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Abstract

Software module clustering is the problem of automatically organising software units into modules to
improve program structure. There has been a great deal of recent interest in search based formulations of
this problem, in which module boundaries are identified by automated search, guided by a fitness function
that captures the twin objectives of high cohesion and low coupling in a single objective fitness function.
This paper introduces two novel multi-objective formulations of the software module clustering problem,
in which several different objectives (including cohesion and coupling) are represented separately. In
order to evaluate the effectiveness of the multi-objective approach, a set of experiments were performed
on 17 real-world module clustering problems. The results of this empirical study provide strong evidence
to support the claim that the multi-objective approach produces significantly better solutions than the
existing single objective approach.

1 Introduction

Software module clustering is an important and challenging problem in software engineering. It is widely
believed that a well modularized software system is easier to develop and maintain [8, 27, 29]. Typically, a
good module structure is regarded as one that has a high degree of cohesion and a low degree of coupling
[8, 27, 29]. Sadly, as software evolves its modular structure tends to degrade [17], necessitating a process of
restructuring to regain the cognitive coherence of previous incarnations. This paper is concerned with auto-
mated techniques for suggesting software clusterings, delimiting boundaries between modules that maximize
cohesion while minimizing coupling.

Many authors have considered the implications of software modularization on many software engineer-
ing concerns. Badly modularised software is widely regarded as a source of problems for comprehension,
increasing the time for on-going maintenance and testing [27, 29, 31]. The use of cohesion and coupling to
assess module structure was first popularised by the work of Constantine and Yourdon [8], who introduced
a seven-point scale of cohesion and coupling measurement. These levels of cohesion and their measurement
have formed the topic of much work which has sought to define metrics to compute them and to asses their
impact on software development [1, 3, 25, 14].

There are many ways to approach the module clustering problem. Following Mancoridis et al. who first
suggested the search based approach to module clustering [20], this paper follows the search based approach.
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In the search-based approach the attributes of a good modular decomposition are formulated as objectives,
the evaluation of which as a ‘fitness function’ guides a search based optimization algorithm.

The module clustering problem is essentially a graph-partitioning problem which is known to be NP-
hard [11, 20], so there is no efficient algorithm for solving the problem to its exact optimum unless P=NP [11].
This observation provided the motivation for previous work on this problem, which aimed to find a near
optimal solution within a reasonable amount of time.

Without exception, all previous work on the module clustering problem [20, 19, 23, 10, 22, 18, 15]
and other work inspired by it [7] has used a single objective formulation of the problem. That is, the
twin objectives of high cohesion and low coupling have been combined into a single objective called MQ
(Modularization Quality) (using weights applied to the measurements of cohesion and coupling). In all
studies reported upon to date, the hill climbing algorithm has performed the best in terms of both the
quality of solutions found (measured by MQ values) and in terms of the execution time required to compute
them.

However, despite its success, this single objective approach raises the uncomfortable question:

“How much cohesiveness should be sacrificed for an improvement in coupling”

This question, and its converse, are uncomfortable for several reasons. Such questions ignore the fact
that the measurements of cohesion and coupling are inherently ordinal scale metrics and so even attempting
to pose such a question contradicts sound measurement theory [28]. Even were it possible to compare the
cohesion and coupling measurements on an interval or ratio scale, there is the additional problem that this
essentially requires the mistaken comparison of ‘applies and oranges’; it is not possible to normalise coupling
and cohesion in a meaningful way so that each can be measured in comparable units, nor is it easy to decide
upon the relative weights that should be applied to each.

There is a natural tension between the objective of achieving low coupling and the objective of achieving
high cohesion when defining module boundaries. These two aspects of the system will often be in conflict.
Therefore, any attempt to conflate cohesion and coupling into a single objective may yield suboptimal
results. In similar software engineering scenarios in which there are a set of two or more possibly conflicting
objectives, a natural step is the use of Pareto optimality [2, 30, 32].

This paper introduces the first Pareto optimal multi-objective formulation of automated software module
clustering, presenting results that show how this approach can yield superior results to those obtained by the
single objective formulation. The paper also explores the ways in which the richer solution space afforded
by a Pareto optimal approach can be used to yield insight into the choices available to the software engineer
faced with the task of restructuring to improve modular cohesion and coupling.

The primary contributions of the paper are as follows:

1. The multi-objective paradigm for automated software module clustering is introduced. Two formula-
tions of the multiple objective approach are studied: the Equal-size Cluster Approach (ECA) and the
Maximizing Cluster Approach (MCA).

2. A novel two-archive Pareto optimal genetic algorithm is introduced for the solution of multi-objective
module clustering.

3. An empirical study into the effectiveness and performance of the single and multi-objective formulations
of the problem is presented. The primary findings of the study are:

(a) The multi-objective approach is able to produce very strong results for both weighted and un-
weighted Module Dependency Graphs. For weighted Module Dependency Graphs, it produces
better results than the single objective hill climbing approach even when measured against the
hill climber’s own fitness function (MQ).

(b) Though the multi-objective approach performs well, there are still cases where the single objective
approach can produce good results for unweighted graphs, indicating that hybrid approaches may
be worthy of further consideration for unweighted graphs.

(c) For producing low cohesion and coupling, the Equal-size Cluster Approach to the multi-objective
problem produces the best results overall.

(d) The two multi-objective search formulations and the existing single objective formulation search
different parts of the solution space.
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(e) Though the multi-objective formulations produce far better results, they do so at a computational
cost; two orders of magnitude more effort are required in order to achieve the better results using
the multi-objective approach. However, the paper argues that, in many practical situations, the
additional time required for better results is both available and also a worthwhile cost for the
additional quality of the modularizations identified.

The rest of this paper or organised as follows. Section 2 presents background material and related work
on software module clustering. Section 3 introduces the multi–objective paradigm of module clustering.
Section 4 describes the research questions and experiments performed in the empirical study that aims to
assess the effectiveness and performance of the multi–objective approach, compared to the single objective
formulation. Section 5 presents the findings of the empirical study and answers to the research questions.
Section 6 discusses the ways in which this work could be used in order to assist the practicing software
engineer. Section 7 considers threats to validity, while Section 8 concludes.

2 Automated Software Module Clustering

Many metaheuristic methods have been successfully applied to software module clustering. The field was
established by the seminal work of the Drexel group [20]. In this work, hill climbing was the primary
search technique [20], leading to the development of a tool called Bunch [19] for automated software module
clustering.

Several other metaheuristic search technologies have been applied, including simulated annealing and
genetic algorithms [13, 18, 22]. However, these experiments have all shown that other techniques are out-
performed in both result quality and execution time by hill climbing.

In order to formulate software engineering problems as search problems, the representation and fitness
function need to be defined [6, 12]. In the case of module clustering, previous work has used the Module
Dependency Graph (MDG) as a representation of the problem [20]. The MDG is represented as a simple
array mapping modules (array indices) to clusters (array elements used to identify clusters) [20]. The array
{2, 2, 3, 2, 4, 4, 2, 3} denotes a clustering of 8 modules into 3 clusters, identified by the numbers 2,3 and 4.
For example, modules numbered 0,1,3 and 6 are all located in the same cluster (which is numbered 2). The
choice of numbers of module identifier is arbitrary, so this clustering is equivalent to {1, 1, 3, 1, 4, 4, 1, 3} and
{3, 3, 2, 3, 4, 4, 3, 2}.

