
Testability Transformation: Program

Transformation to Improve Testability

An Overview of Recent Results

Mark Harman1∗, André Baresel2, David Binkley3, Robert Hierons4, Lin Hu1,
Bogdan Korel5, Phil McMinn6, Marc Roper7

1 King’s College London, Strand, London, WC2R 2LS.
2 DaimlerChrysler, Alt Moabit 96a, Berlin, Germany.

3 Loyola College, 4501 North Charles Street, Baltimore, MD 21210-2699, USA.
4 Brunel University, Uxbridge, Middlesex, UB8 3PH, UK.

5 Illinois Institute of Technology, 10 W. 31st Street, Chicago, IL 60616.
6 University of Sheffield, Regent Court, 211 Portobello Street, Sheffield, S1 4DP, UK.

7 Strathclyde University, 26 Richmond Street, Glasgow G1 1XH, UK.
∗ Corresponding Author.

Abstract. Testability transformation is a new form of program transfor-
mation in which the goal is not to preserve the standard semantics of the
program, but to preserve test sets that are adequate with respect to some
chosen test adequacy criterion. The goal is to improve the testing process
by transforming a program to one that is more amenable to testing while
remaining within the same equivalence class of programs defined by the
adequacy criterion. The approach to testing and the adequacy criterion
are parameters to the overall approach. The transformations required are
typically neither more abstract nor are they more concrete than standard
‘meaning preserving transformations’. This leads to interesting theoreti-
cal questions. but also has interesting practical implications. This chapter
provides an introduction to testability transformation and a brief survey
of existing results.

1 Introduction

A testability transformation (TeTra) is a source-to-source program transforma-
tion that seeks to improve the performance of a previously chosen test data
generation technique [27]. Testability transformation uses the familiar notion of
program transformation in a novel context (testing) that requires the develop-
ment of novel transformation definitions, novel transformation rules and algo-
rithms, and novel formulations of programming language semantics, in order to
reason about testability transformation.

This chapter presents an overview of the definitions that underpin the con-
cept of testability transformation and several areas of recent work in testability
transformation, concluding with a set of open problems. The hope is that the
chapter will serve to encourage further interest in this new area and to stimulate
research into the important formalizations of test adequacy oriented semantics,
required in order to reason about it.



As with traditional program transformation [11, 35, 42], TeTra is an auto-
mated technique that alters a program’s syntax. However, TeTra differs from
traditional transformations in two important ways:

1. The transformed program is merely a ‘means to an end’, rather than an ‘end’
in itself. The transformed program can be discarded once it has served its
role as a vehicle for adequate test data generation. By contrast, in traditional
transformation, it is the original program that is discarded and replaced by
the transformed version.

2. The transformation process need not preserve the traditional meaning of a
program. For example in order to cover a chosen branch, it is only required
that the transformation preserves the set of test–adequate inputs for the
branch. That is, the transformed program must be guaranteed to execute
the desired branch under the same initial conditions. By contrast, traditional
transformation preserves functional equivalence, a much more demanding
requirement.

These two observations have three important implications

1. There is no psychological barrier to transformation. Tradition trans-
formation requires the developer to replace familiar code with machine–
generated, structurally altered equivalents. It is part of the fokelore of the
program transformation community that developers are highly resistant to
the replacement of the familiar by the unfamiliar. There is no such psycholog-
ical barrier for testability transformation: the developer submits a program
to the system and receives test data. There is no replacement requirement;
the developer need not even be aware that transformation has taken place.

2. Considerably more flexibility is available in the choice of trans-
formations to apply. Guaranteeing functional equivalence is demanding,
particularly in the presence of side effects, goto statements, pointer aliasing
and other complex language features. By contrast, merely ensuring that a
particular branch is executed for an identical set of inputs is comparatively
less demanding.

3. Transformation algorithm correctness is a less important. Tradi-
tional transformation replaces the original program with the transformed
version, so correctness is paramount. The cost of ‘incorrectness’ for testabil-
ity transformation is much lower; the test data generator may fail to gener-
ate adequate test data. This situation is one of degree and can be detected,
trivially, using coverage metrics. By contrast, functional equivalence is un-

decidable.

2 Testability Transformation

Testability transformation seeks to transform a program to make it easier to
generate test data (i.e., it seeks to improve the original program’s ‘testability’).
There is an apparent paradox at the heart of this notion of testability transfor-
mation:



Structural testing is based upon structurally defined test adequacy crite-
ria. The automated generation of test data to satisfy these criteria can be
impeded by properties of the software (for example, flag variables, side
effects, and unstructured control flow). Testability transformation seeks
to remove the problem by transforming the program so that it becomes
easier to generate adequate test data. However, transformation alters the
structure of the program. Since the program’s structure is altered and
the adequacy criterion is structurally defined, it would appear that the
original test adequacy criterion may no longer apply.

The solution to this apparent paradox is to allow a testability transformation
to co-transform the adequacy criterion. The transformation of the adequacy cri-
terion ensures that adequacy for the transformed program with the transformed
criterion implies adequacy of the original program with the original criterion.
These remarks are made more precise in the following definitions.

A test adequacy criterion is any set of syntactic constructs to be covered
during testing. Typical examples include a set of nodes, a set of branches, a set of
paths, etc. For example, to achieve ‘100% branch coverage’, this set would be the
set of all branches of the program. Observe that the definition also allows more
fine grained criteria, such as testing to cover a particular branch or statement.

Definition 1 (Testability Transformation [19])
Let P be a set of programs and C a set of test adequacy criteria. A Testing-

Oriented Transformation is a partial function in (P × C) → (P × C). (In
general, a program transformation is a partial function in P → P.).

A Testing-Oriented Transformation, τ is a Testability Transformation iff for
all programs p and criteria c, τ(p, c) = (p′, c′) implies that for all test sets T , T

is adequate for p according to c if T is adequate for p′ according to c′.

3 Test Data Generation

One of the most pressing problems in the field of software testing revolves around
the issue of automation. Managers implementing a testing strategy are soon con-
fronted with the observation that large parts of the process need to be automated
in order to develop a test process that has a chance to scale to meet the demands
of existing testing standards and requirements [8, 38].

