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Abstract—A testability transformation is a source-to-source transformation that aims to improve the ability of a given test generation

method to generate test data for the original program. This paper introduces testability transformation, demonstrating that it differs from

traditional transformation, both theoretically and practically, while still allowing many traditional transformation rules to be applied. The

paper illustrates the theory of testability transformation with an example application to evolutionary testing. An algorithm for flag

removal is defined and results are presented from an empirical study which show how the algorithm improves both the performance of

evolutionary test data generation and the adequacy level of the test data so-generated.

Index Terms—Evolutionary testing, search-based software engineering, automated test data generation, transformation.

�

1 INTRODUCTION

A testability transformation is a source-to-source pro-
gram transformation that seeks to improve the

performance of some chosen test data generation technique.
This paper introduces a simple theory of testability
transformation and illustrates its application, defining a
testability transformation algorithm for improving the
performance of evolutionary test data generation in the
presence of flag variables.

As with traditional program transformation [8], [20],

[24], a testability transformation alters the syntax of the

original program to which it is applied. However, testability

transformations differ from traditional transformations in

three important respects:

. The transformation of a program may be accom-
panied by a corresponding transformation to the test
adequacy criterion, so that test data generated for the
transformed program (and transformed criterion)
will be adequate for the original program and
original criterion. By contrast, traditional transfor-
mation is applied only to programs.

. The transformed program produced is merely a
“means to an end,” rather than an ‘end’ in itself. The
transformed program can be discarded once it has
served its role as a vehicle for adequate test data
generation. By contrast, in traditional transforma-
tion, it is the original program which is replaced by
the transformed equivalent.

. The transformation process need not preserve the
traditional meaning of a program. Testability trans-

formation requires new definitions of program
equivalence; testability transformations need not
preserve functional equivalence. For example, it is
shown that branch coverage preservation is not
merely an abstract interpretation of functional
equivalence, but a distinct meaning in its own right.
By contrast, traditional transformation preserves
functional equivalence.

The present paper illustrates the application of testability
transformation to evolutionary testing for branch coverage
in the presence of flags. The choice of evolutionary testing,
branch coverage, and flag problems is made purely for
illustration. The definitions of testability transformation can
be applied to any automated or semi automated test data
generation approach (not just evolutionary testing) and
transformation can be used to remove any structural
impediment to testing (not just flags). The flag removal
transformation is also useful for other coverage criteria (not
merely branch coverage).

The rest of this paper is organized as follows: Section 2
introduces the theory of testability transformation, while
Section 3 describes the novel aspects of this new approach
to program transformation. Section 4 explains the “flag
problem” for evolutionary test data generation. Section 5
introduces an algorithm which removes flags to address
this problem, showing that the transformation is a valid
testability transformation according to the theory intro-
duced. Section 6 presents the results of an empirical study1

concerning the transformation of flag programs. The study
indicates that the approach works well in practice and
indicates the particular kinds of flag problem which present
the greatest (and the least) difficulty for evolutionary test
data generation. Section 7 presents related work and
Section 8 concludes.

2 TESTABILITY TRANSFORMATION

When presented with problems of programming style, a
natural solution is to seek to transform the program to
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remove the problem. In the context of improving testability,
this will be termed “testability transformation.” Testability
transformation seeks to transform a program to make it
easier to generate test data for it (to improve the original
program’s “testability”).

There is an apparent paradox at the heart of this notion
of testability transformation:

Structural testing is based upon structurally defined test
adequacy criteria. The automated generation of test data to
satisfy these criteria can be impeded by properties of the
software (for example, flags, side effects, and unstructured
control flow). Testability transformation seeks to remove the
problem by transforming the program so that it becomes
easier to generate adequate test data. However, transforma-
tion alters the structure of the program. Since the program’s
structure is altered and the adequacy criteria is structurally
defined, it would appear that the original test adequacy
criterion may no longer apply.

The solution to this apparent paradox is to allow a
testability transformation to cotransform the adequacy
criterion. The transformation of the adequacy criterion
ensures that adequacy for the transformed program with
the transformed criterion implies adequacy of the original
program with the original criterion. These remarks are
made more precise by the definitions below.

Testing-Oriented Transformation. Let P be a set of
programs and C be a set of test adequacy criteria.2 A
program transformation is a partial function in P ! P. A
Testing-Oriented Transformation is a partial function in
ðP�CÞ ! ðP�CÞ.

