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Abstract behavioural differences can be found by running the program
with an input which reveals the differing behaviour. An exec
This paper presents some connections between depend@ce antion which does this ‘kills’ the mutant in the nomenclaturie o
ysis and mutation testing. Specifically, dependence aisatg®  mutation testing Running a mutant is ‘testing’ the original pro-
be applied to two problems in mutation testing, capturedigy t gram in the sense that bugs in the original program are stedila
questions: by the mutations. Broadly speaking, a test set which killsiyna
mutants is considered to be better at finding bugs than onghwhi
does not. In this way mutation testing can be used to assess th
2. How do we generate test data that kills non-equivalentmu-eﬁeCt?Ve”eSS of a test set or to help in the constructionrof a
tants? effective test set.
Mutation testing has been shown to be highly effective in em-
The theoretical connections described here suggest ways ipirical studies [6, 23]. It is also theoretically appealimgcause
which a dependence analysis tool might be used, in combimati it is tailored to the program under test and because it caséa u
with existing tools for mutation testing, for test-data geation to emulate the effect of other coverage based test adequacy c
and equivalent-mutant detection. teria. However, there is a downside. Typically, many mwgant
In this paper the variable orientated, fine grained depetglen can be created from even the simplest original program under
framework of Jackson and Rollins is used to achieve these twatest and some of these may be equivalent to the original anogr
goals. This framework of dependence analysis appears tetbe b semantically (though they differ syntactically). The peh of
ter suited to mutation testing than the more traditionadgiPaim finding a set of test data which Kkills all non-equivalent nmisa
Dependence Graph (PDG) approach, used in slicing and otheis also far from trivial.
forms of program analysis. Two currently important problems for mutation testing are
The relationship between dependence analysis and mutatiothus summed up as two questions. The first question is ‘How
testing is used to defined an augmented mutation testing prodo we avoid the creation of equivalent mutants?’ The second
cess, with starts and ends with dependence analysis pidses. question is ‘How do we (automatically) generate test das th
pre-analysis removes a class of equivalent mutants frothdur  kills all non-equivalent mutants?’.

1. How do we avoid the creation of equivalent mutants?

analysis, while the post-analysis phase is used to simpigy Clearly, in considering adequacy criteria, only non-eglént
human effort required to study the few mutants that evade themytants should be used. However, the problem of detecting
automated phases of the process. equivalent mutants is undecidable, and so removing eaarival

mutants is non-trivial. The automatic generation of teshda
which satisfies some test data adequacy criterion is known to

1 Introduction be a hard problem and the mutation-inspired adequacy ieriter

In mutation testing, a program is mutated to create a mutant b — e
. . Mutants are always executed on test cases for which thisaligrogram
a small syntactic change. These changes are likely to make th penaves correctly. If a test case reveals an error, thenatigrogram must be

mutant behave differently when compared to the originathSu  corrected and the mutation analysis restagtednitio.



are no exception. Firm mutation testing therefore subsumes strong and weak mu
This paper shows how dependency analysis can be used ttation. Hereinafter it will be assumed, without loss of gexigy,

attack these two problems. The rest of the paper is organisedhat firm mutation is being used. The poinwill be termed the

as follows. Sections 2 and 3 introduces the forms of mutationprobe point

testing and dependence considered in this paper. Sectiesnh 4 e The view of mutation testing adopted in this paper is sum-

tablishes the theoretical connection between these fofmaio marised in Definition 2.1 below.

tation testing and program dependence analysis, showing ho

it can be used to support test data generation and equivalerPefinition 2.1 (Mutant)

mutant detection. Section 5 provides examples which itisst  In this paper, anutantwill be considered to be a prograp,

the claims in the preceding section. Section 6 presenttetkla constructed from a programby a single syntactic change af-

work on compiler-optimisation and constraint-based apphes  fecting noden of p. The mutanp’ will be tested by executing

to test data generation and equivalent mutation deteclitis ~ » andp’ on inputo and checking the values of the variables in

suggests a combined mutation testing process presentetin S Some inspection sdtat some probe point If the value of any

tion 7. The process combines dependence analysis and coriariable inI ati is different for the execution qgf andp’ then

straint based approaches to mutation testing. Section 8 conthe mutanp’ is killed.