Test data must be generated to achieve a variety of coverage criteria to assist
with rigorous and systematic testing. Various standards [8, 38] either require or
recommend branch coverage adequate testing, and so testing to achieve this is
a mission critical activity for applications where these standards apply. Because
generating test data by hand is tedious, expensive and error-prone, automated
test data generation has, remained a topic of interest for the past three decades
[9, 15, 23].

Several techniques for automated test data generation have been proposed,
including symbolic execution [9, 22], constraint solving [12, 33], the chaining
method [15], and evolutionary testing [39, 21, 31, 32, 34, 36, 41]. This section



briefly reviews two currently used techniques for automating the process of test
data generation, in order to make the work presented on testability transforma-
tion for automated test data generation in this chapter self contained.

3.1 Evolutionary Testing

Fitness evaluation

Mutation

Survival

Recombination

Selection

Individuals

Test data

Test
execution

Monitoring
data

Fitness values

Initial Population

Test Results

Fig. 1. Evolutionary Algorithm for Testing

The general approach to evolutionary test data generation is depicted in Fig-
ure 11. The outer circle in Figure 1 provides an overview of a typical procedure
for an evolutionary algorithm. First, an initial population of solution guesses is
created, usually at random. Each individual within the population is evaluated
by calculating its fitness. This results in a spread of solutions ranging in fitness.

In the first iteration all individuals survive. Pairs of individuals are selected
from the population, according to a pre-defined selection strategy, and combined
to produce new solutions. At this point mutation is applied. This models the role
of mutation in genetics, introducing new information into the population. The
evolutionary process ensures that productive mutations have a greater chance of
survival than less productive ones.

The new individuals are evaluated for fitness. Survivors into the next genera-
tion are chosen from parents and offspring with regard to fitness. The algorithm
is iterated until the optimum is achieved, or some other stopping condition is
satisfied.

In order to automate software test data generation using of evolutionary al-
gorithms, the problem must first be transformed into an optimization task. This

1 This style of evolutionary test data generation is based on the DaimlerChrysler
Evolutionary Testing System [43].



is the role of the inner circle of the architecture depicted in Figure 1. Each gen-
erated individual represents a test datum for the system under test. Depending
on which test aim is pursued, different fitness functions emerge for test data
evaluation.

If, for example, the temporal behavior of an application is being tested, the
fitness evaluation of the individuals is based on the execution times measured
for the test data [37, 44]. For safety tests, the fitness values are derived from pre-
and post-conditions of modules [40], and for robustness tests of fault-tolerance
mechanisms, the number of controlled errors forms the starting point for the
fitness evaluation [39].

For structural criteria, such as those upon which this chapter focuses, a fitness
function is typically defined in terms of the program’s predicates [4, 7, 21, 31, 34,
43]. It determines the fitness of candidate test data, which in turn, determines
the direction taken by the search. The fitness function essentially measures how
close a candidate test input drives execution to traversing the desired (target)
path or branch.

Typically, each predicate is instrumented to capture fitness information,
which guides the search to the required test data. For example if a branch-
ing condition a == b needs to be executed as true, the values of a and b are
used to compute a fitness value using abs(a-b). The closer this ‘branch distance’
value is to zero, the closer the condition is to being evaluated as true, and the
closer the search is to finding the required test data.

As a simple example, consider trying to test the true branch of the predicate
a > b. While typical execution of a genetic algorithm might include an initial
population of hundreds of test inputs, for the purposes of this example, consider
two such individuals, i1 and i2. Suppose that, when executed on the input i1, a
equals b, and when run on i2, a is much less than b, then i1 would have a greater
chance of being selected for the next generation. It would also have a greater
chance of being involved in (perhaps multiple) crossover operations with other
potential solutions to form the children that form the next generation.

3.2 The Chaining Method

The chaining approach [15] uses data flow information, derived from a program,
to guide the search when problem statements (conditional statements in which
a different result is required) are encountered. The chaining approach is based
on the concept of an event sequence (a sequence of program nodes) that needs
to be executed prior to the target. The nodes that affect problem statements are
added to the event sequence using data flow analysis.

The alternating variable method [24] is employed to execute an event se-
quence. It is based on the idea of ‘local’ search. An arbitrary input vector is
chosen at random, and each individual input variable is probed by changing its
value by a small amount, and then monitoring the effects of this on the branches
of the program.

The first stage of manipulating an input variable is called the exploratory

phase. This probes the neighborhood of the variable by increasing and decreasing



its original value. If either move leads to an improved objective value, a pattern

phase is entered. In the pattern phase, a larger move is made in the direction
of the improvement. A series of similar moves is made until a minimum for
the objective function is found for the variable. If the target structure is not
executed, the next input variable is selected for an exploratory phase.

For example, consider again, the predicate a > b. Assuming a is initially less
than b, a few small increases in a improves the objective value (the difference
between a and b). Thus, the pattern phase is entered, during which the itera-
tion of ever–larger increases to the value of a finally produce a value of a that
is greater then b, satisfying the desired predicate and locating an input that
achieves coverage of the desired branch.

4 Three Application Areas for Testability Transformation

The effectiveness of test data generation methods, such as the evolutionary
method and the chaining method, can be improved through the use of testability
transformation (TeTra). This section presents three case studies that illustrate
the wide range of testability transformation’s applicability. The first two subsec-
tions concern applications to evolutionary testing, while the third concerns the
chaining method.

4.1 TeTra to Remove Flags for Evolutionary Testing

Testability Transformation was first applied to the flag problem [18]. This section
considers the particularly difficult variant of the flag problem where the flag
variable is assigned within a loop. Several authors have also considered this
problem [7, 4]; however, at present, testability transformation offers the most
generally applicable solution. Furthermore, this solution is applicable to other
techniques such as the chaining method and symbolic execution [10] which are
known to be hard in the presence of loop assigned flags.

A flag variable is any boolean variable used in a predicate. Where the flag only
has relatively few input values (from some set S) that make it adopt one of its
two possible values, it will be hard to find a value from S. This problem typically
occurs with internal flag variables, where the input state space is reduced, with
relatively few ‘special values’ (those in S) being mapped to one of the two possible
outcomes and all others (those not in S) being mapped to the other.

The fitness function for a predicate that tests a flag yields either maximal
fitness (for the ‘special values’) or minimal fitness (for any other value). In the
landscape induced by the fitness function, there is no guidance from lower fitness
to higher fitness. This is illustrated by the landscape at the right of Figure 2.