The test adequacy criterion, C is any set of syntactic
constructs which are to be covered during testing. For
example, a set of nodes, a set of branches, a set of paths, and
so on. So, for “100 percent branch coverage,” C would be
the set of branches of the program. Observe that the
definition also allows more fine grained criteria, such as
testing to cover a particular branch or statement.

Testability Transformation. A Testing-Oriented Transforma-
tion, � is a Testability Transformation iff, for all programs p
and criteria c, if �ðp; cÞ ¼ ðp0; c0Þ, then, for all test sets T , T is
adequate for p according to c if T is adequate for p0 according
to c0.

The term “test pair” will be used to refer to a program
and its associated test adequacy criterion. A testing oriented
transformation is any function on test pairs. A testability
transformation is a testing oriented transformation for
which test data generation from the transformed test pair
produces adequate test data for the original test pair. A
testability transformation from ðp; cÞ to ðp0; c0Þ will be
referred to as a “c to c0 testability transformation.”

c-Preserving Testability Transformation. Let � be a
testability transformation. If, for some criterion, c, for all
programs p, there exists some program p0 such that
�ðp; cÞ ¼ ðp0; cÞ, then � is called a c-preserving testability
transformation.

For some criterion, c, a c-preserving testability transfor-
mation, if it exists, guarantees that the transformed program
is suitable for testing with respect to the original criterion.
For many applications, this will be the ideal; it means that
the easier-to-test program can simply be used as a
replacement for the original in order to generate test data
and that the test data so-generated can be used on the
original program. The test data generation process need not
change, it is simply applied to a more amenable form of the
program. Where a c-preserving testability transformation
exists, it is therefore likely that this will be preferred, over a
non-c-preserving testability transformation.

A testability transformation only guarantees that suffi-
cient test data will be generated to meet the original test
adequacy criterion. It does not demand that the test data
generated contains no redundant test cases. A test case is
redundant if it can be removed without affecting satisfac-
tion of the original test adequacy criterion. A reversible
testability transformation produces just enough test cases to
meet the original test adequacy criterion and no more.

Reversible Testability Transformation. A testability trans-

formation, � , is a Reversible Testability Transformation iff

its inverse is a testability transformation.

3 NOVEL ASPECTS OF TESTABILITY

TRANSFORMATION

3.1 Cotransformation of the Test Adequacy
Criterion

In traditional transformation it is only the program that is
transformed. Testability transformation also allows for
cotransformation of the test adequacy criterion. Consider
the transformation below:

while (b1)

{ if (b2) break; ) while (b1 && !(b2)) s1;

s1; }

This transformation preserves the (traditional) meaning
of the original, but it causes edges of the Control Flow
Graph (CFG) of the original program to disappear. The
transformation is therefore not branch coverage preserving.
It might therefore be thought inappropriate for branch
coverage applications. However, such a transformation
might turn out to be desirable because it restructures the
program. The transformed program achieves this restruc-
turing at the expense of destroying edges, so branch
coverage for the original program will not correspond to
branch coverage for the transformed program.

However, there is a relationship between the original
and transformed program: Any Modified Decision/Condi-
tion Coverage (MC/DC) adequate test set for the trans-
formed program will be guaranteed to be branch adequate
for the original. A test set is MC/DC adequate iff it achieves
branch coverage and, additionally, for all possible sub-
conditions (b1 and b2 in this case), there is a test case pair
which demonstrates that the subcondition independently
affects the outcome of the overall predicate evaluation [4].
MC/DC is clearly a “tougher” testing criterion because any
test set which is MC/DC adequate clearly is also branch
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adequate (covers all branches), but the opposite is not
necessarily the case.

In the original program, MC/DC and branch coverage
are equivalent. In the transformed program, they are not. In
the transformed program, any test set which is MC/DC
adequate, will be branch adequate for the original, so the
transformation is a Branch-to-MC/DC testability transfor-
mation. Notice, however, that the transformation is not a
reversible testability transformation. That is, although any
MC/DC adequate test set for the transformed program is
branch adequate for the original, there are branch adequate
test sets of the original which do not give MC/DC coverage
of the transformed program. For example, consider a test set
which contains three test cases which produce the values at
b1 and b2 shown in Fig. 1. These three test cases achieve
branch coverage, but not MC/DC coverage.

This illustrates the way in which the flexibility of the
definition of testability transformation allows the test data
generation “difficulty” to be traded between the program
structure and the adequacy criterion. Where the structure of
the program prevents test data generation, the problem may
be ameliorated by increasing the stringency of the adequacy
criterion, while removing the difficulty for the program.