The MDG can thus be thought of as a graph, in which modules are the nodes and their relationships are
the edges. Edges can be weighted to indicate a strength of relationship or unweighted, merely to indicate the
presence of absence of a relationship. As will be seen, the algorithms studied in this paper differ noticeably
in their performance on weighted MDGs when compared to the results obtained for unweighted MDGs
and so this distinction between weighted and unweighted turns out to be an important aspect of problem
characterisation. The choice of what constitutes a ‘module’ and what precisely can count as a ‘relationship’
are parameters to the approach. In previous work (and in the present paper) a module is taken to be a file
and a relationship is an inclusion of reference relationship between files (e.g., a method invocation).

In order to guide the search towards a better modularization it is necessary to capture this notion of a
‘better’ modularisation. Traditionally, single objective approaches used the Modularization Quality measure,
MQ, introduced by Mancoridis et al. [20]. The intra–edges are those for which the source and target of the
edge lie inside the same cluster. The inter–edges are those for which the source and target lie in distinct
clusters. MQ is the sum of the ratio of intra-edges and inter-edges in each cluster, called Modularisation
Factor (MFk) for cluster k. MFk can be defined as follows:

MFk =

{

0 if i = 0
i

i+ 1

2
j

if i > 0.
(1)

where i is the weight of intra-edges and j is that of inter-edges, that is j is the sum of edge weights for all
edges that originate or terminate in cluster k. The reason for the occurrence of the term 1

2
j in the above

equation (rather than merely j) is to split the penalty of the inter-edge across the two clusters that connected
by that edge. If the MDG is unweighted then the weights are set to 1.
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The MQ can be calculated in terms of MF as

MQ =

n
∑

k=1

MFk (2)

where n is the number of clusters.
The goal of MQ is to limit excessive coupling, but not to eliminate coupling altogether. That is, if we

simply regard coupling as bad, then a ‘perfect’ solution would have a single module cluster containing all
modules. Such a solution would have zero coupling. However, this is not an idea solution because the module
would not have the best possible cohesion. The MQ measure attempts to find a balance between coupling
and cohesion by combining them into a single measurement. The values produced by MQ may be arbitrarily
large, because the value is a sum over the number of clusters present in a solution and so the MQ function
is not a metric. The aim is to reward increased cohesion with a higher MQ score and to punish increased
coupling with a lower MQ score.

In order to handle weighted and unweighted graphs using the same approach, an unweighted graph is
essentially treated as a weighted graph in which all edges have an identical weight.

3 Software Module Clustering as a Multi-objective Problem

Existing approaches to the twin objectives of high cohesion and low coupling have combined these two
objectives into a single objective function, with all of the drawbacks to which the introduction of this
paper referred. Pareto optimality is an alternative approach to handling multiple objectives, that retains
the character of the problem as a multi–objective problem. Using Pareto optimality, it is not possible to
measure ‘how much’ better one solution is than another, merely to determine whether one solution is better
than another. In this way, Pareto optimality combines a set of measurements into a single ordinal scale
metric.

The fitness F (x) of a candidate solution vector, x, is defined in terms of the fitness ascribed to x by each
of the constituent fitness functions, fi but this does not yield a single number for an ‘aggregated fitness’.
Rather, a relationship is defined on candidate solution vectors, that defines when one solution is superior
to another. Under the Pareto interpretation of combined fitness ‘no overall fitness improvement occurs no
matter how much almost all of the fitness functions improve, should they do so at the slightest expense of
any one of their number’ [12]. More formally, the relation is defined as follows:

F (x1) > F (x2)
⇔

∀i.fi(x1) ≥ fi(x2) ∧ ∃i.fi(x1) > fi(x2)

That is, solution x1 is better than another x2 if it is better according to at least one of the individual
fitness functions and no worse according to all of the others. Such a solution x1 is said to ‘dominate’ x2. If
no element of a set X dominates some solution x, then x is said to be non–dominated by X.

A Pareto optimal search yields a set of solutions that are mutually non–dominating and which form an
approximation to the Pareto front. The Pareto front is the set of elements that are not dominated by any
possible element of the solution space. The Pareto front thus denotes the best results achievable; it is the
equivalent to the set of globally optimal points in a single objective search. As with the single objective
formulation, it is not possible to guarantee to locate this globally optimal solution set, merely to attempt to
approximate it as closely as possible.

Each set of objectives leads to a different multi–objective formulation of the problem. In this paper,
two sets of objectives will be considered: The Maximizing Cluster Approach and the Equal-size Cluster
Approach. These are explained below.

3.1 The Maximizing Cluster Approach

The Maximizing Cluster Approach (MCA) uses the following set of objectives:

• the sum of intra-edges of all clusters (maximizing),

• the sum of inter-edges of all clusters (minimizing),

4



• the number of clusters (maximizing),

• MQ (maximizing),

• the number of isolated clusters (minimizing).

The inter-edges, the intra-edges, and the MQ are used to measure the quality of the system partitioned.
An isolated cluster is a cluster that contains only one module. Experience and intuition dictate that isolated
single module clusters are uncommon on good modular decompositions and so they are deprecated in the
MCA approach by including the number of isolated clusters and an objective to be minimized.

The aim of the MCA measure is to capture the attributes of a good clustering. That is, it will have max-
imum possible cohesion (maximizing intra-edges) and minimal possible coupling (minimizing inter-edges).
However, it should not put all modules into a single cluster (maximizing the number of clusters) and not
produce a series of isolated clusters (so the number of isolated clusters is minimized).

Since MQ is a well-studied objective function, this is also included as an objective for MCA. This is
one of the attractive aspects of a multi–objective approach; one can always include other candidate single
objectives as one of the multiple objectives to be optimized. The MQ value will tend to increase if there are
more clusters in the system, so it also makes sense to include the number of clusters in the modularization
as an objective. Notice that this objective is in partial conflict with the objective of minimizing the number
of isolated clusters. Furthermore, the relationship between cohesion and coupling is potentially in conflict,
making this a non-trivial multi-objective problem.

To illustrate the MCA approach, consider the MDG in Figure 1. The objective values for MCA are as
follows:

• intra-edges of all clusters (cohesion): 6,

• inter-edges of all clusters (coupling): -6,

• the number of clusters: 3,

• MQ: 1.928571,

• the number of isolated clusters: 0.

The sum of inter-edge of all clusters is multiplied by −2 because each edge is counted twice. The number
of isolated clusters is multiplied by −1 (since it is to be minimized).

3.2 The Equal-size Cluster Approach

The Equal-size Cluster Approach (ECA) does not attempt to optimize for the number of clusters in the
modularization. However, this does not mean that solutions may not emerge that happen to have a large
number of clusters. Rather, the number of clusters is left as a implicit consequence of the other optimisation
objectives, allowing the search process the freedom to choose any number of clusters (large or small) that
best suits the other explicit objectives.

However, the ECA does attempt to produce a modularisation that contains clusters of roughly equal size,
thereby decomposing the software system into roughly equal size modules. This tends to mitigate against
small isolated clusters and also tends to avoid the presence of one larger ‘god class’ like structure.

The objectives of the ECA are as follows:

• the sum of intra-edges of all clusters (maximizing),

• the sum of inter-edges of all clusters (minimizing),

• the number of clusters (maximizing),

• MQ (maximizing),

• the difference between the maximum and minimum number of modules in a cluster (minimizing).

To illustrate the ECA approach, consider again the example MDG in Figure 1. The set of objectives for
ECA are assigned as follows:
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Figure 1: The Module Dependency Graph (MDG) after Clustering by the Two-Archive Algorithm

• intra-edges of all clusters (cohesion): 6,

• inter-edges of all clusters (coupling): -6,

• the number of clusters: 3,

• MQ: 1.928571,

• the difference between the maximum and minimum number of modules in a cluster: 1.