cludes with directions for future work. o )
Definition 2.2 (Equivalence)

Equivalence of a mutapt is dependent upon the choice of probe

2 Forms of Mutation Testing set and probe point, as well as the particular mutation egpé
the original program. 1%’ is not killed by any possible input for
2.1 Strong, Weak and Firm Mutation a inspection sef at a pointi, we shall say thap’ is equivalent

to p with respect tal andi. If, for all inspection setsp’ is not
Mutants are always created in the same way: a single simpie sy killed by any possible input we shall say thais equivalent at.
tactic alternation is made to a nods,of the original program.  |f for all inspection setd and for all mutation points, a mutant
Mutants are ‘killed’ when a test case reveals mutant beliavio 5’ is equivalent with respect tbandi, then we shall simply say
which differs from that of the original program. In order titl & thatp’ is equivalent
mutant, its behaviour must therefore be inspected in sonye wa
There are three approaches to the way in which a mutant is in—2

spected, known as ‘strong’, ‘firm’ and ‘weak’ mutation. .2 Reference—Preserving Mutation Operators

In the original form of mutation testing, now calletrong In considering the connections between dependence amalydi
mutation testinginput o kills a mutantp’ of a prograny if p mutation testing, the set of reference-preserving muiatjzer-
andp’ produce different output when executedan ators are an important class. A mutation operator is reéeren

Woodward and Halewood [32] suggested using the final statepreserving if it does not change the set of referenced vasab
of the program in place of the output. This is a helpful gener- of any node of any program it mutates. Referenced variabtes a
alisation because the output sequence can be considered to those mentioned in expressions, either on the RHS of anrassig
denoted by a variable. Their definition of this ‘state-based ment node or as variables mentioned in the boolean expressio
proach to mutation subsumes the traditional ‘output baapd’  of a predicate node.
proach. It also simplifies the formal exposition presentddrl The concept of reference preserving can be illustrated by co
Hereinafter, we shall, without loss of generality, assufm& t  sidering the Mothra system [18]. Mothra contains 22 meta mu-
testing a mutant consists of inspecting some set of vasable tation operators. We call the Mothra operators ‘meta opesat
which we call thenspection set because each defines a family of individual primitive motati

Strong mutants are theoretically hard to kill because tfeeef  operators. The Mothra operators are well known and will not
of the mutation can be lost before the program reaches thle finabe described in detail here. However, we shall consider a few
state. operators to illustrate reference preservation.

Underweak mutation testinflL5], p’ is killed by inputo on ABS composes an expression with the absolute value func-
inspection sef if the execution op andp’ ono leads to different  tion, while CRP replaces a source constant with a different con-
values of somex € I immediately aftesomeexecution of the  stant. Neither of these can add or remove a variable referenc
mutation point at node. and they are thus reference preservirBY/R replaces a scalar

Woodward and Halewood [32] introdudem mutation test-  variable with an alternative and so is clearly not refergmee
ing as a compromise between strong and weak mutation. In firmserving when applied to the right-hand side of an assigniment
mutation,p is mutated at some point to form p’. The orig- to the boolean expression of a predicagDL deletes a state-
inal program,p and the mutantp’ are compared on some in- ment and so will only be reference preserving in the few rare
spection sef at some nodeé. Both weak mutation and strong cases where the deleted statement references no variables.
mutation are special cases of firm mutation: in weak mutation AOR andROR stand for Arithmetic and Relational Operator
1+ = n and in strong mutationis the exit node of the program. Replacement respectively. Each includes primitive matedip-



eratorsLEFTOP andRI GHTOP, which delete the left and right
operand of the binary expression they are applied to. While
the bona fide operator replacement primitive mutation dpesa

in AOR and ROR meta mutation sets are reference preserving,
LEFTOP andRI GHTOP will not generally be reference preserv-

ing.

upon the value oy referenced at node 5. Hence there is a rela-
tionship from(z, 5) to (y,5) in du. Similarly, the value ok at
node 5 depends upon the valuezoéit node 5, so there is also a
relationship from(z, 5) to (2, 5) in du.