3.2 Disposable Transformed Programs

Traditionally, the goal of transformation has been to
produce a program which is improved either for efficiency
(for instance, compiler optimization) or is improved for the
human reader (for instance restructuring). In all cases, the
transformed program is an end in itself. Testability
transformation is different. The transformed program is
used merely as an input to an automated test data
generation process. The transformation guarantees that this
process will produce adequate test data according to the
original criterion, but, once the test data has been generated,
the transformed program can be discarded.

3.3 Nonstandard Meaning Preservation

Program transformation has traditionally been concerned
with the preservation of functional equivalence. By contrast,
a transformation must provide a wholly different guaran-
tee: Test data generated from the transformed program is
adequate for the original program. This means that the
transformations applied need not preserve any notion of
traditional equivalence, opening up the possibility of
defining novel sets of program transformation rules and
algorithms. At first sight, this appears to be abstract
interpretation; some abstraction of the traditional semantics
of the program must surely be preserved during the
transformation process? However, testability transforma-
tion is not abstract interpretation. A simple example which
shows this is the fragment of code below:

if (e) skip; else skip;

Suppose that e is some side-effect free expression. Using
conventional transformation, this would be removed as
dead code. However, to do so, would remove two branches
and, thus, test data which is adequate for branch coverage
of the transformed program would not be adequate for the
original program. Therefore, testability transformation is
not, in general, more abstract than traditional transforma-
tion; not all traditional transformations are testability
transformations. This is only the simplest example which
illustrates that traditional transformations which preserve
functional equivalence need not be valid testability trans-
formations for branch coverage. Other examples of non-
branch coverage preserving transformations include the
well-known restructuring transformations [21], which re-
duces an arbitrary unstructured program into a structured
program. Such transformations remove goto statements
and preserve functional equivalence, but do not preserve
branch adequate test sets. Also, not all testability transfor-
mations are traditional transformations. As a simple
example, consider the transformation:

if (e) x=1; else x=2; ) if (e) x=2; else x=1;

Clearly, this is not traditionally meaning preserving; it
could hardly be less meaning preserving in the traditional
sense, since the original and transformed program differs
on the final value of the variable x for every possible initial
state. Nonetheless, this transformation would preserve
branch adequate test sets. In practice, the authors have
found that many traditional transformations are also branch
adequacy preserving. For example, the transformation
algorithm presented in Section 5 uses only traditionally
meaning preserving transformation steps. However, this
section demonstrates that testability transformation is not
simply a new application for transformation (to testing) but
that the application of transformation to testing establishes
a new kind of transformation, with its novel equivalence
relations. This novel equivalence relation can be useful in
practice. For example, suppose that the goal is to execute
some branch and that the program contains a large
computation, S, which does not contribute to whether or
not the program follows S. In such a situation S is not of
interest to the goal in question and can be removed using
conditioned slicing [6], [7]. This is important, because
automated test data generation techniques such as evolu-
tionary testing, typically require many executions of the test
subject.

4 THE FLAG PROBLEM FOR EVOLUTIONARY TEST

DATA GENERATION

Evolutionary testing is based upon evolutionary computa-
tion techniques [14], [15], [18]. These techniques are search-
based approaches to optimisation problems. They are
typically used where the search-space is large and where
the value of a candidate solution can be determined by a
“fitness” function, which gives higher values to better
solutions. In test data generation, the fitness function is
determined by the coverage achieved and an individual in
the search space is a single test input. The search seeks to
find a test input to achieve a chosen test goal. A test goal
is the execution of an edge of interest. In this way, by
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repeatedly performing evolutionary searches, test data can
be generated to cover all edges of the program. A similar
approach can be used to achieve other forms of test goal,
but the present paper will focus on branch testing of which
the test goals consist of edges to be targeted.

In order to automate software test data generation with
the aid of evolutionary algorithms, the test goal must itself
be formulated as an optimization task. A numeric repre-
sentation of the test goal is formulated, from which a
suitable fitness function for evaluation of the generated test
data can be derived. Depending on which test goal is
pursued, different fitness functions emerge for test data
evaluation. For structural testing, the fitness functions are
typically based on the computation of a distance for each
individual test case [16], [17], [19], [22], [25], indicating how
far away it is from executing the program predicate in the
desired way.

The approach to forming a fitness function typically
involves a global measure and a local measure. The global
measure assesses how close execution comes to reaching the
predicate which controls the branch of interest. The local
measure assesses how close the predicate comes to
evaluating to either true or to false (depending upon
whether the target node is controlled by the true or false
edge emerging from the predicate).

