Time

perhaps corresponds to more frequent updates than most recommender systems can allow themselves to

perform, it gives a finer-grained insight into the behaviour of the CF algorithm. At each update time, all

user neighbourhoods are re-computed. In this chapter, we do not consider temporal accuracy, as we are

focusing on the dynamic graph properties imposed by the algorithm.

As the users’ profiles grow and neighbourhoods are recomputed, the users will be connected to a

varying number of other users. The actual number of neighbours that a user will be connected to depends

on both the similarity measure and neighbourhood size that is used. If, for example, k = 1, the user’s

profile is updated 10 times, and at each time step a different neighbour becomes the user’s top recom-

mender, then the user will meet 10 unique neighbours: the higher the number of unique recommenders,

the higher the volatility of the user’s neighbourhood. Table 3.4 displays the average unique neighbours

for all users in the datasets.

The first point to note is that the number of unique recommenders is not close to k; in most cases it

is nearly double the size of the allowed neighbourhood. In other words, even though a particular value

of k represents the number of neighbours to use when making a prediction, the fluctuation of neighbours

over time will be such that about double this value will be interacted with. For most values of k, the

COR and wPCC similarity measures assign fewer unique recommenders to each user, a result that is not

immediately visible when using the average number of neighbours across all users that Table 3.4 does.

Figure 3.20 shows the number of unique neighbours that user 1 has yet to meet over time when

k = 150; it thus visualises how quickly the change within the user’s neighbourhood will play out. As

with the similarity plots, it is the shape of the plotted lines that gives insight into how neighbourhoods are

changing over time: the steeper they are, the faster the user is meeting other recommenders. If the lines

were step-shaped, the user would be meeting recommenders and staying connected to them for some

time. Steeper lines, however, mean that the user’s neighbourhood is converging faster, since the number

of unique neighbours that have yet to be seen is decreasing. In fact, the Jaccard and wPCC similarity

measures also converge to a fixed set of known recommenders faster.

Nearest-Neighbour Graphs
The last perspective we consider is the broadest view possible: the entire graph of user profiles. We have

already seen that the volatility of each user’s neighbourhood is quite large: this implies that the entire
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k Edges Connected? Max Path Avg Path Reciprocity

ML-1 Dataset: 943 Users

1 1750 No 3 1.78 0.08
10 16654 Yes 4 2.63 0.13
100 148608 Yes 3 1.83 0.27
150 213260 Yes 2 1.76 0.33
200 272970 Yes 2 1.69 0.38

ML-2 Dataset: 6040 Users

1 11406 No 5 2.58 0.06
10 109438 Yes 5 3.29 0.10
100 1055188 Yes 3 2.01 0.14
150 1568576 Yes 3 1.96 0.16
200 2076112 Yes 3 1.94 0.16

Table 3.5: wPCC-kNN Graph Properties

graph is being “re-wired” each time an update is performed. Therefore, in this section, we mainly focus

on non-temporal characteristics of the dataset represented as a graph instead. Since the kNN algorithm

determines where the links between users in the graph will be, the link positioning gives us the clearest

insight into how the algorithm is manipulating the user-rating dataset. Table 3.5 shows a number of

properties of the wPCC-kNN graph, for various values of k; we do not include results for the other

similarity measures since they are very similar.

Path Length. Table 3.5 reports the maximum and average path length between any two nodes. These

values were computed using Floyd’s algorithm, based on an undirected representation of the kNN graph.

In other words, we assume that if a link between the pair exists (regardless of its direction), then so does

some measurable quantity of similarity. Another curious characteristic of the values reported in Table

3.5 is that while k increases, the maximum and average path between any pair of nodes remains small,

ranging from 1.4 to 2.9 hops; in fact, the graph demonstrates small-world properties that are very similar

to those measured in explicit social networks.

Connectedness. An analysis of the entire graph, generated using only positive similarity links,

shows that the clusters of users appear depending on the neighbourhood size parameter k that is used.

When k = 1, a number of small clusters of users emerge, regardless of what similarity measure is used.