A du relation will always mention the same node in all rela-
tionships. That is

In dependence analysis, programs which are identical up to

referenced variable sets contain identical dependennrthe
approximation used in most dependence analysis algoridhns
This means that when reference-preserving mutations are co
sidered, it will not be necessary to re-compute dependamnce i
formation from the original program. As many mutation oper-
ators are reference preserving, this makes the combinafion
dependence analysis and mutation testing more efficientitha

((v1,n1), (v2,n2)) €Edu = n1 =ng

Thus relationships idu are ‘intranode’ but ‘intervariable’. It
is because the relationship is intranode that we call itrateral
relation’.

The external relationship between nodes is expressed by a re
lation, ucd, which captures the control and data dependence re-
lations of the PDG (augmented to allow variables to be identi

might otherwise be. Where dependence information needs t%iad in addition to nodes). For data dependence, expresses

be re-computed, an incremental approach [28, 29, 33, 34] wil
be highly applicable since, by definition, mutation invaamnly
very minor changes.

3 Dependence Analysis

Jackson and Rollins [16] introduce a form of program depen-
dence, which we shall call ‘JR-Dependence’. As we will show,
JR—dependence is a useful aid in tackling various problems i
mutation testing, including reducing the input set in tharsk
for mutant killing states.

JR-dependence is ‘finer grained’ than the Program Depen

dence Graph (PDG) [5, 13, 14] often used in program analysis,g

and particularly in slicing [7, 10, 31]. It allows us to redgari-
able, node) pairs rather than simply to relate nodes. Thowal
us to say that the definition of a variabteat noden; can in-
fluence the value of a variabjeat nodens, rather than merely
saying that node; can influence nodes.

JR-dependence is better suited to the analysis of mutamts, b
cause we shall want to know which sets of variables are impor-
tant at certain points in the program, not merely which nodes
are important. Specifically, we shall want to know the set of
variables which can be used to kill a mutant and which set of
variables store values which cannot be used to kill a mutant.

the connection between the use of a variable at nodeith

the definition of the same variable at a different nade The

ucd relation is also used to express control dependence between
(variable, node) pairs. A control dependehexists from a node

x to a nodey if y chooses whether or not nodegets executed.

In such a control dependence, the ngdeill always be a predi-
cate.

Control dependence is achievedird using a coding, in
which an assigned variable dependsdir) upon a special vari-
ableg, the ‘execution variable’. The variable of node: is de-
pendent (in:cd) upon a variable, which is defined in all nodes
which controln. In this way control dependence is captured in

ucd as if it were a data dependence upon special variabéesl

By composingdu anducd in various ways, and restricting
the resulting domains and ranges, we can use JR—notation to e
press, and hence to comptithe dependencies which will be of
interest in program analysis and, in particular, in mutagoal-
ysis.

Jackson and Rollins define several compositions. Here only
one will be required: th&/ D relation.

UD = ucd o (du o ued)*
Here,R* is the reflexive transitive closure &f and relational

In the JR—approach, dependence relations are constructeBomposition is from left to righti.e.

from two basic dependence relatiods,anducd, which we now
explain.

