Search Based Requirements Optimisation:
Existing Work & Challenges

Yuanyuan Zhang , Anthony Finkelstein ¥, and Mark Harman

 King’s College London ¥University College London
Strand, London Malet Place, London
WC2R 2LS, UK WCI1E 6BT, UK

Abstract. In this position paper, we argue that search based software
engineering techniques can be applied to the optimisation problem dur-
ing the requirements analysis phase. Search based techniques offer sig-
nificant advantages; they can be used to seek robust, scalable solutions,
to perform sensitivity analysis, to yield insight and provide feedback ex-
plaining choices to the decision maker. This position paper overviews
existing achievements and sets out future challenges.

1 Introduction

Once an initial set of requirements has been gathered by requirements elicitation,
there is a business-level analysis problem: choices have to be made to identify
optimal choices and trade—offs for decision makers. For example, one important
goal is to select near optimal subsets from all possible requirements to satisfy
the demands of customers, while at the same time making sure that there are
sufficient resources to undertake the selected tasks.

To illustrate, Figure 1 demonstrates a possible spread of equally optimal
requirements optimisation results. Two competing objectives are considered: cost
to the provider and estimated satisfaction rating achieved by a solution. Each
circle on the represents an equally optimal solution. That is, each circle denotes a
solution for which no better solution (subset of requirements) can be found that
offers better customer satisfaction without increasing cost. The set of possible
solutions form what is known as a Pareto front. Pareto fronts show a solution
space of candidate solutions, from which the decision maker can select. As will
be seen later, Pareto fronts also yield insights into the structure of the problem.

This requirement selection problem is one example of the way in which re-
quirements decisions can be formulated as optimisation problems. Other exam-
ples include ordering requirements to achieve earliest satisfaction, balancing each
customer’s needs against the others and balancing tensions between system and
user requirements.

Such problems are inherently complex optimisation problems that seek to
balance many competing and conflicting concerns, so it would be natural to
seek algorithms for decision support. Sadly is often infeasible to apply precise
analytic algorithms, because the problems are typically NP hard. To overcome
this difficultly, Search Based Software Engineering (SBSE) uses metaheuristic
optimisation algorithms that explore and solve complex, multi-objective, highly
constrained problems in Software Engineering [5]. This paper argues that Re-
quirements Optimisation can be viewed as an application area for SBSE.

—1*Cost

-100

o
q
-120+ %

2}
o}

-140

.
0 2000 4000 6000 8000 10000 12000 14000

Customers’ Satisfaction Rating

Fig. 1. Fictitious Data: 15 customers; 40 requirements. Adapted from Zhang et al. [13].
Each circle represents an equally optimal candidate solution that balances the objective
of minimising supplier cost against the objective of maximising customer satisfaction.
See Figure 2 for a comparison to real world requirements data from Motorola.

2 Background: Requirements Optimisation

Previous work on Requirements Optimisation has shown that metaheuristic op-
timisation techniques can be used to search for a balance between costs and
benefits associated with sets of requirements. This has come to be known as the
‘Next Release Problem (NRP)’ [2]. In the NRP, as formulated by Bagnall et al.,
the goal is to find the ideal set of requirements that balance customer requests
within resource constraints.

In this formulation the problem is a constrained single objective optimisation
problem. Bagnall et al. applied a variety of techniques to a set of synthetic data
to demonstrate the feasibility of SBSE for this problem. Greer and Ruhe also
studied the NRP [4], proposing an iterative Genetic Algorithm and presenting
results for real world requirements problems. Their approach balances the re-
sources required for all reeases; assessing and optimizing the extent to which the
ordering conflicts with stakeholder priorities.

More recently, there has been work on multi objective formulations of the
NRP [11,13]. In the multi-objective formulation, each of the objectives to be
optimised is treated as a separate goal in its own right; the multiple objectives
are not combined into a single (weighted) objective function. This allows the
optimisation algorithm to explore the Pareto front of non-dominated solutions.
Each of these non-dominated solutions denotes a possible assignment of require-
ments that maximizes all objectives without compromising on the maximization
of the others.

Zhang et al. [13] considered the twin objectives of cost to the provider and
estimated satisfaction rating for the customer, while Ruhe and Omolade [11]
considered the two objectives that balance the tension between user-level and
system-level requirements.

3 Advantages of the Search Based Approach

This section describes some of the ways in which SBSE techniques have proved
to be effective in Requirements Optimisation and closely related problems.

Robustness. Software engineering problems are typically ‘messy’ problems
in which the available information is often incomplete, sometimes vague and
almost always subject to a high degree of change (including unforeseen change).
Requirements change frequently, and small changes in the initial stages often
lead to large changes to the solutions, affecting the solution complexity and
making the results of these initial stages potentially fragile.