To define the local fitness for branch coverage, the
predicate controlling a branch of interest is used. For
example, if a branch condition x==y needs to be evaluated
to true, then the fitness function3 may be defined as
MAX� j x� y j , for some suitable value of MAX. Each
individual of the population represents a test datum with
which the test object is executed. For each test datum the
execution is monitored and the fitness value is determined
for the corresponding individual. This approach is the
standard approach to computation of fitness in structural
evolutionary testing work.

Evolutionary testing has been shown to be an effective
way of automatically generating test data for white box (or
structural) test adequacy criteria for programs which
contain no flag variables [19], [22], [25]. However, for
programs with flag variables, the performance of evolu-
tionary testing can be severely diminished.

A flag variable is one whose value is either true or
false. Flags typically “flag” the presence of some special
condition of interest. Embedded systems, such as engine
controllers, often make extensive use of flag variables to
record state information concerning the devices controlled.
Where the flag only has relatively few input values (from
some set S) which make it adopt one of its two possible
values, it will be hard to find a value in S. This problem
typically occurs with internal flag variables, where the
input state space is reduced, with relatively few values
(those in S) being mapped to one of the two possible
outcomes and all the other (those not in S) being mapped to
the other of the two possible flag values.

Such systems can be hard to test to high levels of
coverage using evolutionary testing approaches to auto-

mated test data generation. This is a serious problem since
generating such test data by hand is prohibitively expen-
sive. Also, since flags typically test for conditions which
represent exceptions, they are likely to exhibit the state-
squashing effect, where relatively few input values corre-
spond to one of the two flag outcomes.

The presence of flag variables creates a coarse fitness
landscape, within which the search takes place. This greatly
reduces the effectiveness of the search. That is, the fitness
landscape consists of two plateaus, corresponding to the
two possible flag values. One of these plateaus will be
superfit and the other superunfit. A search-based approach,
such as evolutionary testing, will not be able to locate the
superfit plateau any better than a random search because
the fitness landscape provides no guide to direct the search
from unfit to fit regions of the landscape. Where the fit
plateau may be very small relative to the unfit plateau, this
makes the program hard to test. Such “small plateaux” are
comparatively common since flags often test for some form
of “special” or “unusual” condition, for which special
behavior is required.

The problem is illustrated in Fig. 2. Suppose that A is
some variable whose values are in the range 0 to 20 (the
problem has been simplified, without loss of generality, for
ease of exposition). The left-hand section of the figure
shows the fitness landscape for a predicate which tests to
see if the value of A is 10. The right-hand section shows a
program which performs the same test using a flag variable.

The fitness landscape induced by the flag-free predicate
is smooth and there is a clear “guide” from areas of low
fitness to those with higher fitness. By contrast, the
landscape for the version with a flag, produces a fitness
function which yields either maximal fitness for the “special
value” 10 for A or minimal fitness for any other value.
There is no guide from lower fitness to higher fitness. The
flag fitness landscape thus has the characteristic “needle in
a haystack” form which is known to present problems for
search-based approaches because any search degenerates
into a random search. Moreover, random search for such a
needle in a haystack is unlikely to succeed.

5 A TESTABILITY TRANSFORMATION SOLUTION TO

THE FLAG PROBLEM

Five levels of increasing difficulty of flag problem are
summarized in Fig. 3. The term REFðeÞ denotes the
referenced [1] variables of e, where e is either an expression
or a statement. Each level represents an increasing level of
effort required to transform the flag-using program into a
flag-free program. The effort level is defined with respect to
the flag variable concerned (denoted flag) and the predicate
in which it is used (denoted p). Interleaved assignments and
uses of flag will be split up into “define” and “use” sections,
where all defines precede uses.

This section develops algorithms for transforming flags
out of programs for levels of problem difficulty one
through to four inclusive. Level five is not handled by the
algorithm, neither does it take account of concurrency.
The effect of the program transformation on the search
landscape is to transform it from the form depicted on the
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right-hand side of Fig. 2 to the smoother landscape on the

left-hand side of Fig. 2.
The “define code” section is the portion of code which

assigns (possibly in several places) a value to the flag

variable. This section of code starts with the first reaching

assignment to the flag variable and finishes with the last

reaching assignment to it before the associated use. If an

assignment to flag is contained within a structured

construct (such as an if or while statement), then the

first (respectively, last) assignment is taken to be the first

(respectively, last) statement of the outermost enclosing

construct.
The “use” section is the predicate use of the flag variable

which the assignments of the define section may reach. The

algorithm developed here is capable of removing flags,

provided that either the define section is not in a loop-body,

or it is in the same loop-body as the use section.
The goal of flag variable removal is thus to transform

programs with higher levels of flag variable use to lower

forms (and ultimately to level 0, where the flag problem is

not present). The following subsections consider each level

of difficultly in turn, showing how the flag problem at that

level can be reduced to a lower level by transformation.