The different methods only vary on average intra-cluster path length (as explored above); this reflects the

way that these small clusters are shaped. In some cases, such as the wPCC graph, the clusters are formed

of a group of nodes that all point to the same top-neighbour. In other cases, such as in the COR graph,

the clusters form small chains of nodes, which accounts for the longer intra-cluster path length between

users. The majority of these characteristics disappear as soon as k is incremented above one. As soon

as users are allowed to point to more than their single most similar neighbour, the graph collapses in on

itself: clusters are lost and, in most cases, the graph becomes fully connected.

Reciprocity. We counted the number of edges as the number of links between nodes, whether they

be directed or not. In fact, when k = 1, the number of edges is less than the 1× the total number
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Figure 3.21: In-degree long tail of wPCC-kNN k = 100ML-1 Graph

of nodes. This is due to the fact that in some cases, a pair of nodes point to each other; two directed

links turn into a single undirected link, and the pair have a reciprocal relationship. Reciprocity is a

characteristic of graphs explored in social network analysis [KNT06]; in our context it translates to the

proportion of users who are in each other’s top-k. On the one hand, reciprocity may be regarded as

a desirable characteristic, since it implies that the generated graph really does pair very similar users

together. On the other hand, high reciprocity can have dire consequences, as it will prevent information

from being propagated over the similarity graph. The index of reciprocity that we use in Table 3.5 is the

number of bi-directional links between nodes over the total number of links. The value ranges from 0, or

no reciprocity, to 1, where all nodes pairs have reciprocal relationships. As the table shows, reciprocity

grows as the allowed number of neighbours increases, and remains minimal when k = 1. However,

it does not grow very much: adding a large number of links when k is incremented from 10 to 100

does very little to increase the measured reciprocity between users. This reflects the fact that although

measured similarity is symmetric, this does not imply that each user will also have the same rank in the

other’s top-k; and this will matter when computing recommendations.

In Degree Distribution. We can further observe this phenomenon by considering the in-degree

distribution of the nodes in the graph. The in-degree of a particular node n is the number of directed

links that end on this node; in the context of collaborative filtering this equates to the number of users

who place user n in their top-k. Figure 3.21 shows the in-degree of each user in the wPCC kNN graph,

when k = 100. The distribution follows a power-law, much like the distribution that compares the

number of ratings between different movies [LHC08b].

The in-degree distribution amongst users brings to light a new characteristic of kNN algorithms.

Given a CF dataset and a nearest neighbour parameter k, there may be some users who are not in

any other’s top-k. Their ratings are therefore inaccessible and, although they will be considered when

estimating the similarity between a pair of users, they will not be used in any prediction. To highlight

this factor, we ran kNN prediction algorithms using the four similarity measures we are focusing on in

this work on the ML-1 MovieLens subsets. Each rating in the training sets was coupled with a boolean

flag, which would be set to true if the rating was used in making any prediction. We were thus able to
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ML-1 Dataset

k COR wPCC PCC VS

1 0.92 0.91 0.99 0.99
10 0.59 0.59 0.95 0.95
100 0.23 0.25 0.81 0.85
150 0.12 0.16 0.59 0.71
200 0.05 0.05 0.18 0.42

Table 3.6: Unused Proportions of the Dataset

count how much of the training set remained unused after all the predictions had been completed.

Table 3.6 reports the proportions of the ML-1 dataset that are not used for varying values of k. The

table does not reflect how many times individual ratings may have been used; it only counts whether

the rating has ever been used or not. As the table shows, when k is very low, over 90% of the ratings

are not used. In fact, these values of k generate predictions based on a very small subset of the training

data, which may thus account for why they suffer from lower accuracy and impoverished coverage. As

k increases, so does the use of the training data; if k were set to the total number of users in the system

then the only ratings that would not be used would be those of a user who has no measurable similarity

to any other in the system. However, a difference between the better-performing COR/wPCC and lower-

accuracy PCC/VS similarity measures emerges once again: as k increases the former quickly use more

of the dataset in predictions. When k = 200, only 5% of the training ratings are not used in predictions,

while the VS similarity measure has barely made use of more than half of the ratings. The intuitive

benefit of the COR/wPCC similarity measures may very well emerge here: they offer broader access to

the ratings in the training set.

