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Abstract

This paper presents some connections between dependence anal-
ysis and mutation testing. Specifically, dependence analysis can
be applied to two problems in mutation testing, captured by the
questions:

1. How do we avoid the creation of equivalent mutants?

2. How do we generate test data that kills non-equivalent mu-
tants?

The theoretical connections described here suggest ways in
which a dependence analysis tool might be used, in combination
with existing tools for mutation testing, for test-data generation
and equivalent-mutant detection.

In this paper the variable orientated, fine grained dependence
framework of Jackson and Rollins is used to achieve these two
goals. This framework of dependence analysis appears to be bet-
ter suited to mutation testing than the more traditional, Program
Dependence Graph (PDG) approach, used in slicing and other
forms of program analysis.

The relationship between dependence analysis and mutation
testing is used to defined an augmented mutation testing pro-
cess, with starts and ends with dependence analysis phases.The
pre-analysis removes a class of equivalent mutants from further
analysis, while the post-analysis phase is used to simplifythe
human effort required to study the few mutants that evade the
automated phases of the process.

1 Introduction

In mutation testing, a program is mutated to create a mutant by
a small syntactic change. These changes are likely to make the
mutant behave differently when compared to the original. Such

behavioural differences can be found by running the program
with an input which reveals the differing behaviour. An execu-
tion which does this ‘kills’ the mutant in the nomenclature of
mutation testing1. Running a mutant is ‘testing’ the original pro-
gram in the sense that bugs in the original program are simulated
by the mutations. Broadly speaking, a test set which kills many
mutants is considered to be better at finding bugs than one which
does not. In this way mutation testing can be used to assess the
effectiveness of a test set or to help in the construction of an
effective test set.

Mutation testing has been shown to be highly effective in em-
pirical studies [6, 23]. It is also theoretically appealingbecause
it is tailored to the program under test and because it can be used
to emulate the effect of other coverage based test adequacy cri-
teria. However, there is a downside. Typically, many mutants
can be created from even the simplest original program under
test and some of these may be equivalent to the original program
semantically (though they differ syntactically). The problem of
finding a set of test data which kills all non-equivalent mutants
is also far from trivial.

Two currently important problems for mutation testing are
thus summed up as two questions. The first question is ‘How
do we avoid the creation of equivalent mutants?’ The second
question is ‘How do we (automatically) generate test data that
kills all non-equivalent mutants?’.

Clearly, in considering adequacy criteria, only non-equivalent
mutants should be used. However, the problem of detecting
equivalent mutants is undecidable, and so removing equivalent
mutants is non-trivial. The automatic generation of test data
which satisfies some test data adequacy criterion is known to
be a hard problem and the mutation-inspired adequacy criteria

1Mutants are always executed on test cases for which this original program
behaves correctly. If a test case reveals an error, the original program must be
corrected and the mutation analysis restartedab initio.
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are no exception.
This paper shows how dependency analysis can be used to

attack these two problems. The rest of the paper is organised
as follows. Sections 2 and 3 introduces the forms of mutation
testing and dependence considered in this paper. Section 4 es-
tablishes the theoretical connection between these forms of mu-
tation testing and program dependence analysis, showing how
it can be used to support test data generation and equivalent
mutant detection. Section 5 provides examples which illustrate
the claims in the preceding section. Section 6 presents related
work on compiler-optimisation and constraint-based approaches
to test data generation and equivalent mutation detection.This
suggests a combined mutation testing process presented in Sec-
tion 7. The process combines dependence analysis and con-
straint based approaches to mutation testing. Section 8 con-
cludes with directions for future work.

2 Forms of Mutation Testing

2.1 Strong, Weak and Firm Mutation

Mutants are always created in the same way: a single simple syn-
tactic alternation is made to a node,n, of the original program.
Mutants are ‘killed’ when a test case reveals mutant behaviour
which differs from that of the original program. In order to kill a
mutant, its behaviour must therefore be inspected in some way.
There are three approaches to the way in which a mutant is in-
spected, known as ‘strong’, ‘firm’ and ‘weak’ mutation.