In this paper, these two formulations of the multi–objective clustering problem will be implemented in
terms of the two-archive multi-objective evolutionary algorithm of Praditwong and Yao [26]. This algorithm
has been applied to other multi–objective problems, but this paper is the first to report on its application
to the module clustering problem.

4 Experimental Setup

This section describes the experiments conducted to compare the multi-objective and single objective software
module clustering problems.

4.1 Research Questions

1. MQ Value as Assessment Criterion: How well does the two-archive multi–objective search perform
when compared against the Bunch approach using the MQ value as the assessment criterion?

This question compares the two-archive approach to Bunch, using Bunch’s own fitness value. It would
be expected that Bunch, optimizing for the single objective of MQ, should be able to outperform the
two-archive approach, which is optimizing for a balance between this and several other objectives.

2. Cohesion and Coupling: How well does the two-archive algorithm and the Bunch perform at opti-
mising each of the two primary software engineering objectives of low coupling and high cohesion?
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This research question focuses on the primary software engineering objectives of cohesion and cou-
pling. Notwithstanding other interesting assessments, these two criteria are those for which automated
software modularization was conceived, so they form a natural topic for investigation in this paper.

3. Pareto Optimality as Assessment Criterion: How good is the Pareto front achieved by the two
approaches?

This question compares Bunch to the two-archive approach according to the goals of the two-archive
approach. It would be expected that the two-archive approach would prevail in such a comparison,
since it is designed to solve multi-objective problems.

4. Location of Solutions on the Approximated Pareto Front: What do the distributions of the
sets of solutions produced by each algorithm look like?

This question is concerned with the qualitative evaluation of the solutions produced. As a qualitative
question, it is naturally a little more subjective than the other questions. However, it does decompose
into two related sub–questions, for which a quantitative analysis is possible:

(a) How diverse are the solutions produced?

(b) What is the relationship between the areas of the solution space covered by each approach?

5. Effort: What is the computational expense of executing each of the two approaches in terms of the
number of fitness evaluations required.

As well as comparing each algorithm for the number of evaluations required, we shall also give each
the same budget of fitness evaluations (i.e. the same effort) and see whether one out–performs the
other for quality of results, as measured by the MQ values obtained and the intra– and extra-edges
present in the solutions obtained. Finally, we shall also consider the relationship between the size of
the problem and the effort (measured by the number of fitness evaluations required).

4.2 Test Problems

The experiment studies the application of the algorithms to 17 different MDGs. The numbers of modules vary
from 20 to over 100. The MDG in this experiment has two types. The first type is unweighted edges and the
second type is weighted edges as shown in Table 2. In unweighted graphs, an edge denotes a unidirectional
method or a variable passed between two modules. The weighted edge is assigned by considering the number
of the number of unidirectional method or variables passed between two modules; the greater the weight,
the more dependency between two modules [18].

4.3 Genetic Algorithms

Genetic algorithms use concepts of population and of recombination inspired by Darwinian Evolution [16].
A generic genetic algorithm [6] is presented in Figure 2.

An iterative process is executed, initialised by a randomly chosen population. The iterations are called
generations and the members of the population are called chromosomes, because of their analogs in natural
evolution. The process terminates when a population satisfies some pre-determined condition (or a certain
number of generations have been exceeded).

At each iteration (that is each generation), some members of the population are recombined, crossing
over elements of their chromosomes. A fraction of the offspring of this union are mutated and, from the
offspring and the original population a selection process is used to determine the new population. Crucially,
recombination and selection are guided by the fitness function; fitter chromosomes having a greater chance
to be selected and recombined.

There are many variations on this overall process, but the crucial ingredients are the way in which
the fitness guides the search, the recombinatory and the population based nature of the process. In the
application of any genetic algorithm to any problem their is a need for a tuning phase to determine the best
choice of parameter values governing the likelihood of mutation, crossover and the determintion of the size
of the population.
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Set generation number, m:= 0
Choose the initial population of candidate solutions, P (0)
Evaluate the fitness for each individual of P (0), F (Pi(0))
loop

Recombine: P (m) := R(P (m))
Mutate : P (m) := M(P (m))
Evaluate: F (P (m))
Select: P (m + 1) := S(P (m))
m := m + 1
exit when goal or stopping condition is satisfied

end loop;

Figure 2: A Generic Genetic Algorithm.

4.4 Algorithmic Parameters

The genetic encoding used here, employs the same system as that introduced by Doval et al. for the Bunch
system [10]. The crossover operator uses single-point crossover and the mutation operator uses single-point
mutation [10].

Algorithmic parameters are dependent on the number of modules (N). The probability of crossover is
0.8 if the population size is less than 100. Otherwise, the probability is 1.0. The probability of mutation is
0.004log2(N). The population size is 10N and the maximum number of generations is 200N . The total size
of archives is equal to the size of the population.

The hill-climbing algorithm used in the experiments reported upon here is the Bunch API [19]. The
algorithm uses the hill-climbing method from the Bunch library with one individual. A first neighbour which
produces a better result is accepted (this is the ‘first ascent’ hill climbing approach). The output files (in
dot format) were generated for the detailed level; this output is the lowest level of the Bunch cluster tree
and the one that tends to produce the highest value of MQ.

Higher levels than the detailed level are essentially clusters of clusters, which produce a lower value of
MQ. While these meta–clusters may be very useful to engineer, they are not an appropriate choice for an
unbiased empirical comparison with the multi–objective approach, because the multi–objective approach
always produces results at the detailed level.

The other parameters are set to their default settings. The information reported, such as the number of
intra-edges, the number of inter-edges, MQ, was calculated from the dot format file.

4.5 Collecting Results from Experiment

Each execution of each algorithm on each MDG was independently repeated 30 times. There are two different
ways to calculate the average of the MQ. The hill-climbing algorithm gives only one solution in each run. The
average of MQ can calculated indirectly from the solutions. However, the two-archive algorithm produces
the set of solutions. The solution with the highest MQ is chosen to be the best solution in each run.
Thus, the average of the MQ of obtained solutions from the two-Archive algorithm is estimated using the
representatives from 30 runs. This is method to collect the MQ values from experiment.

Both algorithms, the hill-climbing algorithm and the two-archive algorithm, give clustered systems when
they finish searching. The hill-climbing algorithm has only one system per run, while the two-Archive
algorithm selects the system which corresponds the highest MQ value. The numbers of intra-edges and
inter-edges are calculated by analysis the clustered systems, yielded by the algorithms.

5 Results and Analysis

This section presents the results of the empirical study. Each subsection addresses one of the five research
questions outlined in Section 4. The results concern three algorithms, the Bunch hill-climbing algorithm, and
the two multi-objective formulations of the clustering problem, ECA and MCA, described earlier in Section 3.
Table 1 presents details of the subject MDGs studied. These systems are not necessarily ‘degraded’ systems
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in terms of their modular structure, but they have been studied widely by other researchers to evaluate their
algorithms for module clustering and so they denote reasonable choices for comparison.

5.1 The MQ Value as Assessment Criterion

This section presents the result of the experiments that compare the MQ values obtained for the three
approaches. That is, the results assess how well the two multi–objective approaches perform when compared
with Bunch, using Bunch’s sole criterion: MQ.

Tables 2 and 3 present the results comparing MCA and ECA respectively with the hill climbing approach,
while Table 4 shows the comparison of results between the two multi objective approaches (MCA and ECA).
Emboldened figures denote comparisons where there is a significant difference (at the 95% confidence level)
in the means of MQ values found between the approaches (compared using a two tailed t-test).