Every atomic program statement (node of the CFG) is repre-
sented as a relatiody, between pairs. For example, an assign-
ment statement at node 5:-

5: X: =y+z,;

has
du = {((.”L‘, 5), (¥,5)), (=, 5)7 (2, 5))}

Node 5 definegx} and usesy,z}. The relationdu is thus
internal in the sense that it relates variables of #anenode.
In the above example, the valuexofdefined at node 5 depends

r1ore = {(z,y)|3z such tha(x, z) € 1 and(z,y) € ro}

By closing the relationiu o ucd, the propagation of depen-
dence information is achieved. The composition of the alsu
with ucd is merely required to ensure that the resulting relation,
UD is of an appropriate type. That is, one from uses of variables
to the definitions upon which they depend.

2More precisely, a control dependence exists from nede nodey if = is
always executed when one branch of ngde executed, but there is also a path
from y to the exit which does not contait{5].

3The JR-notation is written in a functional style. This po®s both a rela-
tively high level ‘specification orientated’ style of natat, and a relatively sim-
ple way of prototyping implementations in a functional lamge such abL.



4 The Relationship Between JR- We can improve on this, however. A ‘killing state’ must also
; ; affect the mutant at node, otherwise it cannot possibly distin-
Dependence and Mutation Testing quish betweep andy’.

This section establishes the relationship between JR— Now consider the relation

Dependence and Mutation Testing. It is used as the theatetic

basis for the augmented mutation testing process proposed i S = (Var x {n}) <UD, > (Var x {start)

section 7. For programp, any two initial states differing only on vari-
Let p be the original program under test andjebe a mutant  ables outsidean(S) will always behave the same at
of p created by mutating node of p. Let the probe point beé Similarly, let

and the inspection set Heand letV ar be the set of all variables.

Let start be the entry node of the CFG. §' = (Var x {n}) <UDy > (Var x {star)

To kill p" we are looking for a state which distinguishes For prograny’, any two initial states differing only on vari-
betweenp andp’ with respect to(¢, ). Some initial program  gples outsidean(S)’ will always behave the same at
variables will be interesting and some will not. Those wrack Let Z = ran(S) andZ’ = ran(S)’. Any two states which

uninteresting can be varied arbitrarily without killingetmutant o)y giffer outsideZ U Z’ must behave the saregerywheravith
p'. Thatis, the value of these variables cannot be used to proyegpect tgy andy’.
duce different behaviour in the mutant and the original paog So the space where we look for killing states can be limited

Those which are interesting may potentially affect the oote  frther to states differing only oY U X') N (Z U Z/).
of execution of the mutant in a way that will allow us to deter-

mine that it is different from the original. e T'=(XuX)nZuZz)

Clearly, such a set of variables will depend both upon the mu- Observe that choosing a variablewhich is in T does not

tantand the program from Wh'Ch it 1S created. [twill also g %uarantee that the mutant will be killed. This is not meredy b
upon the probe point and inspection set, as these are the len

through which the mutant and original are inspected. If aamut cause the right va_Iue has to be chos_en for the ‘influencing: va
) L > . . able in order to kill the mutant. This lack of a guarantee also
is hard to kill it may be because it is equivalent. This may oc-

cur either because the mutant is so similar to the origirelrio arlses‘ because.|t- 'S sfa\dly possible for dependgnce a”mﬁ_”“.”
. . . . . . duce ‘false positives’. All dependence analysis must be:saf
inspection can detect it, or simply because the (inspec@ain : . . i
. . . . . will always include a dependency if one exists. Howevertlier
probe-point) pair are inappropriate (the lens is too weak). .
. ) \ o . usual, well-known, decidability reasons, such analyséisnet
Using JR—notation, we shall define the §ebf ‘interesting s )
. S . : \ always fail to include a dependency where none exists.
variables’ which is such that any variable outside this sstch : SN . .
: . Therefore]l" is sufficient in the sense that any variable outside
not vary in our test set. To generate test data to kill a mutant . -
: : ; T cannot have a bearing on whether the mutant is killed. There-
we should be sure to consider only variables in thelself T

is empty then the mutant is equivalent, and should not be anal fore, although there is some imprecision inherent in depece

ysed further (or the probe point and/or inspection set shbal ana_lly3|s, it is nonetheless possible to make the following t
definite statements aboiit

varied).