In the original form of mutation testing, now calledstrong
mutation testing, input σ kills a mutantp′ of a programp if p

andp′ produce different output when executed onσ.
Woodward and Halewood [32] suggested using the final state

of the program in place of the output. This is a helpful gener-
alisation because the output sequence can be considered to be
denoted by a variable. Their definition of this ‘state-based’ ap-
proach to mutation subsumes the traditional ‘output based’ap-
proach. It also simplifies the formal exposition presented later.
Hereinafter, we shall, without loss of generality, assume that
testing a mutant consists of inspecting some set of variables,
which we call theinspection set.

Strong mutants are theoretically hard to kill because the effect
of the mutation can be lost before the program reaches the final
state.

Underweak mutation testing[15], p′ is killed by inputσ on
inspection setI if the execution ofp andp′ onσ leads to different
values of somex ∈ I immediately aftersomeexecution of the
mutation point at noden.

Woodward and Halewood [32] introducefirm mutation test-
ing as a compromise between strong and weak mutation. In firm
mutation,p is mutated at some pointn to form p′. The orig-
inal program,p and the mutant,p′ are compared on some in-
spection setI at some nodei. Both weak mutation and strong
mutation are special cases of firm mutation: in weak mutation
i = n and in strong mutationi is the exit node of the program.

Firm mutation testing therefore subsumes strong and weak mu-
tation. Hereinafter it will be assumed, without loss of generality,
that firm mutation is being used. The pointi will be termed the
probe point.

The view of mutation testing adopted in this paper is sum-
marised in Definition 2.1 below.

Definition 2.1 (Mutant)
In this paper, amutantwill be considered to be a programp′,
constructed from a programp by a single syntactic change af-
fecting noden of p. The mutantp′ will be tested by executing
p andp′ on inputσ and checking the values of the variables in
some inspection setI at some probe pointi. If the value of any
variable inI at i is different for the execution ofp andp′ then
the mutantp′ is killed.

Definition 2.2 (Equivalence)
Equivalence of a mutantp′ is dependent upon the choice of probe
set and probe point, as well as the particular mutation applied to
the original program. Ifp′ is not killed by any possible input for
a inspection setI at a pointi, we shall say thatp′ is equivalent
to p with respect toI andi. If, for all inspection sets,p′ is not
killed by any possible input we shall say thatp′ is equivalent ati.
If for all inspection setsI and for all mutation pointsi, a mutant
p′ is equivalent with respect toI andi, then we shall simply say
thatp′ is equivalent.

2.2 Reference–Preserving Mutation Operators

In considering the connections between dependence analysis and
mutation testing, the set of reference-preserving mutation oper-
ators are an important class. A mutation operator is reference-
preserving if it does not change the set of referenced variables
of any node of any program it mutates. Referenced variables are
those mentioned in expressions, either on the RHS of an assign-
ment node or as variables mentioned in the boolean expression
of a predicate node.

The concept of reference preserving can be illustrated by con-
sidering the Mothra system [18]. Mothra contains 22 meta mu-
tation operators. We call the Mothra operators ‘meta operators’,
because each defines a family of individual primitive mutation
operators. The Mothra operators are well known and will not
be described in detail here. However, we shall consider a few
operators to illustrate reference preservation.
ABS composes an expression with the absolute value func-

tion, whileCRP replaces a source constant with a different con-
stant. Neither of these can add or remove a variable reference
and they are thus reference preserving.SVR replaces a scalar
variable with an alternative and so is clearly not referencepre-
serving when applied to the right-hand side of an assignmentor
to the boolean expression of a predicate.SDL deletes a state-
ment and so will only be reference preserving in the few rare
cases where the deleted statement references no variables.
AOR andROR stand for Arithmetic and Relational Operator

Replacement respectively. Each includes primitive mutation op-



eratorsLEFTOP andRIGHTOP, which delete the left and right
operand of the binary expression they are applied to. While
the bona fide operator replacement primitive mutation operators
in AOR andROR meta mutation sets are reference preserving,
LEFTOP andRIGHTOP will not generally be reference preserv-
ing.