5.1 Flag Removal at Level 0

Level 0 represents a program free from flag use and,

therefore, no (further) transformation is required at level 0.

5.2 Flag Removal at Level 1

Level 1 is trivial to deal with. Because there is only a single

assignment, a, to flag prior to the use of flag at p the right-

hand side of a can be substituted for the use of flag at p. This

substitution will always be possible due to the lack of

intervening assignments to REF ðaÞ between a and p.

5.3 Flag Removal at Level 2

At level 2, the simple substitution of the right-hand side of

the expression at a for the use at p is not possible because

the meaning of the expression at a (potentially) is changed

at each intervening assignment to a variable in REF ðaÞ. To
overcome this problem, the expression at awill be rewritten

using temporary variables, to store the values of variables

assigned to between a and p. The introduction of temporary

variables is illustrated in Fig. 4.

5.4 Flag Removal at Level 3

The problem of producing a single assignment to flag from a

sequence of assignments, which may contain many assign-

ments to both flag and to other variables can be achieved

using Amorphous Slicing [3], [12], which is guaranteed to

produce a single assignment to flag from a straight line of

assignments. An amorphous slice of a program, or program

fragment, constructed with respect to a variable v, is a

simplified program which preserves the effect of the

original program on the final value of v.
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For example, consider the code fragment in Fig. 5a. This
is a straight-line sequence of assignments to the variables
flag, x, and y. Amorphous slicing on the variable flag

yields the single assignment in Fig. 5b. By the definition of
an amorphous slice, this is an assignment which has the
same meaning on the variable flag as the code in Fig. 5a.
The right-hand side of this single assignment is an
expression that captures the value of flag at the end of
the define code. By replacing references to y in this
expression, by the temporary variable T, the expression
can be substituted for the use at the if statement, as
depicted in Fig. 5c.

5.5 Flag Removal at Level 4

The algorithm for transforming from level 4 to level 0 is
presented in Fig. 6. The essential idea is to “collect” the
disparate assignments together and merge them into a
single assignment statement. The effect is the same as the
transformation for level 3. However, in the case of level
four, the single assignment to the flag variable may require
a conditional expression. The overall effect of transforma-
tion from level 4 to 0 is to produce a (possibly) conditional
expression which captures the value stored in flag by the
define code and to add sufficient assignments to allow this
expression to be substituted for the use of the flag variable.

The production of the conditional expression from the
define code is facilitated by two auxiliary transformations
(called “bushing” and “blossoming” because of their effect

on the tree-like structure of the program’s CFG). The
remainder of this section describes these two steps.

Bushing takes a loop free segment of code and produces

a transformed program whose abstract syntax tree is of the
form of a binary tree, in which edges may contain sequences
of assignments. Blossoming takes such a binary tree and

forces all the assignments to the leaves. The combined effect
of bushing followed by blossoming is that a binary tree is
produced with all assignments at the leaves. The internal
nodes are predicates. Amorphous slicing performed on

each of the leaves gives a single assignment at the leaf. Such
a binary tree can be converted to a conditional expression.
Bushing is illustrated in Fig. 7. The square-edged rectangles

denote arbitrary assignments, while the round-edged
rectangles denote arbitrary predicates.

The “then fold” transformation (Axiom 1 of Fig. 14)
converts an if-then construct into an if-then-else

construct, by copying the code that follows the original
if-then into both the then and else branches. Bushing
is achieved by repeatedly applying the “then fold”
transformation until there are no if-then statements

without corresponding else statements.
A bushed tree is further transformed by blossoming. A

blossomed tree has the property that all assignment
statements and only assignment statements are at the

leaves of the tree and all internal nodes are predicates.
Blossoming is illustrated in Fig. 8. Alphabetic letters are
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used to label statements and predicates. Blossoming is
achieved by a post order traversal of a bushed tree,
applying Rule 5 of Fig. 14 at each assignment statement
until it fails to apply (i.e., when there are no further
predicates for the assignment to pass through). This
approach is only applicable if expressions are side-effect
free. In cases where expressions are not side effect free,
then side-effect removal transformation [10] should be
considered.

The leaves of the bushed and blossomed tree are
sequences of assignments, which can be converted to single
assignments to the flag variable using the algorithm for
removing flags at level 3. Having done this, the tree is now a
binary tree with single assignments to the flag variable at
the leaves. Converting this to a conditional expression is
straightforward.