In table 2, the results from two algorithms were comparable. There is good evidence to suggest that for
the unweighted problems, the hill-climbing algorithm outperformed the MCA approach. That is, the hill-
climbing algorithm gives higher values for MQ in 6 from 7 problems, including 4 problems in which the results
are statistically significant. However, for weighted MDG problems, the results provide evidence to suggest
that the MCA approach outperforms the hill climbing approach. That is, MCA beats the hill-climbing
algorithms in 7 from 10 problems, including 6 in which the results are statistically significant.

This finding was something of a surprise. One would expect the hill climbing approach to perform well
at optimizing for the single objective MQ, since this is its sole objective. However, there is evidence to
suggest that the multi-objective MCA approach outperforms hill climbing for weighted MDGs (though not
unweighted MDGs).

Turning to the results for the ECA multi-objective approach the surprise was even greater. There is no
evidence to suggest that the ECA approach is outperformed by the hill climbing approach for unweighted
graphs. However, there is very strong evidence to suggest that the ECA approach outperforms the hill
climber for weighted MDGs. That is, in no unweighted case did either approach outperform the other with
statistical significance. However, for weighted graphs, the ECA approach outperforms the hill climber in all
problems studied with statistically significant differences in the means in all cases.

This set of comparisons of the two multi-objective approaches with the single objective hill climber,
provide evidence to suggest that both multi-objective algorithms can outperform the single objective hill
climber when compared using the hill climber’s own sole objective. The results also indicate that, of the two
multi-objective approaches, ECA is to be preferred over MCA. This is borne out by the comparison of the
ECA and MCA approaches (presented in Figure 4). In all cases the ECA approach outperforms the MCA
approach and, in all but the smallest two, the results are statistically significant.

To answer Research Question 1, the results of the study provide evidence to support the claim that the
Bunch hill climbing approach produces superior MQ values for unweighted graphs than the MCA approach.
However, for weighted graphs, there is strong evidence (from the results in Tables 2 and 3) to suggest that
the multi-objective research (and in particular the ECA version of the multi-objective search) can produce
significantly better results for MQ values of weighted MDGs compared to the Bunch Hill Climbing approach.
There is also very strong evidence to suggest that the ECA approach is superior to the MCA approach in
terms of MQ values obtained.

One of the primary reasons for such good results is that the multi-objective algorithm always searches
for a non-dominated set, rather than any single solution. The diversity among the solutions in the set is
explicitly encouraged by the algorithm. As a result, the multi-objective algorithm is more likely to explore
widely in the search landscape. The more complex the search landscape, the more likely the multi-objective
algorithm performs better. This also explains why our algorithm outperformed the single-objective method
more on weighted graphs.

It is interesting to speculate as to why the ECA approach should appear to outperform the MCA ap-
proach. Clearly more experiments and further study would be required to provide a conclusive answer to
this subsidiary question. However, since the difference rests upon the way in which ECA seeks to normalize
cluster size, favouring solutions that minimize the difference between cluster sizes, it must be assumed that
in software systems this is a helpful guide to modularization. By contrast, seeking to punish a solution for
containing isolated clusters (the MCA approach) is less helpful. In order to explore this further, experi-
ments would be required that compared software MDGs to dependence from other (non software) sources.
It may turn out that such studies could help to explain what it is that makes a dependence graph a software
dependence graph rather than a graph in general.
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5.2 Cohesion and Coupling as Assessment Criteria

This section considers the answer to the second research question, which address the central role played
by cohesion and coupling in all work on module clustering. That is, which approach can produce the
highest cohesion and the lowest coupling? Cohesion is a measure of the number of intra edges in the
modularization (those edges that lie inside a cluster), while coupling is measured by the number of inter
edges in the modularization (the edges that connect two clusters). Both of these objectives are construed
as maximization problems in the formulation, so the number of inter edges is represented by the negative of
the inter edges; the goal is to maximize this value (i.e. to reduce coupling).

Tables 10 to 12 present the results comparing the performance of {MCA, Hill Climbing}, { ECA, Hill
Climbing} and {MCA, ECA} respectively.

In Table 10, the Comparison of MCA and Hill climbing is somewhat inconclusive for unweighted graphs
with each approach able to statistically significantly outperform the other in some cases. However, for
weighted MDGs, the MCA approach outperforms the Hill climbing approach in all cases with statistical
significance.

In Table 11, the results provide strong evidence to suggest that the ECA approach outperforms the hill
climbing approach for both weighted and unweighted graphs. That is, in all but one of the problems studied
the ECA approach outperforms the hill climbing approach with statistical significance.

Table 12, provides evidence to suggest that the ECA approach is preferable to the MCA approach; ECA
statistically significantly outperforms MCA in all but one case. However, it is interesting to note that in
the one case where MCA outperforms ECA it also does so with statistical significance. This indicates that
there remains some residual merit in the MCA approach. This issue of complementarity of approaches is
re-visited in Section 5.4.

To answer Research Question 2, there is strong evidence (from Tables 10 and 11) to support the claim
that the multi-objective approach (both the MCA and ECA versions) outperform the Hill Climbing approach
in producing solution clusterings with both higher cohesion and lower coupling for weighted graphs. Further-
more, there is also strong evidence (from Table 11) that the ECA multi-objective approach can outperform
the Bunch Hill Climbing approach on both weighted and unweighted graphs when aiming to produce solu-
tions that minimize coupling, while maximizing cohesion. This provides strong empirical evidence to support
the claim that the multi-objective approach is worthy of further consideration as an optimally performing
approach to module clustering.

5.3 Pareto Optimality as Assessment Criterion

This section compares the multi-objective formulations with the single objective formulation in terms of
how well each performs at producing good approximations to the Pareto front. Here, the multi-objective
formulations can be expected to outperform the single objective formulation, since they are designed to
produce good approximations to the Pareto front, whereas the single objective approach is not. Therefore,
the more interesting part of this research question is which of the two multi objective formulations performs
best.

Tables 13 to 15 display the dominance relationship for the results obtained from all three approaches.
This dominance relationship is used to compare any two solutions in multi-objective space.

The three software engineering objectives considered are the intra-edge and the inter-edge measurement,
and, for backward compatibility with work on single objective formulations, the MQ value obtained. These
objectives can be thought of as collectively denoting the quality of the clustering produced.

In these tables, A denotes the hill-climbing algorithm, B denotes the MCA, and C denotes the ECA.
The heading NXY denotes the number of solutions generated by X that are dominated by solution in Y . In
comparison, X is better than Y if NXY is small and NY X is large.

Table 13 shows that the number of solutions produced by hill-climbing outperforms MCA for unweighted
problems (6 from 7 problems), while in weighted systems, the MCA outperforms the hill-climbing algorithm
in all problems. This indicates that hill climbing is effective, perhaps surprisingly so, for unweighted MDGs.

Table 14, provides strong evidence that ECA outperforms hill climbing for both weighted and unweighted
MDGs. That is, the values of NAC are higher than NCA in 16 from 17 of the solutions..

These two findings, taken together, indicate the ECA is better than hill climbing, while MCA is only better
than hill climbing for weighted graphs, leading to suspicion that ECA outperforms MCA. This suspicion
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is confirmed by the results from Table 15, which compares ECA and MCA. This table shows that ECA
comfortably outperforms MCA in all of the problems studied.

To answer Research Question 3, as expected the single objective formulation implemented by Bunch
is not well suited to finding non-dominated solutions for a set of objectives. The results are particularly
compelling for the ECA multi-objective approach, which comfortably outperforms the other approaches.