In dependence analysis, programs which are identical up to
referenced variable sets contain identical dependencies under the
approximation used in most dependence analysis algorithms[4].
This means that when reference-preserving mutations are con-
sidered, it will not be necessary to re-compute dependence in-
formation from the original program. As many mutation oper-
ators are reference preserving, this makes the combinationof
dependence analysis and mutation testing more efficient than it
might otherwise be. Where dependence information needs to
be re-computed, an incremental approach [28, 29, 33, 34] will
be highly applicable since, by definition, mutation involves only
very minor changes.

3 Dependence Analysis

Jackson and Rollins [16] introduce a form of program depen-
dence, which we shall call ‘JR–Dependence’. As we will show,
JR–dependence is a useful aid in tackling various problems in
mutation testing, including reducing the input set in the search
for mutant killing states.

JR–dependence is ‘finer grained’ than the Program Depen-
dence Graph (PDG) [5, 13, 14] often used in program analysis,
and particularly in slicing [7, 10, 31]. It allows us to relate (vari-
able, node) pairs rather than simply to relate nodes. This allows
us to say that the definition of a variablex at noden1 can in-
fluence the value of a variabley at noden2, rather than merely
saying that noden1 can influence noden2.

JR–dependence is better suited to the analysis of mutants, be-
cause we shall want to know which sets of variables are impor-
tant at certain points in the program, not merely which nodes
are important. Specifically, we shall want to know the set of
variables which can be used to kill a mutant and which set of
variables store values which cannot be used to kill a mutant.

In the JR–approach, dependence relations are constructed
from two basic dependence relations,du anducd, which we now
explain.

Every atomic program statement (node of the CFG) is repre-
sented as a relation,du, between pairs. For example, an assign-
ment statement at node 5:-

5: x:=y+z;

has
du = {((x, 5), (y, 5)), ((x, 5), (z, 5))}

Node 5 defines{x} and uses{y,z}. The relationdu is thus
internal in the sense that it relates variables of thesamenode.
In the above example, the value ofx defined at node 5 depends

upon the value ofy referenced at node 5. Hence there is a rela-
tionship from(x, 5) to (y, 5) in du. Similarly, the value ofx at
node 5 depends upon the value ofz at node 5, so there is also a
relationship from(x, 5) to (z, 5) in du.

A du relation will always mention the same node in all rela-
tionships. That is

((v1, n1), (v2, n2)) ∈ du ⇒ n1 = n2

Thus relationships indu are ‘intranode’ but ‘intervariable’. It
is because the relationship is intranode that we call it an ‘internal
relation’.

The external relationship between nodes is expressed by a re-
lation,ucd, which captures the control and data dependence re-
lations of the PDG (augmented to allow variables to be identi-
fied in addition to nodes). For data dependence,ucd expresses
the connection between the use of a variable at nodeni with
the definition of the same variable at a different nodenj . The
ucd relation is also used to express control dependence between
(variable, node) pairs. A control dependence2 exists from a node
x to a nodey if y chooses whether or not nodex gets executed.
In such a control dependence, the nodey will always be a predi-
cate.

Control dependence is achieved inucd using a coding, in
which an assigned variable depends (indu) upon a special vari-
ableε, the ‘execution variable’. Theε variable of noden is de-
pendent (inucd) upon a variableτ , which is defined in all nodes
which controln. In this way control dependence is captured in
ucd as if it were a data dependence upon special variablesτ and
ε.

By composingdu anducd in various ways, and restricting
the resulting domains and ranges, we can use JR–notation to ex-
press, and hence to compute3 the dependencies which will be of
interest in program analysis and, in particular, in mutation anal-
ysis.

Jackson and Rollins define several compositions. Here only
one will be required: theUD relation.