The Influence of Power Users

Another observation from Figure 3.21 is that some users will have an exceptionally high in-degree. We

call this group power users; by being a frequently selected neighbour, they will have a stronger influence

on the predictions that are made for others. These users emerge from the use of all the above similarity

measures in kNN graphs. This is a characteristic that appears in other networks like the World Wide

Web, movie actor collaboration graphs, and cellular networks, and is explained in terms of preferential

attachment [BA02]. In other words, when a new node connects to the graph, the probability that it

connects to another node is proportional to the in-degree of that node. In the context of collaborative

filtering, therefore, it it important to understand the effect that generating a nearest-neighbour graph with

power users has on the performance of the algorithm. We therefore ran two separate experiments. In the

first, we forced all users’ similarity with the top-P power users to be 0: in effect, removing their ability

to contribute to predictions.

Figures 3.22(a) and 3.22(b) are the 5-fold cross validation mean absolute error and coverage results

when removing a varying number of power users, for different values of k. As power users are removed,

both accuracy and coverage worsen, although even when 750 (out of 943) profiles are made inaccessible
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(a) Accuracy, Removing Power Users (b) Coverage, Removing Power Users

(c) Accuracy, Only Power Users (d) Coverage, Only Power Users

Figure 3.22: Results When Excluding or Exclusively Using Power Users

accuracy is still within 0.78. It seems, therefore, that the remaining non-power users can still make

significant contributions to each user’s predictions. These results reflect the dependency that accuracy

has on the number of users in a system, another relationship that remains unexplored.

We followed this experiment by performing the inverse. Figures 3.22(c) and 3.22(d) show the 5-fold

cross validation accuracy and coverage results when only the top-P power users are allowed to contribute

to predicted ratings; if a neighbour is not a power user, a zero similarity value is set between the pair.

The early spike in the plot is explained as follows: making predictions by simply returning each users’

mean rating outperforms using only the topmost power user alone, but accuracy quickly returns to the

same as when no users have been removed from the dataset when P increases; in other words, there are

some user profiles in the dataset that do not contribute at all to the overall performance. The coverage

plot shows a potential reason why these users are power users: the 10 topmost power users hold access

to over 50% of the dataset.

3.4 Summary
In this chapter, we have examined the temporal characteristics of recommender system data, from the

perspective of the ratings, users, and items. We have observed how the way people use recommender
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systems changes over time: new users and items are added, the rating distribution and both global and

per-user/item summary statistics change. In other words, all features of the data that are used to make

predictions in state of the art algorithms will vary with time.

We also performed a graph analysis of inter-user similarity, including the changes that appear

throughout these graphs as time passes. The evolution of similarity between any pair of users is dom-

inated by the method that is used to measure similarity, and the four measures we explored can be

classified into three categories (incremental, corrective, near-random) based on the temporal properties

they show. The number of unique neighbours that a particular user will be given over time also depends

on both the similarity measured and parameter k used; furthermore, the rate at which they meet these

new neighbours will vary for different similarity measures. Measures that are known to perform better

display the same behaviour: they are incremental, connect each user quicker and to fewer unique neigh-

bours, and offer broader access to the ratings in the training set. The focus here, therefore, is on the

emergent structure of the graph using the MovieLens dataset.

In the following chapters, we shift our focus toward the temporal performance of CF algorithms.

Collaborative filtering algorithms have traditionally been evaluated by: (1) splitting a dataset of user

ratings into training and test sets, (2) feeding the training set into the learning algorithm, and (3) querying

the algorithm for predictions of items in the test set. Evaluations are then conducted by comparing the

predictions to the actual ratings that were withheld in the test set. There are two problemswith this setup:

both the metrics and methodology, in their current form, are not suited to a context in which a sequence

of updates is required. We therefore first define a methodology for performing temporal experiments and

examine how the changes to the data observed here affect the accuracy of rating predictions (Chapter

4). We then evaluate the temporal diversity in recommendations produced by changing data using novel

metrics (Chapter 5). Lastly, we use the regularity in users’ behaviour to construct systems that are robust

to attack (Chapter 6).



74 Chapter 3. Temporal Analysis of Rating Datasets