Letran(R) be the range of a relatioR. With a slight abuse ¢ In selecting test data, only the initial values of variabites
of notation we shall refer to variables in this range. Slyitttese T should be varied.
are the variables in the first element of each pair in the range All other variable values are definitely irrelevant.

Using the JR—-dependence notation [16], consider the oelati ] ] o o
e If novariable inT can be varied in the initial state, then the

R=(I x{i})aUD,> (Var x {start) mutant is deﬁr_1ite|y equ_ivalent. _ _

The most obvious way in which this can happen isFaio

be empty. However, in certain domain-specific problems,
there may be non-empty sefg, for which no variable in

T can be varied. For instance, the only variable¥'imay
have values which depend upon the input to some physical-
environment sensor, which cannot be easily set to an arbi-
trary value by the tester.

Any variable outsideX = ran(R) cannot possibly affedt at
1. i.e. Any two initial states differing only on variables side
ran(R) will always behave the same @t 7).

Similarly,

R' = (I x {i}) aUD, > (Var x {star§)

is such that any variable outsid€ = ran(R)’ cannot possi-
bly affectl ati. |
Therefore if we are looking for states which can kill the mu- S Examp €s

tant, we only need consider states which differ on variables ) ) _ L
XUX'. In this section we present a few simple motivating examples

which illustrate the way in which the foregoing formal analy
ie.T=XUX’ sis can be used to help focus attention upon interestingbvlas



X = y+z; [+ mutation point =/ X = 42; [+ mutation point x/

/* does not define or reference x */

x = 0; [*re-initialise */ if (z==2)

: y = x+1;

printf("%", x); [+ probe point =/ else z = xxx;

Figure 1: A set of Equivalent Mutants x = 0: /« re-initialise %/
/+* does not definey or z =/
) ) ) printf("%", x); [+ probe point =/

when generating test data and how we can avoid the creation of
certain classes of equivalent mutants. Figure 2: Poor Choice of Inspection Set

5.1 Avoiding the Creation of Equivalent Mutants
re-initialised on the way to the probe point. Therefore, tdve

Mutants which fail to propagate ‘corrupted data’ to the msp choice of inspection set would g, z } rather than{x }.

tion set at the probe point will be equivalent and should be

avoided. . ] ]
For example, consider the program in Figure 1. In this pro- 2-2 Generating Test Data to Kill Non-Equivalent
gram, the value ok at the mutation point fails to propagate to Mutants

the probe pointbecause itis killed on all paths from the it Consider the CFG in Figure 3. In this figure, code blocks indi-

pointto the probe point (in this simple example, there iy ame cated by question marks contain arbitrary code, but do rfiet-re

sulchtpr:gth). val . b f th irol f ence or define the variabl¢s, b, c,d, x,y,z}.
n this case, equivalence arises because ot the control tlow Suppose the predicatp4 is mutated using a reference-

structure of the original program. The re-initialisatiohtbe : - . ; :
variablex eﬁectivelg des{)roygs the previous value, and so any preserving mutation. Clear_ly, this mutation can only t.mkm
. . . ) _ 2 if a suitable set of values is chosen for the input variabtes t

mutation gnaly5|s which places the _mutatlon point on one sid the program. The inputs in this case, aeb, ¢, d, x, y and
of the assignment and th? prqbe point on the other_, W'thG_Ut af z. If each variable is a 16-bit integer then the input is theref
fect|.ng the control TIOW’ W'”. fail to d?tec.t any mgtatlon vl .16 x 7 = 112 bits long. There are thuz''? ~ 1033 potential
retainsx as t_hg .de_flned.varlable. Th|s situation (in which vari- values in the space to be searched. However, it turns out that
ables are re-|n|t|aI|_sed) IS commaon in embedded systemstavh onlythe variables andb can affect the values &f andc at the
the numbgr of varlables IS n_o@ _Iar_ge._ Paucity promotes €g-us predicate nod@4 and therefore, only these two variables need
leading tOJUSt,th.'S sort of re-|n|t|al|sat|pn. . . be considered when attempting to find an input to kill the mu-