UD = ucd ◦ (du ◦ ucd)∗

Here,R∗ is the reflexive transitive closure ofR and relational
composition is from left to right i.e.

r1 ◦ r2 = {(x, y)|∃z such that(x, z) ∈ r1 and(z, y) ∈ r2}

By closing the relationdu ◦ ucd, the propagation of depen-
dence information is achieved. The composition of the closure
with ucd is merely required to ensure that the resulting relation,
UD is of an appropriate type. That is, one from uses of variables
to the definitions upon which they depend.

2More precisely, a control dependence exists from nodex to nodey if x is
always executed when one branch of nodey is executed, but there is also a path
from y to the exit which does not containx[5].

3The JR–notation is written in a functional style. This provides both a rela-
tively high level ‘specification orientated’ style of notation, and a relatively sim-
ple way of prototyping implementations in a functional language such asML.



4 The Relationship Between JR–
Dependence and Mutation Testing

This section establishes the relationship between JR–
Dependence and Mutation Testing. It is used as the theoretical
basis for the augmented mutation testing process proposed in
section 7.

Let p be the original program under test and letp′ be a mutant
of p created by mutating noden of p. Let the probe point bei
and the inspection set beI and letV ar be the set of all variables.
Let start be the entry node of the CFG.

To kill p′ we are looking for a stateσ which distinguishes
betweenp andp′ with respect to(i, I). Some initial program
variables will be interesting and some will not. Those whichare
uninteresting can be varied arbitrarily without killing the mutant
p′. That is, the value of these variables cannot be used to pro-
duce different behaviour in the mutant and the original program.
Those which are interesting may potentially affect the outcome
of execution of the mutant in a way that will allow us to deter-
mine that it is different from the original.

Clearly, such a set of variables will depend both upon the mu-
tant and the program from which it is created. It will also depend
upon the probe point and inspection set, as these are the lens
through which the mutant and original are inspected. If a mutant
is hard to kill it may be because it is equivalent. This may oc-
cur either because the mutant is so similar to the original that no
inspection can detect it, or simply because the (inspection-set,
probe-point) pair are inappropriate (the lens is too weak).

Using JR–notation, we shall define the setT of ‘interesting
variables’ which is such that any variable outside this set need
not vary in our test set. To generate test data to kill a mutant,
we should be sure to consider only variables in the setT . If T
is empty then the mutant is equivalent, and should not be anal-
ysed further (or the probe point and/or inspection set should be
varied).

Let ran(R) be the range of a relationR. With a slight abuse
of notation we shall refer to variables in this range. Strictly these
are the variables in the first element of each pair in the range.

Using the JR–dependence notation [16], consider the relation

R = (I × {i}) ⊳ UDp ⊲ (V ar × {start})

Any variable outsideX = ran(R) cannot possibly affectI at
i. i.e. Any two initial states differing only on variables outside
ran(R) will always behave the same at(i, I).

Similarly,

R′ = (I × {i}) ⊳ UDp′ ⊲ (V ar × {start})

is such that any variable outsideX ′ = ran(R)′ cannot possi-
bly affectI at i.

Therefore if we are looking for states which can kill the mu-
tant, we only need consider states which differ on variablesin
X ∪X ′.

i.e. T = X ∪X ′

We can improve on this, however. A ‘killing state’ must also
affect the mutant at noden, otherwise it cannot possibly distin-
guish betweenp andp′.

Now consider the relation

S = (V ar × {n}) ⊳ UDp ⊲ (V ar × {start})

For programp, any two initial states differing only on vari-
ables outsideran(S) will always behave the same atn.

Similarly, let

S′ = (V ar × {n}) ⊳ UDp′ ⊲ (V ar × {start})

For programp′, any two initial states differing only on vari-
ables outsideran(S)′ will always behave the same atn.

Let Z = ran(S) andZ ′ = ran(S)
′. Any two states which

only differ outsideZ∪Z ′ must behave the sameeverywherewith
respect top andp′.