A similar problem is observed with any k–valued enumeration type, whose fit-
ness landscape is determined by k discrete values. The flag type is the archetype
in which k is 2. As k becomes larger the program becomes progressively more
testable: provided there is an ordering on the k elements, the landscape becomes



Best case Acceptable case Worst case

Smooth landscape Rugged landscape Dual plateau
with ubiquitous with some landscape with no

guidance toward guidance toward guidance toward
global optimum. global optimum. global optimum.

Fig. 2. The flag landscape: The needle in a haystack problem.

progressively more smooth as k increases. The landscapes in the center and then
left of Figure 2 illustrate the effect of increasing k.

The problem of flag variables is particularly acute where the flag is assigned
a value in a loop and then used later outside the loop. For example, consider the
variable flag in the upper left of Figure 3. In this situation, the fitness function
computed at the test outside the loop may depend upon values of ‘partial fitness’
computed at each and every iteration of the loop. Many previous approaches to
the flag problem breakdown in the presence of loop–assigned flags [4, 7, 19].
These simpler techniques are effective with non-loop-assigned flags.

The aim of the loop-assigned flag removal algorithm is to replace the use of
a flag variable with an expression that provides better guidance. The algorithm
has 2 steps. The first adds two variables: a new induction variable counter is
added to the loop to count the number of iterations that take place. The second
new variable fitness is a real-valued variable that collects a cumulative fitness
score for the assignments which take place during the loop. When applied to
code from the upper left of Figure 3, the result of the first step are shown in
the upper right of Figure 3. Where “if (flag)” has been replaced with “if (counter
== fitness)”.

The variable counter measures the number of times the loop passes down
the desired path (that which executes the assignment to flag in a way that
gives the desired final value for flag). This gives rise to the improved but coarse
grained landscape [3] shown in the center of Figure 2. The coarseness comes
because loop iteration is deemed either to traverse the desired path (with a
consequent increase in accumulated fitness) or to miss this path (with no change
in accumulated fitness).

A further improvement is possible using an additional transformation that
instrument the program to compute, for iterations that fail to traverse the de-
scribed path, how close the iteration comes to traversing the desired path. The
transformed code, shown it the lower section of Figure 3, employs the computa-
tion of a “local fitness calculation” (the function local), which captures the prox-
imity of each loop iteration to the desired branch. This produces the smoothest



void f(char a[ELEMCOUNT]) void f(char a[ELEMCOUNT])
{ {
int i; int i;
int flag = 1; int flag = 1;

int counter = 0;
double fitness =0.0;

for (i=0; i<ELEMCOUNT; i++) for (i=0; i<ELEMCOUNT; i++)
{ {
if (a[i] != 0) if (a[i] != 0)
{ flag = 0; { flag = 0;

} }
else

fitness += 1.0;
counter++;

} }
if (flag) if (counter == fitness)
/* target */ /* target */

} }

Original Untransformed Program Coarse–Grained Transformation

void f(char a[ELEMCOUNT])
{
int i;
int flag = 1;
int counter = 0;
double fitness =0.0;

for (i=0; i<ELEMCOUNT; i++)
{
if (a[i] != 0)
{ flag = 0;
fitness = fitness + local(a[i]!= 0);

}
else

fitness += 1.0;
counter++;

}
if (counter == fitness)
/* target */

}

Fine–Grained Transformation

Fig. 3. Illustration of the course and fine grain loop-flag removal transformation.

fitness landscape (shown at the left of Figure 2).

The function local is a macro expansion that implements a different ‘local’ or
‘branch’ fitness [27]. The particular expansion applied depends upon the predi-
cate to be optimized and can, as such, be viewed as a parameter to the overall
approach.

Once transformation has added these variables, the algorithm’s second step
slices [45, 6] the resulting program with respect to the transformed predicate.
Slicing removes parts of the program that do not influence the predicate. The



result is a program specialized to the calculation of a smooth fitness function
targeting the single branch of interest. In this way, the algorithm has essentially
transformed the original program into a fitness function, tailor–made to have a
smooth fitness landscape with a global optimum at the point where the variable
flag has the desired value.

To provide empirical data as to the impact of loop assigned flag removal, the
three programs depicted in Figure 3 were studied. (The effect of the slicing step
is not shown in the figure to facilitate comparisons between the three versions of
the program.) This program is chosen for experimentation because it distills the
worst possible case. That is, test data generation needs to find a single value (all
array elements set to zero) in order to execute the branch marked /* target */.
This single value must be found in a search space which is governed by the
size of the array. The program is thus a template as 20 different versions were
experimented with for each technique. In each successive version, the array size
is increased, from an initial value of 1, through to a maximum size of 40. As the
size of the array increases, the difficultly of the search problem increases; the
needle is sought in an increasingly large haystack.

The DaimlerChrysler Evolutionary Testing system was used to obtain the
results [5, 43]. This system generates test data for C programs using a variety of
white box criteria. It is a proprietary system, developed in-house and provided
to DaimlerChrysler developers through a web portal.

For each technique, the evolutionary algorithm was run ten times to ensure
robustness of the results reported and to allow comparison of the variations
between the runs for each of the three techniques. An upper limit was set on
the number of possible fitness evaluations allowed; thus, some runs failed to find
any solution.

The ten-run averages for each of the three approaches are depicted in Fig-
ure 4. As can be seen, the fine-grained technique outperforms the coarse–grained
technique. The coarse–grained technique achieves some success, but the test ef-
fort is noticeably worse than for the fine–grained technique. Both do considerably
better than the no transformation approach which fails to find suitable test data
on most runs.

The data from all 10 runs of each program are depicted in Figure 5. The no
transformation approach fails to find any test data to cover the branch in all
but two situations. The first is where the array is of size one. In this instance
there is a high chance of finding the ‘special value’ by random search, and all
ten runs achieve this. At array size two, the chances of hitting the right value
at random have diminished dramatically; only one of the ten runs manages to
find a solution. For all other runs, no solution is found. In all cases, without
transformation, the evolutionary search degenerates to a random search. Such a
random search has a minuscule chance of finding the “needle in the haystack”.