In general, it is not easy to determine which variable values,_ . This observation reduces the search spacd2tex 10°,

can reach a partlc_ular program point, and so it will not by eas a reduction of order 22 in the number of possible test cases to
to spot these equivalent mutants manually. Fortunatepende consider

dence analysis is designed to automate the production afags Determining that the values bfandc at nodep4 are affected

to just these s_,ort of questions. _ by only the variables. andb in the initial state is precisely the

In the previous .example, the muj[ant was equ!valent I_Jecaus%'e of dependence analysis. This analysis does not determi
the value Of, a _varlable was set durlng computa‘gon. This form the input values needed to kill the mutant. That (harderbpro
of program is likely to cause the creation of equivalent mtga lem is the preserve of constraint solving approaches [2122p

in strong mutation testing, but Iess_so in weak mutatiorirtgst However, dependence analysis can dramatically reduc@éues
where the value of the mutated variable does not have to propay,5¢ needs to be considered in order to determine the crucial

gate_ tothe probe p_0|nt. Mutants may also be _equn_/alent,Lhmca killing values and can be applied when constraint-basel-tec
the inspection set is poorly chosen. In such situationlseethe niques fail to give an answer
mutation needs to be reconsidered or the (inspection sshepr Reducing search space size in this way may also find appli-

point) pair should be altered. cation in the area of search-based test data generaticensy;st

For example, consider the program fragment in Figure 2. In g, as those based on genetic algorithms [17, 25, 26, 30].
this program fragment, the valuexofiefined at the first line, will

not reach thepr i nt f statement at the last line because of the

intervening initialisation. In this respect the examplsiisilar to 6 Related Work

the previous one. However, in this example there is a diffeze

The value of can reach the probe point through the variagles Voas and McGraw [27] were the first to suggest that dependence
andz, which store a value dependent upoand which are not  analysis (specifically program slicing) might be useful in-m



b = f3(b)
a =f4(a,b) y =6()
z=17()

Figure 3: Generating Test Data to Kill a Mutant

tation analysis. They observed that syntax-preservirgngi heuristics they implemented was able to detect about 10%eof t
can identify points unaffected by some statement and tleseth equivalent mutants.
make poor candidates for fault injection, because the ntsitam This work on compiler optimisation was improved upon in
created are ‘guaranteed’ to be equivalent. This is slighthg- work by Offutt et al. [20, 21, 23, 22], which focussed on
curate [12]. The observation becomes true when only reéeren constraint-based approaches which seek to determine tutan
preserving mutations are considered. equivalence by formulating a set of constraints. These con-
The present authors [12] developed the initial proposabafsy ~ straints were originally used to generate test data (byirspthe
and McGraw, showing how amorphous slicing [3, 8, 9, 11] can constraints). The more recent work also indicated thatigeur
be used to assist human analysis of particularly stubborn mu tics designed to determine when such a set of constraitéddai
tants. This work considered slicing as a means of assidtiag t be satisfiable is also rather effective as a means of detargnin
human analysis, rather than as a way of determining equigale ~ equivalence. Empirical studies showed that the approastt co

Offut et al. [19, 20, 21, 23, 22] have considered the prob- achieve a detection rate of about 50%.

lems of test data generation and equivalent mutant deteetio Initially [21, 23, 22], the approach considered constsaower
tensively, using both constraint-based techniques andgitem logical formulae whose free variables were input varialdgbé
optimisations. program. Later work [20] used set-based constraints, wéesse

of intervals of possible input values were propagated thihdhe
s Program under test. Both these techniques are more fineegkain
than the work presented here. They are capable of providikg v
ues of test data, rather than simply identifying which Jalea
are significant. This observation motivates the augmenigd-m
tion testing process which we propose in the next section.