An important contribution of SBSE techniques is the way in which they can
take changing factors and constraints into account in solution construction. They
can, for example, provide near optimal solutions in the search space which remain
near-optimal under change, rather than seeking optimal but fragile solutions [7].
This better matches the reality of most software projects, in which robustness
under change is often as valuable as any other objective.

Sensitivity Analysis. In SBSE, human effort is partly replaced by meta-
heuristic search. Nevertheless, the numerical data upon which the automated
part of the process depends come from expert domain knowledge. In the case
of requirements engineering, the decision maker is forced to rely on estimates of
these crucial inputs to the requirements optimisation process. Sensitivity analysis
helps the developer build confidence in the model by studying the uncertainties
that are often associated with parameters in models. It aims to identify how ‘sen-
sitive’ the model is to change. This allows the decision maker to pay additional
attention to estimates for which the model is particularly sensitive.

Insight. Requirements Optimisation problem instances have structure. That
is, the data have implicit characteristics that the decision maker needs to expose
in order to inform decision making. For any non-trivial problem, however, the
number of requirements, customers, their interactions and dependencies make
these implicit properties far from obvious. No human could be expected to simply
look and see all the implications and important features of a problem instance.
For example, the search may make it easier to see that satisfaction of one cus-
tomer tends to lead to dissatisfaction of another or that requirement R; is always
in generated solutions in which R; is present.

In order to show how SBSE can yield insight in Requirements Optimisation,
we now apply the cost-satisfaction formulation of Zhang et al. [13] to real re-
quirement data from Motorola. The results are shown in Figure 2. These results
have been anonymised to prevent disclosure of sensitive information.

Compare the real world results of Figure 2 with the smooth Pareto front in
Figure 1. There is an ‘elbow point’ in Figure 2’s Pareto front which reveals a
potential for optimisation: The customers’ satisfaction can be increased from 200
to approximately 1,200 at cost 2,000. This would be more attractive that the
increase in satisfaction from 1,200 to 1,500, which would cost almost 3 times as
much. The search has revealed a very attractive elbow point at cost 1,200. This
kind of insight is very hard to achieve without automated optimisation, like that
provided by such a search based approach.

1000

-1000

—2000 [

-3000

—-1*Cost

—4000

-5000

-6000

~7000
0 200 400 600 800 1000 1200 1400 1600 1800

Customers’ Satisfaction Rating

Fig. 2. Motorola mobile device requirements: 4 customers; 35 requirements. The op-
timisation produces a Pareto front of candidate solutions which reveal an important
elbow point at cost 1,200.

Requirements Prioritisation. In the NRP, the decision maker not only
selects the optimal or near optimal subset of requirements, but also the priority
ordering of requirements. This method offers the potential for risk reduction.
That is, circumstances vary and resources may become insufficient to fulfill all
requirements. Prioritisation ensures that the most important requirements will
be released first so that the maximum attainable benefits of the new system are
gained earliest.

Fairness in Requirements Assignment. In the Requirements Optimi-
sation process, it may be helpful to explore the extent to which the obtainable
solutions can be said to be fair. Of course, fairness can come in different forms:
should we spend the same amount on each customer or give each the same num-
ber or value of fulfilled requirements? Each notion of fairness can also be treated
as a separate objective, for which a Pareto optimal search seeks non-dominated
solutions [10]. In this way it becomes possible to automatically investigate the
extent to which several notions of fairness can simultaneously be satisfied.

4 Challenges

This section describes some of the challenges for Search Based Requirements
Optimisation.

Scalability. In Requirements Optimisation, problems arise not merely be-
cause of the number of requirements, customers and other participating factors,
but also because of complexity arising from constraints and dependencies.

Currently, the Requirements Optimisation process, where it is practiced at
all, is a highly labour-intensive activity. Search based techniques have the poten-
tial to handle large scale problems because they are naturally parallelisable [3,
12]. However, despite this potential, there remains a need for more work on
scalability of Search Based Requirements Optimisation.

Solution Representation. Visualisation plays an important role in all op-
timisation problems [9]. It illustrates the solution quality and help the decision
maker to understand the results. This can be easily and directly achieved using
scatterplots when there are only 2 or 3 objective dimensions. Visualisation of
higher dimensionality remains an open problem in the visualisation community.
Requirements Optimisation solutions need to be presented in a manner that is
equally intuitive to engineers and to users alike. This represents an additional
degree of challenge. There are several visualisation methods for higher dimen-
sional spaces that may be useful, for example Heatmaps [9], Self Organizing Maps
(SOM) [8], and Distance and Distribution Charts [1]. However, these remain to
be evaluated for Requirements Optimisation.

Feedback and Explanation of Results. In Requirements Optimisation,
an additional problem arises when solutions are found: how do developers explain
the solution to the customer? Of course, the customer expects to get the highest
interest from the solution and they are likely to want to know, not merely the
results, but also why a certain set of features was chosen or why some excluded
requirements were those for which they had a particular care.