The data for the course grained approach shows success for all runs with
a steady increase in effort required. Perhaps more importantly, as seen in the
middle graph of Figure 5, there is an increase in variability (the height difference
from fewest to most fitness evaluations is growing as the problem becomes more



Fig. 4. Ten-run averages of the evolutionary search for each of the three approaches

difficult). This is a tell-tale sign of the partially random nature of search. That is,
where the landscape provides guidance, the evolutionary algorithm can exploit
it, but when it does not, the search becomes a locally random search until a way
of moving off the local plateau is found.

Finally, the only interesting aspect of the data for the fine-grained transfor-
mation are two spikes (at array size 10 and 40). These are essentially the mirror
image of the “good luck” the untransformed algorithm had finding a solution
randomly. Here, the algorithm gets to test data in which all but one array entry
is zero, but then through random “bad luck” takes longer to find the solution.
In this case it only serves to slow the search. It does not prevent the search from
finding the desired test data.

Statistically, the claim that the fine–grained approach is better than the
coarse–grained approach, which in turn, is better than the no transformation ap-
proach was confirmed using a Mann-Whitney test. This test is a non-parametric
test for statistical significance in the differences between two data sets. Because
the test is non-parametric, the data is not required to be normally distributed for
the test to be applicable. Both comparisons report high statistically significant
difference (p < 0.0001).

4.2 TeTra for Nested Predicates to Assist Evolutionary Testing

The second example considers the problem that predicate nesting causes evolu-
tionary test data generation.

Evolutionary techniques face two key problems when encountering nested
predicates: first, constraints on the input are only revealed as each individual
predicate is satisfied, and second, the information guiding the search is treated
locally at each predicate. For example, consider the code shown in Figure 6a.
Here the condition c == 0 is not encountered until after a equals b. Thus, the



(a) With No Transformation

(b) With Coarse-Grained Transformation

(c) With Fine-Grained Transformation

Fig. 5. Results over ten runs of the evolutionary search for each of the three approaches



search does not find out that c is important until a == b is satisfied. Furthermore,
while attempting to make c == 0 true, the search must operate in the smaller
search space defined by the predicate a == b. Any adjustment in the values of a
or b could potentially put the search back at ‘square one’. Thus, once test data
has been found to execute a conditional in a certain way, the outcome at that
condition must be maintained so that the path to the current condition is also
maintained.

The latter problem causes problems for the search when predicates are not
mutually exclusive. For example, in Figure 6a, variable c must be made zero
without changing the values of a and b. However c is actually b+1 (Statement
2). Therefore b needs to be -1 for Statement 3 to be executed as true. If values
other than -1 have been selected for a and b, the search has no chance of making
the condition at Statement 3 true. That is unless of course it backtracks to
reselect values of a and b. However, if it were to do this, the fact that c needs to
be zero at Statement 3 will be ‘forgotten’, as Statement 3 is no longer reached,
and its fitness is not computed.

This phenomenon is captured in a plot of the fitness landscape (Figure 6c).
The shift from satisfying the predicate of Statement 1 to the secondary satis-
faction of the predicate of Statement 2 is characterized by a sudden drop in the
landscape down to spikes of local optima. Any move to input values where a is
not equal to b jerks the search up out of the optima and back to the area where
Statement 1 is evaluated as false again.

McMinn et al. proposed a solution to the nested predicate problem based
on testability transformation [30]. In essence, their approach evaluates all the
conditions leading to the target at the same time. This is done by flattening the
nesting structure in which the target lies and is non-trivial when code intervenes
between conditionals (for example, it could contain a loop). The transformation
takes the original program and removes decision statements on which the target
is control dependent. In this way, when the program is executed, it is free to pro-
ceed into originally nested regions, regardless of whether the original branching
predicate would have allowed that to happen.

In place of each predicate an assignment to a new variable dist is added.
These assignments compute the branch distance based on the original predicate.
At the end of the program, the value of dist reflects the summation of each
of the individual branch distances. This value may then be used as the fitness
value for the test data input. This inline accumulation of fitness information
within the program body is not unlike the fine-grained transformation method
employed by Baresel et al. [1] for collecting information in loop bodies involving
assignments to flags.

Figure 6 shows an example of this transformation where the original program,
shown in Figure 6a, is transformed into the program seen in Figure 6b. The
benefit of the transformation is seen by comparing the fitness landscapes shown
in Figures 6c and 6d where the sharp drop into local minima of the original
landscape is replaced with smooth planes sloping down to the global minimum.
The improvement comes because the search can concentrate on both conditionals



void original{double a,
double b)

{
(1) if (a == b)

{
(2) double c = b + 1;
(3) if (c == 0)

{
(4) // target

}
}

}

void transformed(double a,
double b)

{
double _dist = 0;

_dist += branch_distance(a == b);

double c = b + 1;

_dist += branch_distance(c == 0);

if (_dist == 0.0)
{

// target
}

}
(a) Original program (b) Transformed version

(c) Landscape for original program

(d) Landscape for transformed program

Fig. 6. Case study showing (a) the original and (b) the transformed versions of
the code. The transformation removes the sharp drop into points of local minima
prevalent in the fitness landscape of the original program seen in part (c), with
the more directional landscape of the transformed program, seen in part (d).



at the same time and is in possession of all the facts required to make them both
true at the very beginning of the search.

The solution is not free of challenges, as the transformed program can poten-
tially have issues with the removal of certain types of predicates, which prevent
the occurrence of run-time errors. One example of this is a predicate that tests
and then references heap allocated storage. For example, transformation of the
conditional if (p ! = NULL && p→x > 0) would include, in the computation of
dist, the dereferencing of the potentially NULL pointer p.

Therefore the transformed test object must be evaluated in its own “sandbox”
to prevent any potential abnormal termination from affecting the rest of the
test data generation system. The fitness function is calculated using all fitness
information that was successfully accumulated. In this way, search performance
is unlikely to be worse than if the original version of the program were being
used. Improving the treatment of such predicates forms one area for future work,
while the issue of nesting within a loop body forms another.

In their study of nested if statements McMinn et al. provide two key empir-
ical results from a collection of forty real-world programs [30]. The first result
shows the prevalence of nested predicates in real-world code (on average 3 nested
predicate pairs per 100 lines of non-comment non-blank code). Over 80% of these
include intervening code two-thirds of which affected the second predicate and
thus cannot simple be reordered out of the way. The second result compares
finding test data for the original and transformed versions of two programs.
The first program is that of Figure 6. TeTra allowed the evolutionary search to
find test data using half the effort (test data evaluations) of the untransformed
program. The second program studied included three levels of nesting. For the
original version of this program, the evolutionary algorithm failed to find test
data, while it succeeded every time using the transformed version.