5.4 Location of Solutions

This section considers the location of solutions produced by the two approaches. In order to examine the
location of solutions, it is convenient to compare two of the primary software engineering objectives. For this
reason, cohesion (intra edges) and the MQ value are chosen to see the trade off between these two objectives.
The previous sets of experiments have indicated a strong degree of difference between the results of weighted
and unweighted MDGs. Therefore, in considering location of solutions, the results are categorized into those
for weighted MDGs and those for unweighted MDGs. Figure 4 shows the locations of solutions in this two
objective space for unweighted MDGs, while Figure 5 show the location for unweighted MDGs.

In all figures, the two objectives are to be maximized, so the optimal solutions are located in the uppermost
and rightmost areas of the two objective space, while the least optimal are located in the lower-most and
leftmost areas of the space. The results in Figure 4 confirm the earlier findings that ECA is to be preferred
over MCA for unweighted MDGs and also that hill climbing (labelled HC) is a strong performer on unweighted
graphs. The results in Figure 5 are perhaps a little more interesting. They reveal that each of the three
algorithms concentrates in a different region of the two objective search space. Visually, it is apparent that
the hill climbing approach tends to concentrate on the less optimal areas of the space, while the both ECA
and MCA are focused on more productive locations. However, of ECA and MCA it is not always possible to
say that ECA is the better of the two. This suggests that for optimal results both ECA and MCA should be
used. Although the previous studies indicate that ECA will tend to outperform MCA, the visualisation of
result locations in two dimensional objective space, indicate that the two approaches concentrate on different
areas of the solution space and that MCA is occasionally able to produce results that outperform ECA for
one of the two objectives.

To answer Research Question 4, the resulting locations indicate that the three approaches produce solu-
tions in different parts of the solution space. This indicates that no one solution should be preferred over the
others for a complete explanation of the module clustering problem. While the results for the ECA multi-
objective approach indicate that it performs very well in terms of MQ value, non-dominated solutions and
cohesion and coupling, this does not mean that the other two approaches are not worthy of consideration,
because the results suggest that they search different areas of the solution space.

It is interesting to note how the different approaches produce solutions in different regions of the solution
space according to the fitness function values obtained. This suggests that each technique also finds different
re-modularizations of the software, though more work is required to examine this is more detail.

5.5 Computational Effort

This section compares the effort required to solve the clustering problem using the traditional hill climbing
approach and the new multi-objective approaches introduced in this paper. The results indicate that there
is a trade-off between effort and quality of results. That is, the number of evaluations required to achieve
the better results of the multi–objective approach is two orders of magnitude greater than that required for
the hill climber. However, even if we allow the Hill Climber the same number of fitness evaluations as the
multi-objective approaches, the results for the multi-objective approach are still typically better than those
obtained by the Hill Climber. Finally, we explore the relationship between the size of the problem and the
number of fitness evaluations required by the multi-objective approach. This study indicates that there is
no obvious relationship between size of problem and effort.

5.5.1 Number of Evaluations

An important factor for search algorithms is a number of evaluations. The number of evaluations indicates
the computational cost of an algorithm. The numbers of evaluations of all algorithms are shown in Table 5.
The two approaches (MCA and ECA) that use the two-archive algorithm use the same number of fixed
evaluations. The hill-climbing algorithm will terminate when it can no longer find a neighbour that produces
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Table 1: The systems studied.

Name Modules Links

Unweighted mtunis 20 57
ispell 24 103
rcs 29 163
bison 37 179
grappa 86 295
bunch 116 365
incl 174 360

Weighted icecast 60 650
gnupg 88 601
inn 90 624
bitchx 97 1653
xntp 111 729
exim 118 1225
mod ssl 135 1095
ncurses 138 682
lynx 148 1745
nmh 198 3262

the better MQ. Thus, the numbers of evaluations for the hill-climbing algorithm are not fixed. The number
of evaluations in this table are averaged values from 30 independent runs.

To answer Research Question 5, the results clearly demonstrate the additional cost incurred by a multi-
objective search using a genetic algorithms. The Bunch hill climbing approach is at least two orders of
magnitude more time efficient, when compared to the two-archive Pareto genetic algorithm. This confirms
the widely observed principle that hill climbing is a fast and simple search technique, when compared to
the genetic algorithm approach. This is particularly true in cases where multiple objectives have to be
satisfied using Pareto optimality, because of the additional overheads that accrue from the maintenance of
a non-dominating set that approximates the Pareto front.

Whether the additional cost is justified by the superior results, will depend upon the application domain.
In many cases, re-modularisation is an activity that is performed occasionally and for which the software
engineer may be prepared to wait a few minutes (even hours) for results if this additional waiting time
produces significantly better results. Specifically, it is likely that the software engineer will be prepared to
wait for results in several situations. For example, where a system has become difficult to maintain through
degradation of structure, the engineer may be prepared to wait even for several days in order to obtain an
assessment of the optimally improved structure.

Module clustering represents the top level structure of the system. As such, it is unlikely that the entire
structure of a system will undergo a major overhaul on a regular basis. When such an overhaul is required,
it is likely to be a significant event and so it will be important to obtain the best possible results. For
these best possible results, it is quite likely that the engineer will be prepared to wait. However, in other
more speculative situations, where the engineer asks a ‘what if?’ question, then it may be more attractive
to obtain results that are merely fast and ‘good enough’. In these cases the single objective approach may
remain an attractive alternative.

5.5.2 Head To Head Comparison

In this experiment we give the Hill Climber the same number of evaluations as the multi–objective approach
to determine whether it can produce equally good or better solutions when allowed the same budget of fitness
evaluations (i.e. the same effort). The Hill Climber is simply re-started each time it reaches the summit of
a hill at a random point and allowed to continue with random restarts until it exhausts the budget of fitness
evaluations. This is known as ‘Random Re-start Hill Climbing’.

Table 5 shows the number of evaluations used by the ECA two-archive approach. We have given the Hill
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Table 2: Comparison of solutions found by the MCA approach and Bunch’s Hill Climbing Approach using
a two tailed t-test with 58 degrees of freedom. Figures in bold are significant at the 95% level.

Name MCA Hill-Climbing t-test
Mean STD Mean STD

Unweighted mtunis 2.294 0.013 2.249 0.060 0.914
ispell 2.269 0.043 2.337 0.022 -1.461
rcs 2.145 0.034 2.218 0.020 -1.726
bison 2.416 0.038 2.639 0.041 -4.331

grappa 11.586 0.106 12.676 0.017 -16.977

bunch 12.145 0.225 13.536 0.054 -14.420

incl 11.811 0.351 13.568 0.035 -15.480

Weighted icecast 2.401 0.057 1.779 0.145 7.574

gnupg 6.259 0.072 4.869 0.168 15.549

inn 7.421 0.077 6.720 0.180 7.571

bitchx 3.572 0.055 2.465 0.200 11.988

xntp 6.482 0.110 6.655 0.151 -1.855
exim 5.316 0.132 5.199 0.166 1.174
mod ssl 8.832 0.097 7.906 0.293 8.129

ncurses 10.211 0.145 9.836 0.181 3.602

lynx 3.447 0.086 3.488 0.124 -0.494
nmh 6.671 0.177 7.012 0.254 -2.847

Table 3: Comparison of solutions found by the ECA approach and Bunch’s Hill Climbing Approach using a
two tailed t-test with 58 degrees of freedom. Figures in bold are significant at the 95% level.