Initial work focussed on compiler optimisations [19]. The
idea was originally proposed by Baldwin and Sayward [2] a
early as 1979, but remained unexplored until 1994, whentOffu
and Craft implemented a set of compiler-optimisation retio$
and evaluated them. The approach consists of looking at mu
tants which appear to implement traditional peep-hole dtenp
optimisations [1]. Such compiler optimisations were deseit)
to create faster, but equivalent programs and so a mutachwhi :
implements a compiler optimisation will, by definition, ba a 7 A Dependence and Constraint Based
equivalent mutant regardless of the probe point and ingpect Mutation AnalySiS Process
set. Offutt and Craft's empirical study of this idea, indexthat
while helpful, there was some way to go if the equivalent mu- We do not propose dependence analysis as a replacement for
tant problem was to be overcome. They found that the set ofconstraint-based approaches. Rather we suggest thatukdsho



form an additional tool in the armory of the mutation analyst which are important at given nodes. This allows us to askeser
particular, where constraint based approaches have taileh- ample, which variables are important at the entry node tptbe

duce test data, dependence analysis will help to focus theaha  gram and which variables need to be inspected at chosen probe
search for test data by constraining the input domain torthe i points in order to avoid the equivalent mutant problem.

teresting variables. Furthermore, an initial dependenedyais These dependence based techniques do not subsume
may help to avoid the creation of certain classes of equitale constraint-based techniques, which may also detect dguiva
mutants, which would save later effort using a constraa®ell ~ mutants and which additionally generate test data. However
system. dependence analysis provides the tester with a complementa
This symbiotic relationship is now developed into a process technology, to be used in tandem with constraint-based ap-
for mutation testing which combines dependence analysisra  proaches to reduce the number of equivalent mutants whieh en
phous slicing and constraint-based test data generatboamn the constraint-based phase and to help to narrow the sqzach s
straint based detection of equivalent mutants. for data where constraint based approaches are unablesti® cre
The process is depicted in Figure 4. The first phase is thedata.
creation of mutants. The process proposed here is independe  The paper culminates in a process for mutation testing which
of the approach taken to mutant creation. The next phase conaugments the existing constraint-based process with tiudie
sists of detecting equivalent mutants using dependendgsiia  tional dependence-based steps. One of these was previmasly
This is a natural next phase as dependence analysis is less co posed by the present authors, and is based upon amorphous sli
putationally expensive than constraint based approaches. ing as a ‘last resort’ assistant to human analysis of stubbm-
means that those mutants which dependence analysis can dgants. The other two are new, and form a pre- and post- asalysi
tect as equivalent are quickly disposed of. The next phatseis  phase, augmenting the existing mutation testing processy T
constraint-based approach developed by Offutt et al. Téneg avoid generation of mutants which JR—dependence can deter-
ates test data which kills some mutants and determinessaiier mine to be equivalent and help restrict attention to thectiffe
be equivalent. set of input variables, where constraint based techniogeegra
The mutants which remain are those which are not determinedable to generate killing test data.
to be equivalent by either dependence analysis or by camistra
based analysis. These we call ‘stubborn mutants’. These mayAcknowledgements
be equivalent, but our two technologies of dependence aisaly \We would like to thank Jeff Offutt and Martin Woodward for
and constraint-based analysis simply proved too weak tctlet helpful discussions concerning mutation testing whicipéelito
them. shape our ideas on the integration of dependence analghis te
Stubborn mutants will ultimately have to be considered by a nigues into the classic mutation testing process. The foong
human. However, before the human is forced to look at the pro-mous referees also provided helpful comments which have im-
gram code of a mutant, two more phases of automatic proggessin proved the presentation of the paper.
take place. The first of these is amorphous slicing (as destri This work is supported in part by EPSRC grants GR/M58719
in more detail in [12]). This produces a simplified prograim ta and GR/M78083.
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