4.3 TeTra for Data Dependence Transformation to Assist the
Chaining Method

The third case study, considers the speculative application of testability trans-
formation to the chaining method [15]. It exploits the fact that testability trans-
formation need not preserve the standard semantics. In this more radical form
of testability transformation, the transformations may yield programs for which
it is known that the wrong test data will be produced. However, this technique
can be used to speculatively generate test data. As a result, the search can find
the solution where other techniques fail. This approach is more expensive and
thus typically applied only after existing cheaper methods fail to find the re-
quired test data. If the transformation fails, then nothing additional is lost, so
the method need only improve test data generation in some cases in order to be
valuable [26].

The goal of the transformation is to produce a program that contains only the
statements responsible for the computation of the fitness function. The major
advantage of the transformed program is that it is easy to execute any statement
that affects the fitness function. As a result, the transformed program allows



efficient exploration of different paths in order to identify paths that lead to
the target value of the fitness function. The techniques has four steps. First a
data-dependence subgraph is built. This is then used to generate a transformed
program. Finally, test data is generated for the transformed program and then
used to guide the search for test data using the original program.

The technique is data-dependence based and thus stands in contrast with ex-
isting techniques that are strongly tied to program control flow [25]. To motivate
this choice, the authors note that finding test data can frequently require execut-
ing parts of the program that are (from the control flow perspective) unrelated.
Data dependence analysis, however, ties these regions together as it captures
the situation in which one statement assigns a value to a variable that another
statement uses. For example, in the function of Figure 7 there exists a data de-
pendence between Statements 13 and 20 because Statement 13 assigns a value
to variable top, Statement 20 uses variable top, and there exists a the control
path (13, 14, 15, 19, 23, 6, 7, 8, 9, 15, 19, 20) from 13 to 20 along which variable
top is not modified.

The technique’s first step builds a data dependence graph and then extracts
the subgraph for a particular statement. In a data dependence graph nodes rep-
resent statements from the program, and directed arcs represent data dependen-
cies [16]. For a chosen node, the extracted data-dependence subgraph includes
all the nodes for which there exists a path to the selected node. These represent
the statements that may influence the chosen statement. For example, Figure 8
shows the data dependence subgraph for the node corresponding to Statement
20 from Figure 7.

This statement is referred to as a problem statement because Statement 21 is
difficult for other test-data generation techniques to generate test data for (it’s
execution requires Statement 13 to be executed 101 times before reaching State-
ment 20). The next step uses the subgraph extracted for a problem statement
to guide the construction of the transformed program. Each statement that be-
longs to the subgraph is included in the transformed program as the case of a
switch-statement. This program includes the statements whose nodes appear in
the extracted subgraph (e.g., see Figure 9).

In addition, to the input parameters from the original program, the trans-
formed program includes two new input parameters, S and R. The array S

represents data dependence paths from the extracted subgraph. Only paths that
begin with a node that has no incoming arcs and end at the problem node are
considered. For example, 4, 13, 18, 20 is a data dependence path in the subgraph
shown in Figure 8. Array S indicates the sequence of statements from the data
dependence path that are to be executed. The transformed program contains
a while-loop with a switch-statement inside it. These combine to execute the
statements as indicated by S.

Some nodes in the data dependence subgraph have self-looping data depen-
dencies. In order to explore an influence of self-looping data dependences on the
fitness function, the corresponding nodes need to be repeatedly executed. This
is the purpose of the input array, R; thus, S[i] indicates the particular statement



1 void F(int A[], int C[])
{
int AR[100];
int a, i, j, cmd, top, f exit;

2 i=1;
3 j = 1;
4 top = 0;
5 f exit=0;

6 while (f exit==0)
{

7 cmd = C[j];
8 j = j + 1;

9 if (cmd == 1)
{

10 a = A[i];
11 i = i + 1;
12 if (a > 0)

{
13 top++;
14 AR[top] = a;

}
}

15 else if (cmd == 2)
{

16 if (top>0)
{

17 write(AR[top]);
18 top--;

}
}

19 else if (cmd==3)
{

20 if (top>100)
21 write(1);
22 else write(0);

}
23 else if (cmd>=5)
24 f exit=1;

}
25 }

Fig. 7. A sample C function.

to be executed and R[i] indicates a number of repetitions of this statement. In
essence, the transformation has produced a function from the inputs S and R

to the value of the fitness function for the problem node.

For example, a transformed version of the function from Figure 7 for prob-
lem Statement 20 is shown in Figure 9. The transformed function contains the
statements that are part of the data dependence subgraph from Figure 8 (state-
ments 4, 13, and 18). The end point is omitted because it does not modify the
state. These statements affect the computation of the fitness function associated
with problem Statement 20. For statements 13 and 18, for- loops are included
because these statements have self-looping data dependences in the data depen-



4

13 18

20

Fig. 8. Data Dependence Subgraph

dence subgraph.
After transformation, a search generates different data dependence paths for

exploration. A path is represented by S. For each S, the goal is to find values for
R such that the fitness function evaluates to the target value. The search uses
the existing test generation techniques [15, 31, 43] to find an input on which the
fitness function evaluates to the target value in the transformed function. If the
target value is achieved, the path is considered a promising path. Otherwise, the
path is considered to be unpromising and it is rejected. Finally, promising paths
in the transformed program are used to guide the search in the untransformed
program.