So the space where we look for killing states can be limited
further to states differing only on(X ∪X ′) ∩ (Z ∪ Z ′).

i.e. T = (X ∪X ′) ∩ (Z ∪ Z ′)

Observe that choosing a variablez, which is in T does not
guarantee that the mutant will be killed. This is not merely be-
cause the right value has to be chosen for the ‘influencing’ vari-
able in order to kill the mutant. This lack of a guarantee also
arises because it is sadly possible for dependence analysisto pro-
duce ‘false positives’. All dependence analysis must be safe: it
will always include a dependency if one exists. However, forthe
usual, well-known, decidability reasons, such analyses will not
always fail to include a dependency where none exists.

Therefore,T is sufficient in the sense that any variable outside
T cannot have a bearing on whether the mutant is killed. There-
fore, although there is some imprecision inherent in dependence
analysis, it is nonetheless possible to make the following two
definite statements aboutT :

• In selecting test data, only the initial values of variablesin
T should be varied.
All other variable values are definitely irrelevant.

• If no variable inT can be varied in the initial state, then the
mutant is definitely equivalent.
The most obvious way in which this can happen is forT to
be empty. However, in certain domain-specific problems,
there may be non-empty sets,T , for which no variable in
T can be varied. For instance, the only variables inT may
have values which depend upon the input to some physical-
environment sensor, which cannot be easily set to an arbi-
trary value by the tester.

5 Examples

In this section we present a few simple motivating examples
which illustrate the way in which the foregoing formal analy-
sis can be used to help focus attention upon interesting variables



x = y+z; /* mutation point */
...
x = 0; /* re-initialise */
...
printf("%d",x); /* probe point */

Figure 1: A set of Equivalent Mutants

when generating test data and how we can avoid the creation of
certain classes of equivalent mutants.

5.1 Avoiding the Creation of Equivalent Mutants

Mutants which fail to propagate ‘corrupted data’ to the inspec-
tion set at the probe point will be equivalent and should be
avoided.

For example, consider the program in Figure 1. In this pro-
gram, the value ofx at the mutation point fails to propagate to
the probe point because it is killed on all paths from the mutation
point to the probe point (in this simple example, there is only one
such path).

In this case, equivalence arises because of the control flow
structure of the original program. The re-initialisation of the
variablex effectively destroys the previous value, and so any
mutation analysis which places the mutation point on one side
of the assignment and the probe point on the other, without af-
fecting the control flow, will fail to detect any mutation which
retainsx as the defined variable. This situation (in which vari-
ables are re-initialised) is common in embedded systems, where
the number of variables is not large. Paucity promotes re-use,
leading to just this sort of re-initialisation.

In general, it is not easy to determine which variable values
can reach a particular program point, and so it will not be easy
to spot these equivalent mutants manually. Fortunately, depen-
dence analysis is designed to automate the production of answers
to just these sort of questions.

In the previous example, the mutant was equivalent because
the value of a variable was set during computation. This form
of program is likely to cause the creation of equivalent mutants
in strong mutation testing, but less so in weak mutation testing
where the value of the mutated variable does not have to propa-
gate to the probe point. Mutants may also be equivalent, because
the inspection set is poorly chosen. In such situations, either the
mutation needs to be reconsidered or the (inspection set, probe
point) pair should be altered.

For example, consider the program fragment in Figure 2. In
this program fragment, the value ofx defined at the first line, will
not reach theprintf statement at the last line because of the
intervening initialisation. In this respect the example issimilar to
the previous one. However, in this example there is a difference.
The value ofx can reach the probe point through the variablesy
andz, which store a value dependent uponx and which are not

x = 42; /* mutation point */
... /* does not define or reference x */
if (z==2)

y = x+1;
else z = x*x;
...
x = 0; /* re-initialise */
... /* does not define y or z */
printf("%d",x); /* probe point */

Figure 2: Poor Choice of Inspection Set

re-initialised on the way to the probe point. Therefore, a better
choice of inspection set would be{y,z} rather than{x}.

