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Abstract—We argue that higher order mutants are potentially
better able to simulate real faults and to reveal insights into bugs
than the restricted class of first order mutants. The Mutation
Testing community has previously shied away from Higher
Order Mutation Testing believing it to be too expensive and
therefore impractical. However, this paper argues that Search
Based Software Engineering can provide a solution to this
apparent problem, citing results from recent work on search
based optimization techniques for constructing higher order
mutants. We also present a research agenda for the development
of Higher Order Mutation Testing.

I. INTRODUCTION

Mutation Testing has proved to be a very effective way to
test programs. It is capable of simulating the effect of other
white box testing techniques, while providing improved fault
detection. This has led to much interest in Mutation Testing.
There is evidence to suggest that the approach is increasing
in maturity and practical application [30].

Mutants can be classified into two types: First Order Mu-
tants (FOMs) and Higher Order Mutants (HOMs). FOMs are
generated by applying mutation operators only once. HOMs
are generated by applying mutation operators more than once.
Historically, Mutation Testing was always concerned with First
Order Mutants (FOM Testing) [15], [22].

The view of Mutation Testing as a process of inserting a
single fault into a program under test is very well entrenched
in the literature. This view also pervades the collective sub-
consciousness of the research community. It is widely believed
that Higher Order Mutants are far too numerous to be practical
as a source of simulated faults. Furthermore, many might claim
that the coupling effect means that Higher Order Mutants are
most likely to be unimportant because they are all coupled to
First Order Mutants?

Anyone who has applied traditional First Order Mutation
Testing techniques will most likely have experienced two
doubts about the validity of the processes being undertaken.
First, they will have had the experience of applying mutation
operators in the sure knowledge that only a very small propor-
tion of the mutants produced are likely to simulate real faults.
Secondly, the mutation tester will observe that even the most
trivial, small and unimaginative test suite will kill a very large
proportion of the First Order Mutants to which it is applied.

These observations do not detract from the results achieved
for Mutation Testing. It is true that Mutation Testing can
subsume other structural testing techniques and that results
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have shown that some mutants do, indeed, denote real faults.
However, consider the set of all real faults in programs. The
First Order Mutants we are so used to generating cannot
capture many of these; real faults are simply too complex and
subtle to be denoted by a single syntactic change. Furthermore,
a lot of time is typically wasted considering mutants that are
destined to be killed by the first test case they encounter. This
would not be a problem were the whole process to be entirely
automated, but it is not and cannot be, because of the problem
of equivalent mutants.

We seek to challenge the long–held belief that Higher Order
Mutants are ‘too numerous and too coupled’ to be worthy of
consideration. The paper is written as a polemic to challenge
the prevailing consensus that the First Order Restriction is
acceptable and as a manifesto for Higher Order Mutation. We
argue that the space of all mutants (first and higher order)
is a search space, in which we should apply search based
optimization techniques in order to find mutants that are fit for
purpose. We will show that various characterizations of fitness
for purpose can be defined, yielding a rich set of possible
optimization approaches. We also argue that it is wrong to
restrict this search merely to first order mutants, since higher
order mutants may be able to capture faults which no first
order mutant is capable of capturing.

We use a search based optimization approach to locate very
fit mutants within the search space of all possible mutants. The
use of Search Based Software Engineering (SBSE) techniques
[3], [23], [26], [54] means that we can simultaneously deal
with two important problems. By seeking only those mutants
which are fit for purpose, we avoid the consideration of trivial,
easily killed or unrealistic mutants. At the same time, by
selecting only fit mutants we also cope with the large numbers
of possible mutants.

Our approach aims to search for a small set of highly fit
mutants within an enormous space, rather than to enumerate a
complete (and larger) set within a restricted space. It is even
possible that a well–guided search may be able to avoid many
equivalent mutants, thereby additionally addressing a problem
that has hampered mutation testing since its inception.

II. THE HIGHER ORDER APPROACH TO MUTATION
TESTING

Higher Order Mutation Testing is a generalization of tra-
ditional Mutation Testing in which mutants are permitted to
have arbitrary order. More precisely, from a given set of First
Order Mutants, S, HOM Testing seeks high quality mutants
from the set of Higher Order Mutants constructed by inserting
one or more of the mutants from S into the program under
test.
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In order to make the use of Higher Order Mutation Testing
practicable, we advocate the use of search based optimization
techniques. This provides a means of efficiently exploring
the space of Higher Order Mutants, guided by a fitness
function that seeks to capture mutant ‘quality’ (or fitness for
purpose). The determination of what makes a mutant high
quality depends on the application to which HOM testing is
put. Naturally, there are a lot of possibilities, of which, only a
few have so far been the subject of experimentation. We have
considered two possibilities:

1) single objective: A HOM is considered to be of high
quality if it is harder to kill than the First Order Mutants
from which it is constructed [28], [31]. In this approach
we explicitly seek subsuming mutants.