For example, the transformed program for problem Statement 20 from Fig-
ure 7, shown in Figure 9, captures the five acyclic paths in the data dependence
subgraph of Figure 8. The following table shows these paths and their corre-
sponding inputs

path corresponding input
P1: 4, 20 S[1] = 4
P2: 4, 18, 20 S[1] = 4, S[2] = 18
P3: 4, 13, 20 S[1] = 4, S[2] = 13
P4: 4, 13, 18, 20 S[1] = 4, S[2] = 13, S[3] = 18
P5: 4, 18, 13, 20 S[1] = 4, S[2] = 18, S[3] = 13

For each path, the goal is to find values for array R such that the value of the
fitness function returned by the transformed function is negative. The search fails
for paths P1 and P2 and these paths are rejected. When path P3 is explored,
the search finds the values R[1] = 1; R[2] = 101 for which the fitness function
evaluates to the negative value in the transformed function. Therefore, path P3

with 101 repetitions of Statement 13 is considered as a promising path. When this



1 float transformed(int S[], int R[])
{
int i, j, top;

2 i=1;

3 while (i <= length(S))
{

4 switch (S[i])
{

5 case 4: top = 0;
6 break;
7 case 13: top++;
8 for (j=1; j<R[i]; j++)

top++;
9 break;

10 case 18: top--;
11 for (j=1; j<R[i]; j++)

top--;
12 break;
13 }
14 i++;

15 }
16 return 100-top;

}

Fig. 9. Transformed version of the code from Figure 7 for the data dependence sub-
graph of Figure 8. The result value is the fitness function for Statement 20 of Figure 7

path is used to guide the search of the function of Figure 7, an input is easily
identified for which target Statement 21 is executed. Using the transformed
function of Figure 9, it is possible to find a solution although only five data
dependence paths need be considered as opposed to over one hundred path
explorations when the transformed function is not used.

5 A Road Map for Future Work on Testability

Transformation

This chapter has surveyed the current state-of-the-art of testability transforma-
tion. There remain many open problems. This section sets out a road map for
future work on TeTra.

1. Algorithms
Currently there are several algorithms for test-data generation using testabil-
ity transformation. These tackle a variety of problems such as flag variables
[3], nesting [30], and unstructured control flow [20]. The existence of these
algorithms demonstrates the potential and wide applicability of testability
transformation. However, there remain many open problems in test data
generation for which algorithms have yet to be developed. For example, the
problems of internal state [28, 29], continuous input [2], and the loop problem
for symbolic execution [10].



2. Semantics
As shown in Section 2 the ideas behind testability transformation require a
new notion of semantic correctness. There are a number of open problems
in testability transformation work, relating to the semantic foundations of
the approach. Initial work has explored the proof obligations for testabil-
ity transformation [20]. This work considers a transformation that reduces
multi-exit loops to single exits loops. This work illustrates the need for differ-
ent kinds of proof obligation in reasoning about testability transformation.
However, no semantic investigation of correctness has yet been performed
for other testability transformation algorithms. Such a proof would be rel-
atively uncomplicated for the work on flag removal reported in Section 4.1
(because this algorithm aims to preserve standard semantics). However, for
the other two algorithms, described in Sections 4.2 and 4.3, the proof obliga-
tions require the formulation of an alternate semantics. This result is a more
challenging and enticing problem as both transformations preserve only as-

pects of the semantics.

3. Raising the Abstraction Level
Existing work in testability transformation has considered the problem of ap-
plying standard and non-standard code level transformation rules and tactics
to improve testability at the source code level of abstraction. However, there
is a general movement in testing and design away from the code level to the
model level, and so there may be a case for the application of testability
transformation at higher levels of abstraction, such as the design and speci-
fication level. There is a particularly strong current interest in model driven
development, with a consequent interest in development of approaches for
testing at the model level. It is likely that there will be many problems for
test data generation at the model level and this suggests the possibility of
applying testability transformation at the model level of abstraction.

There has also been much work on development of techniques for testing
from formal specifications. Here too, it may be possible to use testability
transformation to transform specifications into a format more amenable to
testing.

4. Other Kinds of Testability Transformation.
The focus of this chapter has been upon testability transformations that
transform programs (and possibly the adequacy criterion). However, it is
not hard to imagine scenarios in which the criterion is transformed while the
program remains unchanged. For example, one could imagine a testability
transformation, that takes a program, p and a test adequacy criterion c and
returns the test adequacy criterion, c′ that is the “lowest” possible criterion
below c in the subsumes relationship for which all adequate test sets are
identical to those for p and c. This would make it possible to capture the
way in which certain programs are constructed in such a way that weaker test
data generation methods will suffice for achieving stronger testing results.
This would provide a complementary approach to test set minimization to
those considered in the existing literature [17].



For example, consider the program fragment

if (E) x=1; else x=2;

Covering all statements will also cover all branches of E. This is a trite ob-
servation and is easy to see of this program. However, the general problem
is to compute the weakest adequacy criterion (in the subsumes lattice [46])
that is sufficient to meet a given adequacy criterion c for a given program
p. This general problem is more challenging and can be formulated as a
testability transformation. Such a formulation would have useful practical
ramifications. Where, for example, it can be determined that a weaker test
data generation techniques can be used, then it may be possible to employ
a test data generation tool with performance advantages that accrue from
its attempt to satisfy only the weaker criterion. This is particularly advan-
tageous when the original, more demanding adequacy criteria, has no tool
capable of generating test data.

5. Other Testing Oriented Transformation.
The definition of Testability transformation (in Section 2) is couched in terms
of a ‘Testing Oriented Transformation’. This is a transformation that takes
and returns a pair containing the program under test and the adequacy
criterion under consideration. It may be that there are other forms of testing
oriented transformation that may turn out to be useful. There may also be
other interesting relations on programs, test data, and test adequacy criteria
that remain to be explored.

6 Related Work

Testability transformation is a novel application of program transformation that
does not require the preservation of functional equivalence. This is a departure
from most work on program transformation, but it is not the first instance of
non–traditional–meaning preserving transformation. Previous examples include
Weiser’s’ slicing [45] and the ‘evolution transforms’ of Dershowitz and Manna
[13] and Feather [14]. However, both slices and evolution transforms do preserve
some projection of traditional meaning. Testability transformation as introduce
here does not. Rather it preserves an entirely new form of meaning, derived from
the need to improve test data generation rather than the need to improved the
program itself.

There has only been non-transformation based previous work on the first of
the three application areas considered in Section 4. For the other two applications
of testability transformation (to the nested predicate problem and the chaining
method), testability transformation is currently the only method to have been
applied. The first application, to the problem of evolutionary testing in the
presence of flags, has been considered in three previous papers [7, 4, 19]. Bottaci
[7] introduces an approach which aims to correct the instrumentation of the
fitness function. Baresel and Sthamer [4] used a similar approach to Bottaci [7].
Whereas Bottaci’s approach is to store the values of fitness as the flag is assigned,



Baresel and Sthamer use static data flow analysis to locate the assignments in
the code, which have an influence on the flag condition at the point of use.