A worked example, illustrating bushing and blossoming

and how they facilitate transformation from level 4 to level 0

is given in Fig. 9. The figure shows the progress of

transformation from top left to bottom right. The defined

code (the initial three lines of code) are bushed and

blossomed. Slicing the result using amorphous slicing on

the variable flag produces a single assignment. Temporary

variables, Ta and Tb are added to allow substitution of the

expression assigned to flag by this single assignment. At

the bottom of the figure, the effect of such a substitution is

shown for a five line sequence of code. The first three lines

are the define code and the last line is the use of flag, for

which substitution is required. The fourth line is included

merely to show that intervening assignments to relevant

variables between define and use can be handled by the

algorithm.

5.6 The Algorithm for Flag Removal is
a Branch Coverage-Preserving
Testability Transformation

The algorithm for removing flags involves several transfor-
mation steps which serve to produce a (possibly simplified)
conditional expression which can be assigned to the flag
variable. Each of these steps is traditionally meaning
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preserving.4 The overall effect upon the original program,

however, is relatively minor: the assignment to the flag

variable produced by amorphous slicing and bushing and

blossoming is employed simply to obtain an expression

(possibly a rather large and conditional one) which can then

be substituted for the use of the flag variable.
The ability to substitute “definition” for “use,” relies

upon the introduction of assignments to temporary vari-

ables. The algorithm retains the original flag assignment

code. Therefore, the only modification is the substitution of

“definition” for “use” of the flag variable itself and the

associated insertion of assignments to temporary variables.
Substitution for an expression clearly has no effect upon

the edges of the CFG and, thus, has no effect upon branch

coverage adequate test sets. Therefore, the only price to pay,

in terms of modification of the CFG, for the flag removal

transformation is the addition of the straight line sequence

of temporary variable assignments.
A straight-line sequence of assignments does add addi-

tional edges to the CFG of the program. However, these

edges will not affect branch coverage adequate test sets.

This is because the straight line sequence of assignments is

inserted between two existing sequential statements, x and

y. There must, by definition, be an edge in the CFG from x

to y. The insertion of the assignment sequence introduces a

path from x to y in place of this edge. However, the path

will be traversed under precisely the same conditions as the

original single edge from x to y.
Furthermore, as the assignments are to new temporary

variables, the projection of the state onto the original

program variables remains unchanged along this path. The

state at node y in the transformed and original program will

therefore always agree on all variables in the original
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Fig. 9. A worked example illustrating the flag removal algorithm.

4. A formal proof of this is beyond the scope of the present paper, but the
reader can easily check, informally, that each step is reasonable, given the
constraints for transformation, that predicates are side-effect free, that loops
terminate and that other forms of abnormal termination do not occur.



program, ensuring that the two program versions follow
identical branches from statement y onward.

Since the transformation is traditionally meaning preser-
ving and also introduces no additional branches, it is
therefore possible to say that it is a branch preserving
testability transformation. Indeed, it is possible to go
further. The transformation is a reversible testability
transformation because test data generated for the original
program will also be branch adequate for the transformed
program.

6 EMPIRICAL EVALUATION OF FLAG REMOVAL

The DaimlerChrysler Evolutionary Testing system [25] was
used to generate test data for flag-based programs and these
results were compared with those obtained from running
the testing system with identical parameters on the
transformed, flag-free versions of the programs. A full
description of the system is beyond the scope of this paper.
The reader is referred to other papers by the Daimler-
Chrysler team which describe their approach to evolu-
tionary testing [2], [25].

This section presents four indicative experiments, which
illustrate various incarnations of the flag problem and the
effect of their removal upon evolutionary test data genera-
tion. The figures show the results obtained on the left-hand
side together with the relevant fragments of the correspond-
ing programs on the right-hand side. The program
fragments are shown to illustrate the particular flavor of
flag problem considered. However, when using the system,
the human need not be aware either of the flag-free version
of the program, nor indeed of the evolutionary process
itself. The user simply submits a program (possibly with
flags) and obtains a set of branch adequate test data
automatically.

The results plot the coverage achieved (for six separate

executions of the evolutionary testing system) against the

number of fitness evaluations. They are therefore a measure

of effectiveness against effort.
A test goal consists of attempting to optimize test data to

cover a particular branch. The coverage for each trial

therefore increases in steps, as each test goal is satisfied. In

all examples, a test set which achieves full branch coverage

exists (there are no infeasible branches).