Name ECA Hill-Climbing t-test
Mean STD Mean STD

Unweighted mtunis 2.314 0.000 2.249 0.060 1.474
ispell 2.339 0.022 2.337 0.022 0.042
rcs 2.239 0.022 2.218 0.020 0.556
bison 2.648 0.029 2.639 0.041 0.177
grappa 12.578 0.053 12.676 0.017 -2.017
bunch 13.455 0.088 13.536 0.054 -1.171
incl 13.511 0.059 13.568 0.035 -1.018

Weighted icecast 2.654 0.039 1.779 0.145 11.158

gnupg 6.905 0.055 4.869 0.168 23.663

inn 7.876 0.046 6.72 0.180 13.320

bitchx 4.267 0.027 2.465 0.200 20.703

xntp 8.168 0.076 6.655 0.151 17.400

exim 6.361 0.084 5.199 0.166 12.734

mod ssl 9.749 0.071 7.906 0.293 16.735

ncurses 11.297 0.133 9.836 0.181 14.287

lynx 4.694 0.060 3.488 0.124 15.410

nmh 8.592 0.148 7.012 0.254 13.647
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Table 4: The Averaged MQ Values of the Best Solutions Found by the Two-Archive Algorithm with Max-
imizing Cluster Approach (MCA), and by the Two-Archive Algorithm with Equal-Size Cluster Approach
(ECA) and the Value of a two-tailed t-test with 58 degrees of freedom.

Name ECA MCA t-test
Mean STD Mean STD

Unweighted mtunis 2.314 0.000 2.294 0.013 0.991
ispell 2.339 0.022 2.269 0.043 1.496
rcs 2.239 0.022 2.145 0.034 2.176

bison 2.648 0.029 2.416 0.038 4.873

grappa 12.578 0.053 11.586 0.106 13.625

bunch 13.455 0.088 12.145 0.225 12.830

incl 13.511 0.059 11.811 0.351 14.535

Weighted icecast 2.654 0.039 2.401 0.057 4.473

gnupg 6.905 0.055 6.259 0.072 9.932

inn 7.876 0.046 7.421 0.077 7.101

bitchx 4.267 0.027 3.572 0.055 13.267

xntp 8.168 0.076 6.482 0.110 21.451

exim 6.361 0.084 5.316 0.132 12.321

mod ssl 9.749 0.071 8.832 0.097 12.252

ncurses 11.297 0.133 10.211 0.145 11.288

lynx 4.694 0.060 3.447 0.086 17.870

nmh 8.592 0.148 6.671 0.177 18.476

Climber the same number of evaluations as used in all 30 runs of the ECA algorithm for complete fairness.
That is, for example, considering mtunis problem, the number of evaluations of ECA is 800,000 and it is
repeated 30 times (to allow for a meaningful statistical comparison of results earlier in the paper). Thus,
the total number of evaluations is 24,000,000. The Hill-Climbing approach was performed until the number
of evaluations passes 24,000,000. The number might slightly exceed this ‘fitness evaluation budget’ because
the current hill climb is allowed to complete before the budget is checked. This ensures that the Hill Climber
is afforded at least the same number of evaluations as the ECA approach. Table 6 shows the number of
evaluations and the number of runs performed by the Hill-Climbing approach.

Table 7 presents the MQ value obtained for each algorithm. Hill-Climbing cannot find better solutions
in terms of MQ when the number of evaluations allowed is increased to the total used by the multi-objective
approach. Only for three of the problems, grappa, bunch and incl, does the MQ obtained by Hill-Climbing
outperform that found by the ECA algorithm. In the other problems, the ECA algorithm find better MQ
values than the Hill-Climbing algorithm.

A comparison of intra-edge and inter-edge is shown in the Table 8. Hill-Climbing can find the solutions
with good intra-edge and inter-edge but it does not out-perform ECA for result quality when it has the same
number of evaluations.

5.6 Exploration of the Relationship between Problem Size and Number of Fit-

ness Evaluations Required

In this section we consider the relationship between the size of the problem and the number of fitness
evaluations required. The results show that there is no apparent relationship between the two. That is,
there is no strong correlation between the sizes of systems (listed in Table 1) and the effort expended by the
search techniques (listed in Tables 5 and 6).

This provides some tentative evidence to suggest that that the difficulty of a problem (for the multi–
objective approach) is not a function of problem’s size; the complexity of the problem may not be directly
related to its size. However, as one might expect, the larger systems do seem to take more fitness evaluations.
More work is required with more systems in order to fully determine whether there is any relationship between
the size of the MDG and the number of fitness evaluations required.
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Table 5: Number of Evaluations by the Two-Archive Algorithm and Hill-Climbing
Name Two-Archive Algorithm Hill-Climbing

Mean STD
mtunis 800000 934.367 204.558
ispell 1152000 1823.333 509.483
rcs 1682000 3291 884.664
bison 2738000 5388.267 1453.368
grappa 14792000 68429.867 27558.047
bunch 26912000 138477.767 77102.844
incl 60552000 125424.433 45517.068
icecast 7200000 17371.733 4379.106
gnupg 15488000 55475.033 17871.995
inn 16200000 96498.633 43471.544
bitchx 18818000 89179.033 34799.29
xntp 24642000 126195.533 68732.167
exim 27848000 132139.867 68820.241
mod ssl 36450000 222008.367 112826.268
ncurses 38088000 224815.733 97552.865
lynx 43808000 126777.767 48318.278
nmh 78408000 805155.400 511547.499

Table 6: Number of Evaluations by the Two-Archive Algorithm and Hill-Climbing
Name Hill-Climbing Two-Archive Algorithm

No. of Runs No. of Evaluations No. of Evaluations
mtunis 26014 24000943 24000000
ispell 19340 34560557 34560000
rcs 15363 50461933 50460000
bison 15408 82140104 82140000
grappa 5817 443791973 443760000
bunch 6346 807430167 807360000
incl 12748 1816661431 1816560000
icecast 12429 216006356 216000000
gnupg 9083 464654717 464640000
inn 5434 486010358 486000000
bitchx 7264 564579101 564540000
xntp 6162 739300758 739260000
exim 6647 835468260 835440000
mod ssl 4755 1093626809 1093500000
ncurses 4965 1143087432 1142640000
lynx 9778 1314294774 1314240000
nmh 3107 2353426942 2352240000
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Table 7: The Averaged MQ Values of the Best Solutions Found by the Two-Archive Algorithm with the
Equal-Size Cluster Approach (ECA), and by Hill-Climbing (HC).

Name ECA Hill-Climbing T-test:
Mean STD Mean STD ECA-HC

Not weighted mtunis 2.314 0 2.242 0.063 6.322

ispell 2.339 0.022 2.334 0.024 0.970
rcs 2.239 0.022 2.220 0.022 4.655

bison 2.648 0.029 2.637 0.038 1.447
grappa 12.578 0.053 12.677 0.019 -28.480

bunch 13.455 0.088 13.537 0.055 -8.000

incl 13.511 0.059 13.572 0.037 -9.107

Weighted icecast 2.654 0.039 1.846 0.127 34.760

gnupg 6.905 0.055 4.946 0.183 58.528

inn 7.876 0.046 6.676 0.188 34.893

bitchx 4.267 0.027 2.444 0.209 47.799

xntp 8.168 0.076 6.636 0.125 66.857

exim 6.361 0.084 5.207 0.172 36.816

mod ssl 9.749 0.071 7.934 0.306 32.523

ncurses 11.297 0.133 9.804 0.182 44.951

lynx 4.694 0.060 3.489 0.131 50.470

nmh 8.592 0.148 7.062 0.265 31.517

Table 8: The Average of the Intra-edges and the Inter-edges of the Best Solutions Found by the Two-Archive
Algorithm with the Equal-Size Cluster Approach (ECA), and by Hill-Climbing (HC)

Name ECA Hill-Climbing T-test: T-test:

Intra-edges Inter-edges Intra-edges Inter-edges Intra-edges Inter-edges

Mean STD Mean STD Mean STD Mean STD ECA-HC ECA-HC

Not weighted

mtunis 27 0 -60 0 22.643 3.489 -69.724 6.914 6.839 7.702

spell 30.033 2.798 -145.933 5.595 25.356 3.030 -156.299 5.984 8.449 9.481

rcs 47.567 7.859 -230.867 15.719 36.810 6.742 -253.372 13.446 8.727 9.156

bison 52.800 6.217 -252.400 12.434 40.225 5.944 -278.546 11.855 11.576 12.067

grappa 101.167 8.301 -387.667 16.601 82.167 3.175 -426.675 6.277 32.230 33.457

bunch 111.700 5.305 -504.600 10.611 100.632 5.707 -527.740 11.341 10.601 11.153

incl 140.200 3.836 -439.600 7.673 140.510 9.862 -439.992 19.710 -0.172 0.109

Weighted

icecast 1643.167 208.189 -7569.667 416.378 780.828 227.609 -9295.350 455.216 20.730 20.743

gnupg 1494.167 103.830 -4413.667 207.660 905.158 129.182 -5592.698 258.341 24.946 24.970

inn 1336.900 190.263 -5046.200 380.526 519.048 122.170 -6682.903 244.343 36.428 36.450

bitchx 7840.600 633.068 -35546.800 1266.136 3050.028 939.989 -45128.934 1879.96 27.887 27.890

xntp 1117.967 54.502 -3692.067 109.004 419.447 77.202 -5090.102 154.394 49.495 49.534

exim 3146.567 525.155 -12612.867 1050.310 1029.345 292.284 -16848.317 584.563 39.396 39.406

mod ssl 3476.800 244.174 -11008.400 488.348 1075.909 151.961 -15811.176 303.928 85.855 85.870

ncurses 806.3670 57.515 -2607.267 115.030 367.182 25.005 -3486.637 49.995 94.738 94.875

lynx 3730.633 478.016 -20546.733 956.032 1561.995 263.208 -24885.012 526.420 44.907 44.917

nmh 2704.600 236.782 -18576.800 473.564 1164.043 215.020 -21658.899 430.016 39.016 39.031
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Problem Nodes Time (Sec.)
Mean STD

mtunis 20 8.1 0.711967
ispell 24 23.433333 0.773854
rcs 29 24 1.144703
bison 37 68.533333 10.852406
grappa 86 697.7 166.593279
bunch 116 1868.533333 409.992324
incl 174 6652.4 2006.30093
icecast 60 349.266667 29.657741
gnupg 88 2900.766667 953.430564
inn 90 1111.766667 265.050637
bitchx 97 1375.2 116.074411
xntp 111 3434.4 1005.104613
exim 118 3631.966667 949.306007
mod ssl 135 4219.6 740.464793
ncurses 138 12298.46667 3617.612308
lynx 148 5790.366667 1693.144972
nmh 198 14021.46667 2114.663595

Table 9: The Relationship Between Size and ECA Computation Time.

It may be that search problem difficulty is related to problem complexity not problem size and that,
should there turn out to be some correlation, then the difficulty of the search might act as some form of
guide as to the complexity of the problem. However, this remains purely speculation at this point.

6 Use of Automated and Semi-Automated Modularization Based

Cohesion and Coupling

Automated approaches to modularization, such as that presented in this paper focus on automated algorithms
that seek out new partitions of software, maximizing cohesion and minimizing coupling. There have been
empirical studies that show that low coupling and high cohesion are desirable because they tend to be
correlated with a lower propensity to contain faults [4]. However, care is required in extrapolating from these
studies to the work reported here; it cannot be assumed that automated re-modularization will necessarily
improve quality attributes such as fault proneness.

Also, it would be wrong to assume that cohesion and coupling are the only requirements for software
module quality. Many other factors have to be taken into account when deciding upon the quality of software
and no attempt is made in this paper to claim that automatically re-modularized software will necessarily
be less fault prone, nor to suggest that it will have other desirable properties.

Finally, though the approach advocated here is automated, this does not mean that a practicing Software
Engineer should simply press a ‘modularize button’ and accept the results of automated modularization
without question. Rather, tools that use these automated techniques are more likely to be interactive; the
tool merely suggesting candidates for re-modularization, perhaps indicating functions that could be moved
to improve measurements of cohesion and coupling. The user of such a tool would then consider these
suggestions and decide whether or not to accept them.

This paper adds to the previous work on cohesion and coupling by providing automated techniques that
can be used to make such suggestions. It improves the measurements of cohesion and coupling that can be
achieved so that, where there this is desirable, the user will have potentially more interesting suggestions
from the tool to consider.

A further interesting practical contribution of this work is the way in which the paper indicates that
multi objective search techniques can be useful for improving the fitness scores obtained for single objective
problems. This is a phenomenon observed in the wider optimization community [5], but to the authors
knowledge, it is the first time that this phenomenon has been demonstrated in Search Based Software
Engineering problems.
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Figure 3: The number of nodes and computation time by ECA.

That is, the search for solutions that maximize the widely studied MQ measurement can be improved
by searching for solutions that solve this and several other objectives, as the results in the present paper
indicate. This finding seems surprising at first glance; how can adding objectives make a problem easier
to solve? The resolution of this apparent paradox is to be found in the way in which the other objectives
contribute guidance to the solution of the primary objective (in this case MQ). This finding may be useful for
other SBSE problems; it may be that even essentially single objective SBSE problems can be re-formulated
as multiple objective search problems in which the additional objectives provide guidance to the solution of
the primary objective and a pareto optimal search can thereby find superior solutions that achieve higher
scores for the primary objective.

The application of search based modularization is not merely a technique for application to systems that
have become degraded through ad hoc maintenance, thought it may be particularly useful for such systems.
Like all tools to support Software Engineers in their decision making, the approach can be used to raise
questions about modularization choices, even for very well–maintained systems. Where the search based
approach suggests a re-modularization that will produce a noticeable improvement in cohesion and coupling
this can be a starting point for investigation, even for well behaved systems.

Furthermore, where the automated approach produces a suggestion that is not followed, this may indi-
cate a situation where there are hidden dependencies, not reflected in the MDG. These dependencies will
be hidden to the automated tool, but may be known to the engineer. They may cause the engineer to
reject the modularization suggestions. In such cases, the tool may have flagged up a need for additional
design documentation to record and document such dependencies. The authors’ experience with code level
dependencies from industrial partners indicates that real code does contain many such hidden dependencies.

7 Threats to Validity

For an experiment not involving human subjects, there are two potential threats to validity that need to
be considered. These are threats to external validity and internal validity. External validity (or selection
validity) concerns the degree to which the findings can be generalized to the wider classes of subjects from
which the experimental work has drawn a sample.

In work on software engineering this is a particular important threat to validity of findings, because of
the wide range of diverse programs available to any study of their properties. In the experiments reported
upon here, this threat to validity is somewhat mitigated by the fact that the study is concerned with
a highly abstract representation of a program: the Module Dependency Graph (MDG). Since there is a
homomorphism that maps many individual programs into a single MDG, the results for a set of MDGs of
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size C is relevant to a class of programs of cardinally far larger than C.
Nonetheless, as with other empirical studies concerning software, care is required in extrapolation from

the results presented in the present paper to the wider class of programs and their weighted and unweighted
MDGs. In order to attempt to cater for possible threats to external validity, the empirical study was
constructed to use a range of MDGs, both weighted and unweighted and ranging in size from small to large.
The systems under study were also varied in their application types. However, all systems considered came
from open source programs and this may affect the degree to which results can be extrapolated. Naturally,
it remains possible that non-open source programs will exhibit different behaviour.