The paper that introduced testability transformation by Harman et al. [19]
presented a testability transformation approach to the flag problem, based upon
substituting a flag variable with it’s computation. The approach could not handle
loop-assigned flags.

7 Conclusion

Testability transformation is a new application for program transformation. It
concerns the application to testing rather than the more familiar application ar-
eas of optimization, comprehension, or re-engineering. However, testability trans-
formation is more than merely a novel application area of a long-standing area
of research and practice; the fundamental nature of the transformations takes a
different form than conventional transformation.

Testability transformations are applied in order to improve testing. The
equivalence that needs to be preserved is not functional equivalence (as with
almost all prior work on transformation). Rather, it is the set of adequate test
sets. This has been shown to be neither more abstract nor more concrete than
normal transformation, with the result that testability transformation is not
simply an instance of abstract interpretation. Rather, it includes novel trans-
formation rules and algorithms and suggests the need for novel formulations of
programming language semantics in order to reason about testability transfor-
mations.

Furthermore, testability transformation is a means to an end and not an
end result in itself. This has important practical ramifications, such as a re-
duced importance for correctness of transformations and a lower psychological
barrier to acceptance of transformation: If a transformation rule is incorrect,
the consequence is not an errant program, it is merely the (possible) failure to
find desired test data. This is both a less critical consequence and it is also an
easily computable outcome. That is, should a conventional transformation be
incorrect, the problem of determining whether there has been an impact upon
the transformed program is undecidable, whereas the problem of determining
whether test adequacy has been satisfied is usually trivial as it simply requires
running the program.

8 Acknowledgments

The work summarized in this chapter has been largely conducted as a result
of the EPSRC funded project TeTra - Testability Transformation (GR/R98938)
and by the project’s collaborators. David Binkley is funded, in part by Na-
tional Science Foundation grant CCR0305330. More details concerning the TeTra
project are available on the TeTra website at

http://www.dcs.kcl.ac.uk/staff/linhu/TeTra/



References

1. A. Baresel, D. Binkley, M. Harman, and B. Korel. Evolutionary testing in the
presence of loop-assigned flags: A testability transformation approach. In Proceed-
ings of the International Symposium on Software Testing and Analysis (ISSTA
2004), pages 43–52, Boston, Massachusetts, USA, 2004. ACM.

2. A. Baresel, H. Pohlheim, and S. Sadeghipour. Structural and functional sequence
test of dynamic and state-based software with evolutionary algorithms. In Pro-
ceedings of the Genetic and Evolutionary Computation Conference (GECCO 2003),
Lecture Notes in Computer Science vol. 2724, pages 2428 – 2441, Chicago, USA,
2003. Springer-Verlag.

3. André Baresel, David Wendell Binkley, Mark Harman, and Bogdan Korel. Evolu-
tionary testing in the presence of loop–assigned flags: A testability transformation
approach. In International Symposium on Software Testing and Analysis (ISSTA
2004), pages 108–118, Omni Parker House Hotel, Boston, Massachusetts, July 2004.
Appears in Software Engineering Notes, Volume 29, Number 4.

4. André Baresel and Harmen Sthamer. Evolutionary testing of flag conditions. In
Genetic and Evolutionary Computation (GECCO-2003), volume 2724 of LNCS,
pages 2442–2454, Chicago, 12-16 July 2003. Springer-Verlag.

5. André Baresel, Harmen Sthamer, and Michael Schmidt. Fitness function design to
improve evolutionary structural testing. In GECCO 2002: Proceedings of the Ge-
netic and Evolutionary Computation Conference, pages 1329–1336, San Francisco,
CA 94104, USA, 9-13 July 2002. Morgan Kaufmann Publishers.

6. David Wendell Binkley and Keith Brian Gallagher. Program slicing. In Marvin
Zelkowitz, editor, Advances in Computing, Volume 43, pages 1–50. Academic Press,
1996.

7. Leonardo Bottaci. Instrumenting programs with flag variables for test data search
by genetic algorithms. In GECCO 2002: Proceedings of the Genetic and Evolution-
ary Computation Conference, pages 1337–1342, New York, 9-13 July 2002. Morgan
Kaufmann Publishers.

8. British Standards Institute. BS 7925-1 vocabulary of terms in software testing,
1998.

9. Lori A. Clarke. A system to generate test data and symbolically execute programs.
IEEE Transactions on Software Engineering, 2(3):215–222, September 1976.

10. P. David Coward. Symbolic execution systems - a review. Software Engineering
Journal, 3(6):229–239, November 1988.

11. John Darlington and Rod M. Burstall. A tranformation system for developing
recursive programs. Journal of the ACM, 24(1):44–67, 1977.

12. Richard A DeMillo and A Jefferson Offutt. Experimental results from an auto-
matic test generator. ACM Transactions of Software Engineering and Methodol-
ogy, 2(2):109–127, March 1993.

13. Nachum Dershowitz and Zohar Manna. The evolution of programs: A system for
automatic program modification. In Conference Record of the Fourth Annual Sym-
posium on Principles of Programming Languages, pages 144–154. ACM SIGACT
and SIGPLAN, ACM Press, 1977.

14. Martin S. Feather. A system for assisting program transformation. ACM Trans-
actions on Programming Languages and Systems, 4(1):1–20, January 1982.

15. Roger Ferguson and Bogdan Korel. The chaining approach for software test data
generation. ACM Transactions on Software Engineering and Methodology, 5(1):63–
86, January 1996.



16. Jeanne Ferrante, Karl J. Ottenstein, and Joe D. Warren. The program dependence
graph and its use in optimization. ACM Transactions on Programming Languages
and Systems, 9(3):319–349, July 1987.

17. Todd Graves, Mary Jean Harrold, Jung-Min Kim, Adam Porter, and Gregg
Rothermel. An empirical study of regression test selection techniques. In Proceed-
ings of the 20th International Conference on Software Engineering, pages 188–197.
IEEE Computer Society Press, April 1998.