6.1 Triangle Classification Program

The triangle classification program is widely used as a

benchmark in software testing. The program has three

variables (a, b, and c), which represent the side lengths of a

figure. The goal of the program is to determine whether the

three side lengths represent a triangle, and if they do, to

categorize the triangle type.
Input values are double values within range -1,000 to

20,000 with a precision of 0.00001. This gives a search space

size of approximately 1027. Two versions of the triangle

classification program were used in the experiment: a

“Validity check” program and a “Special Value” program.

These two variants of the triangle program illustrate the

range of difficulty introduced by flags from none (Validity

Check) through to severe (Special Value). The results for

each variant are shown in Figs. 10 and 11.
In the “Validity Check” variant, the flag is assigned a

value which represents a set of validity checks on inputs.

There are many subcriteria (Boolean terms), many inputs

which satisfy each subcriterion and many which fail to

satisfy each. Therefore, the fitness landscape does not

contain a small high fitness plateau. Furthermore, each of

the subcriteria is also checked later on in the program by a

separate conditional statement and so each subcriterion also
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Fig. 10. Results for the “Validity Check” Triangle program.



forms a separate test goal. In this situation the presence of
flags presents no difficulty.

By contrast the “Special Value” variant of the triangle

program represents a difficult form of flag-based program.

The flag variable is set to true by only very few inputs,

creating a tiny plateau of high fitness. In such a situation,

evolutionary testing degenerates to random testing.

The results show that for the “Validity Check” version of

the program, the removal of flags makes practically no

difference, with all trials reaching maximum fitness, and

with all doing so with a similar spread of effort. On the

other hand, the “Special Value” variant shows how bad the

flag problem can be. After 40,000 fitness evaluations, none

of the trial runs has risen above a coverage of 0.87 and after

120,000 evaluations none has risen above 0.92. No trial

reached the maximum possible coverage. However, for the

flag free version, after only 20,000 fitness evaluations, all of

the trial runs have reached a coverage of more than 0.96 and

after only 80,000 evaluations all have reached maximum

possible coverage (1.0).

6.2 Calendar Program

The calendar program computes dates, but takes account of

special days and date corrections which have taken place as

a result of the British parliament’s “Calendar Act” of 1751

[5]. This act required that the date of 2 September, the

following year was to be immediately followed by

14 September, a decision which caused much consternation

and a demand for the return of the “stolen 11 days.” These

“stolen days” form a special case in the calendar program

which is denoted by a flag.

The calendar program is a typical flag-based program

which tests for an “unusual” condition and sets the value of

a flag according to this test. This is typical because flags

often test for exceptional cases. That is, the value assigned is

far more likely to take one of the two possible values than

the other. In this case, the program takes eight character

variables, each of which may take values within a range of 0

to 10. These are subsequently converted into the integer

variables day, month, and year seen in the code-fragment

quoted in Fig. 12. This gives a search space of approxi-

mately 810, with the flag representing any date within the

“11 stolen day” period.

The results of evolutionary test data generation for the

calendar program, together with the relevant fragments of

code are shown in Fig. 12. The flag-free code has been

simplified for readability. The actual transformed program

produced by the flag-removal algorithm contains many

temporary variables. Of course, the fact that the trans-

formed version has poor readability is not an issue for this

work (unlike most work on transformation) because the

transformed program is not read by a human.

The results show that flag removal helps in this instance

because all of the runs achieve the maximum possible

fitness using the flag-free version, while none does so using

the original program. It can also be seen from the growth of

coverage for each run, that using the flag-free version both

achieves higher coverage overall and achieves each level of

coverage faster.

6.3 Line Covered by Rectangle Program

The LineCoveredbyRectangle program attempts to

work out whether a line segment is completely covered

by a rectangle figure or not. The program has eight input

variables of short integer type within a range of -32,000 to

+32,000. The total search space size is therefore 64; 0008.
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Fig. 11. Results for the “Special Value Check” Triangle program.



There is a special case when the line in question happens to

be a diagonal of the rectangle. This is true for 32; 0004 of the

64; 0008 possible inputs. This means that the chance of

stumbling across such a value “at random” is approxi-

mately one in 1020.
The results of evolutionary test data generation for the

Rectangle program, together with the relevant section of

flag-containing code, are shown in Fig. 13. The results show

that flag removal produces better results. In particular,

observe that the final test goal (of moving from just under

0.94 coverage to the maximum possible coverage of 1.0) is

abandoned in all of the trials of the version with flags and

100 percent coverage is always achieved for flag free

version after 200K fitness evaluations.
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Fig. 12. Results for the leap year program.