Internal validity is the degree to which conclusions can be drawn about the causal effect of independent
variables on the dependent variables. In this experiment, potential threats come from inappropriate statistical
tests or violations of statistical assumptions, inaccurate underlying analysis, and the degree to which the
variables used in the study accurately measure the concepts they purport to measure (a form of construct
validity).

In this paper the choice of subject MDGs and statistical tests was partly governed by the desire to
support comparability with other studies. The statistical test used was the t-test. This has been widely used
by researchers comparing results from studies of metaheuristic search algorithms. The MDGs studied have
also been used in other studies [18, 21, 23], facilitating a degree of comparability.

It is important to use a statistical test for significance of results obtained because there is an inherent
degree of random selection in all metaheuristic search algorithms, that the experimental result must take
into account. It is known that the t test is best suited to normally distributed data. However, there is strong
statistical evidence [9, 24] to suggest that the t–test is robust, even in the presence of significantly skewed
and non-normally distributed data, provided the sample sizes are sufficiently large, which they are in this
case.

It is also important to note that this work neither demonstrates nor implies any necessary association
between quality of systems and the modularization produced by the approach used in this paper. Indeed,
module quality may depend on many factors, which may include cohesion and coupling, but which is unlikely
to be limited to merely these two factors.

8 Conclusion and Future Work

This paper introduces the multi-objective approach to software module clustering. It introduces two multi-
objective formulations of the multi-objective problems and presented results for the application these tech-
niques, comparing the results obtained with those from the existing single objective formulation on 17 real
world model clustering problems

The results indicate that one of the two approaches, the Equal Cluster size Approach, is able to produce
better solutions that the existing single objective solution, both in terms of the multiple objectives it aims
to satisfy, but also in terms of the single objective upon which all previous work has focused. This improved
performance comes at a significantly increased computational cost. For problems in which the software
engineer is prepared to wait for the optimal re-clustering of their system, the multi–objective approach
therefore has considerable merit.

The multi-objective approach lends itself to extensions to consider other possible objectives with respect
to which modularization could take place. Future work could consider such additional objectives. For
example, we could consider the foot print size of each module, the communications bandwidth (not merely
number of inter-edges) the location of features found in module. Future work should also consider the
degree to which different approaches produce different kinds of clustering and the underlying reasons for the
difference in the results obtained using the ECA and MCA approach.

9 Acknowledgements

The authors are grateful to Spiros Mancoridis and Brian Mitchell for providing detailed feedback on an earlier
version of this paper and also for many valuable conversations about software module clustering over the
past six years. Spiros and Brian also kindly made available, both the Bunch tool and the MDGs used in this
paper. The authors also are grateful to Kiarash Mahdavi for providing references, discussions and comments.
The anonymous referees also provided detailed, thoughtful and constructive advice which helped to improve

19



Table 10: The Average of the Intra-edges and the Inter-edges of the Best Solutions Found by the Two-Archive
Algorithm with Maximizing Cluster Approach (MCA), and by Hill-Climbing and the Value of a Two-Tailed
T-Test with 58 Degrees of Freedom. Figures in bold are significant at the 95% level.

Name MCA Hill-climbing T-test: T-test:
Intra-edges Inter-edges Intra-edges Inter-edges Intra-edges Inter-edges

Mean STD Mean STD Mean STD Mean STD

Unweighted
mtunis 24.633 2.092 -64.733 4.185 22.600 3.379 -68.800 6.759 4.761 6.733

ispell 23.100 3.220 -159.800 6.440 25.833 3.761 -154.333 7.522 -5.666 -8.013

rcs 45.133 15.335 -235.733 30.669 35.033 5.822 -255.933 11.644 12.027 17.009

bison 40.367 8.231 -277.267 16.463 40.600 6.683 -276.800 13.366 -0.331 -0.468
grappa 84.767 11.190 -420.467 22.380 81.900 2.928 -426.200 5.857 4.179 5.910

bunch 73.567 8.324 -580.867 16.648 100.867 4.883 -526.267 9.766 -41.145 -58.188

incl 91.767 14.024 -536.467 28.048 140.967 11.758 -438.067 23.515 -53.073 -75.056

Weighted
icecast 1609.900 294.921 -7636.200 589.843 733.467 238.111 -9389.070 476.222 207.923 294.048

gnupg 1104.733 167.834 -5192.530 335.669 887.200 150.659 -5627.600 301.318 66.763 94.417

inn 771.633 162.630 -6176.730 325.260 554.233 158.848 -6611.530 317.696 66.412 93.920

bitchx 7644.633 2703.349 -35938.700 5406.697 3166.267 861.843 -44895.500 1723.685 410.808 580.970

xntp 733.800 109.722 -4460.400 219.445 447.033 99.724 -5033.930 199.448 108.531 153.486

exim 3279.300 563.781 -12347.400 1127.563 1004.267 342.379 -16897.500 684.758 413.948 585.411

mod ssl 2911.733 310.981 -12138.500 621.962 1101.633 144.082 -15758.700 288.165 464.758 657.268

ncurses 574.433 94.392 -3071.130 188.785 368.700 22.927 -3482.600 45.855 104.035 147.128

lynx 2428.567 863.007 -23150.900 1726.014 1567.800 268.807 -24872.400 537.614 140.139 198.186

nmh 2032.267 438.220 -19921.500 876.440 1120.233 213.024 -21745.500 426.048 195.749 276.831
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Table 12: The Average of the Intra-edges and the Inter-edges of the Best Solutions Found by the Two-Archive
Algorithm with Equal-Size Cluster Approach (ECA), and by the Two-Archive Algorithm with Maximizing
Cluster Approach (MCA) and the Value of a Two-Tailed T-Test with 58 Degrees of Freedom. Figures in
bold are significant at the 95% level.

Name ECA MCA T-test: T-test:
Intra-edges Inter-edges Intra-edges Inter-edges Intra-edges Inter-edges

Mean STD Mean STD Mean STD Mean STD

Unweighted
mtunis 27.000 0.000 -60.000 0.000 24.633 2.092 -64.733 4.185 8.961 12.673
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Table 13: Results of Dominated Comparison. A: the hill-climbing algorithm and B: the Two-Archive algo-
rithm with the maximizing cluster approach.

Name NAB NBA

Unweighted mtunis 23 19
ispell 7 30
rcs 2 21
bison 0 29
grappa 0 23
bunch 0 30
incl 0 30

Weighted icecast 30 0
gnupg 30 0
inn 30 0
bitchx 30 0
xntp 23 10
exim 30 0
mod ssl 30 0
ncurses 30 0
lynx 26 12
nmh 13 1

Table 14: Results of Dominated Comparison. A: the hill-climbing algorithm and C: the Two-Archive algo-
rithm with the equal-size cluster approach.

Name NAC NCA

Unweighted mtunis 23 0
ispell 24 13
rcs 30 3
bison 28 17
grappa 27 0
bunch 16 11
incl 22 27

Weighted icecast 30 0
gnupg 30 0
inn 30 0
bitchx 30 0
xntp 30 0
exim 30 0
mod ssl 30 0
ncurses 30 0
lynx 30 0
nmh 30 0
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Table 15: Results of Dominated Comparison. B: the Two-Archive algorithm with the maximizing cluster
approach and C: the Two-Archive algorithm with the equal-size cluster approach.

Name NBC NCB

Unweighted mtunis 19 0
ispell 30 0
rcs 27 0
bison 30 0
grappa 30 0
bunch 30 0
incl 30 0

Weighted icecast 29 0
gnupg 30 0
inn 30 0
bitchx 24 0
xntp 30 0
exim 30 0
mod ssl 30 0
ncurses 30 0
lynx 30 0
nmh 29 0
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