Feedback to the customer should form a part of the solution obtained by the
optimisation process. This will maximize each customers’ satisfaction and make
explicit their participation in the optimisation process. In some cases involving
politically sensitive choices, solution justification and explanation may be as
important as the solution itself.

Fitness Function Definition. At the heart of SBSE is the fitness function,
which guides the search by capturing the properties that make one solution
preferable to another. In software engineering applications, fitness functions can
be thought of as metrics [6]. These metrics translate constraints such as quality
constraints (usability, reliability), organizational constraints (scalability), and
environmental constraints (security, privacy) into some measurable attribute of
a candidate solution.

Unfortunately, these constraints, often misleadingly termed non-functional
requirements, may not be defined precisely in the early stages of the software life
cycle. Therefore, techniques are required for iterative update of fitness function
definition. It is possible that fitness-measure and solution-generation may need
to co-evolve as part of an overall Requirements Optimisation process.

Algorithm Selection. Search Based Requirements Optimisation is based on
experimental results from empirical studies. There is, however, currently little
theoretical understanding as to when, how and why one metaheuristic algorithm
works better than another. Once the nature of Search Based Requirements Op-
timisation is better understood empirically, it will be important to generalise
these results and to augment them with theoretical analysis of search landscape
characteristics. This will support a more formal and rigorous analysis of potential
algorithmic complexity, thereby motivating the choice of algorithm to apply.

Requirements Dependencies. In the requirement analysis process, re-
quirements are seldom independent of each other. There are two major problems
related to requirement dependencies: one is how to identify and model them, the

other is the extent to which these dependencies influence and interact with the
software systems level. Ruhe and Omolade [11] show how search based optimisa-
tion can track dependencies from user requirements into their impact on system
components. Though this is promising, more work is required to handle fuzzy
incomplete, multi-way, implicit and temporal requirements dependences.

Partial Requirement Fulfillment. Requirements have varying represen-
tations: discrete variable requirements which are either fulfilled completely or
not fulfilled at all and continuous variable requirements which can be fulfilled
to a certain extent, for example sever response time in web-based or distributed
systems. Existing work on Search Based Requirements Optimisation has treated
requirements as being entirely discrete. More work is required to extend these
results to handle continuous requirements.

References

1. Kiam Heong Ang, Gregory Chong, and Yun Li. Visualization Technique for An-
alyzing Non-Dominated Set Comparison. In Proceedings of the 4th Asia-Pacific
Conference on Simulated Evolution and Learning (SEAL’02), volume 1, page 36.

2. AJ. Bagnall, VJ. Rayward-Smith, and I.M. Whittley. The Next Release Problem.
IEE Proceedings - Software, 43(14):883-890, Dec 2001.

3. Y. Collette and P. Siarry. Multiobjective Optimization: Principles and Case Studies.
Springer, 2004.

4. Des Greer and Gilinther Ruhe. Software release planning: an evolutionary and
iterative approach. Information & Software Technology, 46(4):243-253, 2004.

5. Mark Harman. The Current State and Future of Search Based Software Engi-
neering. In 29th Int. Conference on Software Engineering (ICSE 2007), Future of
Software Engineering (FoSE), Minneapolis, USA, 20-26,May 2007.

6. Mark Harman and John Clark. Metrics are fitness functions too. In 10" Interna-
tional Software Metrics Symposium (METRICS 2004), pages 5869, Los Alamitos,
California, USA, September 2004. IEEE Computer Society Press.

7. Mark Harman, Stephen Swift, and Kiarash Mahdavi. An empirical study of the
robustness of two module clustering fitness functions. In ACM Genetic and Evolu-
tionary Computation Conference (GECCO 2005), Washington, D.C., USA, June
25-29 2005.

8. S. Obayashi and D. Sasaki. Visualization and data mining of pareto solutions using
self-organizing map. In Fvolutionary Multi-Criterion Optimization, Proceedings,
Lecture Notes in Computer Science, pages 822-835, 2003.

9. Andy Pryke, Sanaz Mostaghim, and Alireza Nazemi. Heatmap visualisation of pop-
ulation based multi objective algorithms. Technical Report CSR-06-14, University
of Birmingham, School of Computer Science, December 2006.

10. Jian Ren. Sensitivity analysis in multicobjective next release problem and fairness
analysis in software requirements engineering. Master’s thesis, DCS/PSE, King’s
College London, London, England, 2007.

11. Moshood Omolade Saliu and Guenther Ruhe. Bi-objective release planning for
evolving software systems. In Proceedings of ESEC/SIGSOFT FSE 2007, 2007.

12. F. Szidarovsky, M. E. Gershon, and L. Dukstein. Techniques for multiobjective
decision making in systems management. Elsevier, New York, 1986.

13. Yuanyuan Zhang, Mark Harman, and S. Afshin Mansouri. The multi-objective
next release problem. In GECCO’07: Proceedings of the Genetic and Evolutionary
Computation Conference, pages 1129-1136. ACM Press, 2007.