5.2 Generating Test Data to Kill Non-Equivalent
Mutants

Consider the CFG in Figure 3. In this figure, code blocks indi-
cated by question marks contain arbitrary code, but do not refer-
ence or define the variables{a, b, c, d, x, y, z}.

Suppose the predicatep4 is mutated using a reference-
preserving mutation. Clearly, this mutation can only be killed
if a suitable set of values is chosen for the input variables to
the program. The inputs in this case, are,a, b, c, d, x, y and
z. If each variable is a 16-bit integer then the input is therefore
16 × 7 = 112 bits long. There are thus2112 ≈ 1033 potential
values in the space to be searched. However, it turns out that
only the variablesa andb can affect the values ofb andc at the
predicate nodep4 and therefore, only these two variables need
be considered when attempting to find an input to kill the mu-
tant. This observation reduces the search space to232 ≈ 109,
a reduction of order 22 in the number of possible test cases to
consider.

Determining that the values ofb andc at nodep4 are affected
by only the variablesa andb in the initial state is precisely the
role of dependence analysis. This analysis does not determine
the input values needed to kill the mutant. That (harder) prob-
lem is the preserve of constraint solving approaches [21, 22, 24].
However, dependence analysis can dramatically reduce the space
that needs to be considered in order to determine the crucial
killing values and can be applied when constraint-based tech-
niques fail to give an answer.

Reducing search space size in this way may also find appli-
cation in the area of search-based test data generation systems,
such as those based on genetic algorithms [17, 25, 26, 30].

6 Related Work

Voas and McGraw [27] were the first to suggest that dependence
analysis (specifically program slicing) might be useful in mu-



Apparent input setp1(a,b)

?

? ?

?

p5(a,c,d)

p2(c)

p3(a,c)

p4(b,c)

c = f1(a,b)

x = f5()
y = f6()
z = f7()

a b c d x y z

b = f3(b)
a = f4(a,b)

c = f2(c)

Figure 3: Generating Test Data to Kill a Mutant

tation analysis. They observed that syntax-preserving slicing
can identify points unaffected by some statement and that these
make poor candidates for fault injection, because the mutants so-
created are ‘guaranteed’ to be equivalent. This is slightlyinac-
curate [12]. The observation becomes true when only reference
preserving mutations are considered.

The present authors [12] developed the initial proposal of Voas
and McGraw, showing how amorphous slicing [3, 8, 9, 11] can
be used to assist human analysis of particularly stubborn mu-
tants. This work considered slicing as a means of assisting the
human analysis, rather than as a way of determining equivalence.

Offut et al. [19, 20, 21, 23, 22] have considered the prob-
lems of test data generation and equivalent mutant detection ex-
tensively, using both constraint-based techniques and compiler
optimisations.

Initial work focussed on compiler optimisations [19]. The
idea was originally proposed by Baldwin and Sayward [2] as
early as 1979, but remained unexplored until 1994, when Offutt
and Craft implemented a set of compiler-optimisation heuristics
and evaluated them. The approach consists of looking at mu-
tants which appear to implement traditional peep-hole compiler
optimisations [1]. Such compiler optimisations were designed
to create faster, but equivalent programs and so a mutant which
implements a compiler optimisation will, by definition, be an
equivalent mutant regardless of the probe point and inspection
set. Offutt and Craft’s empirical study of this idea, indicated that
while helpful, there was some way to go if the equivalent mu-
tant problem was to be overcome. They found that the set of

heuristics they implemented was able to detect about 10% of the
equivalent mutants.

This work on compiler optimisation was improved upon in
work by Offutt et al. [20, 21, 23, 22], which focussed on
constraint-based approaches which seek to determine mutant
equivalence by formulating a set of constraints. These con-
straints were originally used to generate test data (by solving the
constraints). The more recent work also indicated that heuris-
tics designed to determine when such a set of constraints fails to
be satisfiable is also rather effective as a means of determining
equivalence. Empirical studies showed that the approach could
achieve a detection rate of about 50%.