Fig. 13. Results for the line covered by the Rectangle program.



7 RELATED WORK

Testability has been defined by Voas and Miller [23], in
terms of the Propagation, Infection, and Execution (PIE)
framework. The PIE method measures testability in terms of
the likelihood that an infection (a fault) is executed and
subsequently propagated in an observable way. In this
paper, the term testability is construed in the more general
sense to mean “the ease with which test data can be
generated.” The flag problem for evolutionary testing can
be thought of as an example of the high Domain to Range
Ratio (DRR) problem which Voas identifies as one source of
poor testability. That is, the input space of variables is
reduced by assigning to a flag because the range can take
one of only two possible values. Voas observed that such
situations (with high DRRs) could lead to fault masking,
preventing the propagation component of the PIE frame-
work. However, a high DRR is an insufficient requirement
to cause a problem for evolutionary test data generation, as
shown by the empirical study with flag variable; the
problem only arises when the high DRR also has a range
value for which there are very few corresponding domain
elements. In search-based nomenclature, this corresponds
to the “needle in a haystack” problem.

The transformations considered in this paper need not
preserve functional equivalence. This is a departure from
most work on program transformation, but it is not the first
instance of nontraditional meaning preserving transforma-
tion in the literature. Weiser [26] introduced program
slicing. A slice for a set of variables V and program point
n consists of those parts of the program which potentially
influence the values computed for variables in V at n. Those

parts which can be statically determined to have no such
effect are removed to form the slice. A slice is thus a
syntactic projection of the original program that preserves a
semantic projection of the program’s semantics. As such, a
slice can be thought of preserving an abstract interpretation
of the program from which it is constructed.

Similarly, Dershowitz and Manna [9] and Feather [11]
considered nonmeaning program transformations for pro-
gram modification in corrective and adaptive maintenance.
In these “evolution transforms,” the idea is that the software
is to be evolved using transformation and that this
evolution necessarily does not preserve the (complete)
meaning of the program. The semantics of the program
are divided into several orthogonal components, or dimen-
sions, allowing changes to semantics which affect one
dimension, while leaving the others invariant. In this way,
an evolution transform is a higher-level version of a slice, in
which the slicing criterion is not a set of variables and a
program point, but a set of dimensions which are to remain
invariant.

The three novel aspects of testability transformation
(with respect to traditional transformation) identified in
Section 3 are helpful to clarify the similarities and
differences between testability transformation and these
other two variations on traditional transformation of slicing
and evolution transforms.

. Testability transformations allow cotransformation
of the test adequacy criterion. Unlike testability
transformation, slicing and evolutionary transforma-
tions are not concerned with testing and, so, clearly
have no such requirement.
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. Testability transformations are disposable. Unlike
testability transformation, evolution transforms pro-
duce results which are intended to act as replace-
ments for the original program from which they are
constructed. By contrast, a testability transformation
is merely a means to an end; once the test data is
generated from the transformed program, it is
discarded. Like testability transformation, slicing is
often used as a means to an end, rather than an end
in itself.

. Testability transformations are not required to
preserve even a projection of the original semantics.
Unlike testability transformation, slicing and evolu-
tion transforms can be regarded as preserving
abstractions of the original program’s semantics. In
practice, this theoretical difference may be less
important than it seems. The authors have, as yet,
only used fully meaning preserving transformations
in the process of defining testability transformation
algorithms.

8 SUMMARY

This paper introduced testability transformation: a novel

approach to program transformation, in which test data is

generated from the transformed program but, for which the

transformation process guarantees that the test data will be

adequate for the original.
It has been shown that a testability transformation is

novel because it is required neither to preserve the

traditional meaning of the program, nor an abstraction of

it. Rather, a testability transformation preserves a new

meaning relating to preservation of adequate test data sets.
The approach was illustrated by the definition of a

simple algorithm for flag removal and an empirical study

which showed that this algorithm improves the perfor-

mance of evolutionary test data generation, when the flag

has relatively few input values which make it true (or

relatively few that make it false).

APPENDIX

TRANSFORMATION RULES

The transformation rules used in this paper are defined in

Fig. 14.
The rules are written in the form of a logical calculus. A

rule of the form: A
B)C can be interpreted as “If A holds then

the fragment B can be transformed into the fragment C.”

The term DEFðeÞ denotes the defined [1] variables of e,

where e is either an expression or a statement. The term

SUBðe1; i; e2Þ returns the expression that results from

substituting all occurrences of the variable i in the

expression e1, with the expression e2.
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