2) multi objective: Mutant m1 is superior to mutant m2

if m1 is syntactically and semantically smaller than m2

[36]. In this approach we seek lower or equally low order
mutants that are harder to kill than those we have in our
current set of mutants.

Existing results obtained by the authors from these two
approaches are summarised in Sections IV and V.

A. A Classification of Higher Order Mutants
HOMs can be classified in terms of the way that they are

‘coupled’ and ‘subsuming’, as shown in Figure 1. In Figure
1, the region area in the central Venn diagram represents
the domain of all HOMs. The sub-diagrams surrounding the
central region illustrate each category. For sake of simplicity
of exposition these examples illustrate the second order mutant
case; one that assumes that there are two FOMs f1 and f2,
and h denotes the HOM constructed from the FOMs f1 and
f2. The two regions depicted by each sub-diagram represent
the test sets containing all the test cases that kill FOMs f1 and
f2. The shaded area represents the test set that contains all test
cases that kill HOM h. The areas of the regions indicate the
proportion of the domain of HOMs for each category.

Following the coupling effect hypothesis, if a test set that
kills the FOMs also contains cases that kill the HOM, we
shall say that the HOM is a ‘coupled HOM’, otherwise we
shall say it is a ‘de-coupled HOM’. Therefore, in Figure 1, the
sub-diagram is a coupled HOM if it contains an area where
the shaded region overlaps with the unshaded regions. For
example the sub-diagrams (a), (b) and (f). Since the shaded
region from sub-diagrams (c) and (d) do not overlap with the
unshaded regions, (c) and (d) are de-coupled HOMs. Sub-
diagram (e) is a special case of a de-coupled HOM, because
there is no test case that can kill the HOM; there is no overlap,
the HOM is an equivalent mutant.

Subsuming HOMs, by definition, are harder to kill than
their constituent FOMs. Therefore, in Figure 1, the subsuming
HOMs can be represented as those where the shaded area
is smaller than the area of the union of the two unshaded
regions, such as sub-diagrams (a), (b) and (c). By contrast, (d),
(e) and (f) are non-subsuming. Furthermore, the subsuming
HOMs can be classified into strongly subsuming HOMs and
weakly subsuming HOMs. By definition, if a test case kills
a strongly subsuming HOM, it guarantees that its constituent

FOMs are killed as well. Therefore, if the shaded region lies
only inside the intersection of the two unshaded regions, it is
a strongly subsuming HOM, depicted in (a), otherwise, it is a
weakly subsuming HOM, depicted in (b) and (c).

According to the combination of subsuming and de-coupled
HOM types, the six possibilities we considered are: strongly
subsuming and coupled (a), weakly subsuming and coupled
(b), weakly subsuming and de-coupled (c), non-subsuming and
de-coupled (d), non-subsuming, de-coupled which is equiva-
lent (e), and non-subsuming and coupled (f) which is useless,
as shown in Figure 1.

B. Arguments in Favour of the Higher Order Mutation Testing
Approach

This section summarizes the motivation for the introduction
of the HOM Testing paradigm. It explains the concerns that
have, hitherto, led researchers to avoid HOM Testing, why
SBSE means that these concerns are no longer paramount and
how HOM Testing may solve the three central problems that
have bedeviled Mutation testing since its inception.

Traditional first order mutation testing has three significant
problems:

1) Cost: The large number of mutants generated from even
small programs leads to a consequently higher cost.

2) Uncertainty: The undecidable problem of determining
whether a mutant is equivalent to the program from
which it is generated leads to uncertainty; is the mutant
merely as–yet–unkilled or is it simply unkillable?

3) Realism: The problem of whether mutants do or can
simulate real faults; if we have killed all the killable
mutants, have we also found a large proportion of any
real faults present?

A slightly churlish interpretation of these three problems
would be that Mutation Testing is expensive, theoretically
impossible and has a questionable relationship to reality. It
is a testament to the enduring appeal of Mutation Testing
that it remains an active area of research and practice de-
spite these significant challenges. Of course, much work on
Mutation Testing over the past three decades has sought to
address precisely these problems and this has tempered and
ameliorated all three problems:

1) Cost: Work on Mutant Sampling and Selective Mutation
has shown how the number of mutants can be reduced
with only a small impact on test effectiveness [1], [9],
[61], [39], [14], [32], [55], [38], [50], [32], [62], [48],
[40], [7], [41], [42]

2) Uncertainty: Work on reducing the impact of equivalent
mutants has reduced, though not eradicated, this problem
[6], [27], [24], [45], [49], [21].