18. Mark Harman, Lin Hu, Robert Hierons, André Baresel, and Harmen Sthamer. Im-
proving evolutionary testing by flag removal (‘best at GECCO’ award winner). In
GECCO 2002: Proceedings of the Genetic and Evolutionary Computation Confer-
ence, pages 1359–1366, San Francisco, CA 94104, USA, 9-13 July 2002. Morgan
Kaufmann Publishers.

19. Mark Harman, Lin Hu, Robert Mark Hierons, Joachim Wegener, Harmen Sthamer,
André Baresel, and Marc Roper. Testability transformation. IEEE Transactions
on Software Engineering, 30(1):3–16, January 2004.

20. Robert Hierons, Mark Harman, and Chris Fox. Branch-coverage testability trans-
formation for unstructured programs. The Computer Journal, 48(4):421–436, 2005.

21. B.F. Jones, H.-H. Sthamer, and D.E. Eyres. Automatic structural testing using
genetic algorithms. The Software Engineering Journal, 11:299–306, 1996.

22. James C. King. Symbolic execution and program testing. Communications of the
ACM, 19(7):385–394, July 1976.

23. K. N. King and A. Jefferson Offutt. A FORTRAN language system for mutation-
based software testing. Software Practice and Experience, 21:686–718, 1991.

24. B. Korel. Automated software test data generation. IEEE Transactions on Soft-
ware Engineering, 16(8):870–879, 1990.

25. Bogdan Korel, S. Chung, and P. Apirukvorapinit. Data dependence analysis in
automated test generation. In Proceedings: 7th IASTED International Conference
on Software Engineering and Applications, pages 476–481, 2003.

26. Bogdan Korel, Mark Harman, S. Chung, P. Apirukvorapinit, and R. Gupta. Data
dependence based testability transformation in automated test generation. In 16th

International Symposium on Software Reliability Engineering (ISSRE 05), pages
245–254, Chicago, Illinios, USA, November 2005.

27. P. McMinn. Search-based software test data generation: A survey. Software Test-
ing, Verification and Reliability, 14(2):105–156, 2004.

28. P. McMinn and M. Holcombe. The state problem for evolutionary testing. In
Proceedings of the Genetic and Evolutionary Computation Conference (GECCO
2003), Lecture Notes in Computer Science vol. 2724, pages 2488–2497, Chicago,
USA, 2003. Springer-Verlag.

29. P. McMinn and M. Holcombe. Evolutionary testing of state-based programs. In
Proceedings of the Genetic and Evolutionary Computation Conference (GECCO
2005), pages 1013–1020, Washington DC, USA, 2005. ACM Press, New York.

30. Phil McMinn, David Binkley, and Mark Harman. Testability transformation for
efficient automated test data search in the presence of nesting. In UK Software
Testing Workshop (UK Test 2005), Sheffield, UK, September 2005.

31. C.C. Michael, G. McGraw, and M.A. Schatz. Generating software test data by
evolution. IEEE Transactions on Software Engineering, (12):1085–1110, December
2001.

32. F. Mueller and J. Wegener. A comparison of static analysis and evolutionary test-
ing for the verification of timing constraints. In 4th IEEE Real-Time Technology



and Applications Symposium (RTAS ’98), pages 144–154, Washington - Brussels -
Tokyo, June 1998. IEEE.

33. A. Jefferson Offutt. An integrated system for automatically generating test data.
In Raymond T. Ng, Peter A.; Ramamoorthy, C.V.; Seifert, Laurence C.; Yeh, ed-
itor, Proceedings of the First International Conference on Systems Integration,
pages 694–701, Morristown, NJ, April 1990. IEEE Computer Society Press.

34. R. P. Pargas, M. J. Harrold, and R. R. Peck. Test-data generation using genetic
algorithms. The Journal of Software Testing, Verification and Reliability, 9:263–
282, 1999.

35. Helmut A. Partsch. The Specification and Transformation of Programs: A Formal
Approach to Software Development. Springer, 1990.

36. Hartmut Pohlheim and Joachim Wegener. Testing the temporal behavior of
real-time software modules using extended evolutionary algorithms. In Wolfgang
Banzhaf, Jason Daida, Agoston E. Eiben, Max H. Garzon, Vasant Honavar, Mark
Jakiela, and Robert E. Smith, editors, Proceedings of the Genetic and Evolution-
ary Computation Conference, volume 2, page 1795, San Francisco, CA 94104, USA,
13-17 July 1999. Morgan Kaufmann.

37. P. Puschner and R. Nossal. Testing the results of static worst–case execution-time
analysis. In 19th IEEE Real-Time Systems Symposium (RTSS ’98), pages 134–143,
Los Alamitos, California, USA, 1998. IEEE Computer Society Press.

38. Radio Technical Commission for Aeronautics. RTCA DO178-B Software consid-
erations in airborne systems and equipment certification, 1992.

39. A. Schultz, J. Grefenstette, and K. Jong. Test and evaluation by genetic algo-
rithms. IEEE Expert, 8(5):9–14, 1993.

40. N. Tracey, J. Clark, and K. Mander. Automated program flaw finding using sim-
ulated annealing. In International Symposium on Software Testing and Analysis,
pages 73–81. ACM/SIGSOFT, March 1998.

41. Nigel Tracey, John Clark, and Keith Mander. The way forward for unifying dy-
namic test-case generation: The optimisation-based approach. In International
Workshop on Dependable Computing and Its Applications (DCIA), pages 169–180.
IFIP, January 1998.

42. Martin Ward. Reverse engineering through formal transformation. The Computer
Journal, 37(5), 1994.

43. Joachim Wegener, André Baresel, and Harmen Sthamer. Evolutionary test envi-
ronment for automatic structural testing. Information and Software Technology
Special Issue on Software Engineering using Metaheuristic Innovative Algorithms,
43(14):841–854, 2001.

44. Joachim Wegener and F. Mueller. A comparison of static analysis and evolutionary
testing for the verification of timing constraints. Real-Time Systems, 21(3):241–
268, 2001.

45. Mark Weiser. Program slices: Formal, psychological, and practical investigations
of an automatic program abstraction method. PhD thesis, University of Michigan,
Ann Arbor, MI, 1979.

46. Hong Zhu. A formal analysis of the subsume relation between software test ade-
quacy criteria. IEEE Transactions on Software Engineering, 22(4):248–255, 1996.

This article was processed using the LATEX macro package with LLNCS style