Initially [21, 23, 22], the approach considered constraints over
logical formulæ whose free variables were input variables to the
program. Later work [20] used set-based constraints, wheresets
of intervals of possible input values were propagated through the
program under test. Both these techniques are more fine grained
than the work presented here. They are capable of providing val-
ues of test data, rather than simply identifying which variables
are significant. This observation motivates the augmented muta-
tion testing process which we propose in the next section.

7 A Dependence and Constraint Based
Mutation Analysis Process

We do not propose dependence analysis as a replacement for
constraint-based approaches. Rather we suggest that it should



form an additional tool in the armory of the mutation analyst. In
particular, where constraint based approaches have failedto pro-
duce test data, dependence analysis will help to focus the manual
search for test data by constraining the input domain to the in-
teresting variables. Furthermore, an initial dependence analysis
may help to avoid the creation of certain classes of equivalent
mutants, which would save later effort using a constraint-based
system.

This symbiotic relationship is now developed into a process
for mutation testing which combines dependence analysis, amor-
phous slicing and constraint-based test data generation and con-
straint based detection of equivalent mutants.

The process is depicted in Figure 4. The first phase is the
creation of mutants. The process proposed here is independent
of the approach taken to mutant creation. The next phase con-
sists of detecting equivalent mutants using dependence analysis.
This is a natural next phase as dependence analysis is less com-
putationally expensive than constraint based approaches.This
means that those mutants which dependence analysis can de-
tect as equivalent are quickly disposed of. The next phase isthe
constraint-based approach developed by Offutt et al. This gener-
ates test data which kills some mutants and determines others to
be equivalent.

The mutants which remain are those which are not determined
to be equivalent by either dependence analysis or by constraint
based analysis. These we call ‘stubborn mutants’. These may
be equivalent, but our two technologies of dependence analysis
and constraint-based analysis simply proved too weak to detect
them.

Stubborn mutants will ultimately have to be considered by a
human. However, before the human is forced to look at the pro-
gram code of a mutant, two more phases of automatic processing
take place. The first of these is amorphous slicing (as described
in more detail in [12]). This produces a simplified program tai-
lored to the question of whether or not the mutant is equivalent.
The second is domain reduction which can be achieved using the
JR–dependence approach as described in this paper.

Thus the human mutation tester is finally presented with a set
of stubborn mutants to analyse. Each is simplified using amor-
phous slicing and the human is guided in their choice of test data
to consider by JR–dependence analysis.

8 Conclusions and Future Work

This paper has shown how dependence-based analysis can be
used to assist in the detection of equivalent mutants and in the
narrowing of the search space which needs to be considered in
the generation of test data to kill a mutant.

It has been argued that the Jackson and Rollins style of de-
pendence analysis (JR–Dependence) is more suited to mutation
testing than the more widely used, Program Dependence Graph
driven approaches. This is because the JR–style of analysisis
more fine grained, relating not only nodes, but also the variables

which are important at given nodes. This allows us to ask, forex-
ample, which variables are important at the entry node to thepro-
gram and which variables need to be inspected at chosen probe
points in order to avoid the equivalent mutant problem.

These dependence based techniques do not subsume
constraint-based techniques, which may also detect equivalent
mutants and which additionally generate test data. However,
dependence analysis provides the tester with a complementary
technology, to be used in tandem with constraint-based ap-
proaches to reduce the number of equivalent mutants which enter
the constraint-based phase and to help to narrow the search space
for data where constraint based approaches are unable to create
data.

The paper culminates in a process for mutation testing which
augments the existing constraint-based process with threeaddi-
tional dependence-based steps. One of these was previouslypro-
posed by the present authors, and is based upon amorphous slic-
ing as a ‘last resort’ assistant to human analysis of stubborn mu-
tants. The other two are new, and form a pre- and post- analysis
phase, augmenting the existing mutation testing process. They
avoid generation of mutants which JR–dependence can deter-
mine to be equivalent and help restrict attention to the effective
set of input variables, where constraint based techniques are un-
able to generate killing test data.
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