3) Realism: Empirical evidence has been provided that the
faults denoted by mutants do, indeed, overlap with a
class of real faults [16], [12], [5].

However these three issues remain at the heart of work on
mutant testing. The Search Based approach to HOM Testing
aims to address all three simultaneously. Before considering
how it does this in a little more detail, let us briefly review
the reasons why researchers have previously been reluctant
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Fig. 1. HOMs Classification. These pseudo Venn diagrams depict the relationship between some of the interesting classes of HOMs and their
first order constituents. In each of the six examples, the rectangle depicts all possible test inputs. The two circles within each rectangle depict
the possible regions of test cases that can kill a FOM in the standard way for a Venn Diagram. The shaded region indicates the killing test
sets for the HOMs. The size of the shaded region is intended to show the relative size of the HOM kill set compared to the FOM kill sets.
Because it attempts to show set size, the diagram is a ‘pseudo’ Venn Diagram, rather than a true Venn Diagram. For ease of exposition,
the diagrams illustrate only the second order case, whereas the definitions cover arbitrary order. HOMs of type (a), (b) and (c) are harder
to kill than their constituent FOMs, thereby capturing potentially subtler faults. In particular, type (a) are both subtle and useful; they can
replace their constituent FOMs because they are killed by a subset of the intersection of test cases that kill their constituents. For a HOM
h, constructed from FOMs f1, ..., fn, the test set Th contains all the test cases that kill h, while the test sets T1, ..., Tn are the test sets that
kill that kill f1, ..., fn respectively.
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to consider the higher order paradigm. These can be thought
of as the two primary reasons for not considering the HOM
Testing approach:

1) Exponential Growth: There are already a large number
of first order mutants. This leads to the existing cost
problem. There are exponentially more Higher Order
Mutants, so moving to HOM Testing will surely exac-
erbate an already difficult problem.

2) Coupling Effect: The Coupling Effect Hypothesis [15],
[43] suggests that it is unlikely that we shall find
Higher Order Mutants that are not coupled to First Order
Mutants. Therefore any increase in test effectiveness that
accrues from HOM Testing will surely be slight.

These two concerns are understandable in the context of
the historical development of Mutation Testing. However,
fortunately, as has been demonstrated by our previous work
[28], [31], [36], neither of them applies. That is:

1) Exponential Growth: using search based techniques
allows us to search for a suitable subset of Higher
Order Mutants. Rather than this leading to an increase
in the number of mutants to be considered, the use of
subsuming Higher Order Mutants actually means that
we can find smaller sets of Higher Order Mutants with
identical test effectiveness to larger sets restricted solely
to First Order Mutants.

2) Coupling Effect: Results on the coupling effect [44]
show only that there is a tendency for coupling between
First Order and Higher Order Mutants. However, since
there are exponentially many Higher Order Mutants,
even if only a relatively small proportion are uncoupled
this remains a large number of mutants. Furthermore,
even coupled Higher Order Mutants can subsume their
first order counterparts, thereby reducing test effort
without reducing test effectiveness.

The HOM Testing paradigm also addresses, head on, the
three challenges of cost, uncertainty and realism that have
been present in Mutation Testing from its inception. Specifi-
cally:

1) Cost: Previous work [28], [31], [36] has shown that
it is possible to find HOMs that subsume all of the
First Order Mutants from which they are constructed.
By focussing on the search for subsuming Higher Order
Mutants, we can reduce the overall number of mutants
required. For example, a strongly subsuming 5th order
mutant can replace all five of its first order constituents
with no loss of test effectiveness. Therefore, far from
increasing cost, HOM Testing is potentially an attractive
‘do fewer’ approach to reducing mutation testing cost.

2) Uncertainty: There is some evidence to suggest that
Higher Order mutants may be less likely to be equivalent
than First Order Mutants [44]. While this remains a topic
for further investigation, it is tempting to speculate that
Higher Order Mutants may ultimately provide a way
to reduce the equivalent mutant problem. Furthermore,
using a co-evolutionary approach, it has been argued
[2] that Higher Order Mutants can be generated in a

way that almost guarantees no equivalent mutants will
be created.

3) Realism: There is empirical evidence to suggest that
the majority of real faults are complex faults [53], [20].
That is, a number of distinct changes are required to
fix them. If fixing a real fault requires several changes,
then the injection of this same fault would require
several changes to the fault–free version of the program.
Therefore, simulating such a fault cannot be achieved by
first order mutation. Such a complex fault could only be
simulated by higher order mutation.

III. MYTHS OF MUTATION TESTING REVISITED

The ‘First Order Restriction’ is deeply ingrained in the
mutation testing community and is often expressed implicitly
or explicitly in the literature. Jia and Harman [31] presented a
list of ‘seven Myths of Mutation Testing’ in order to challenge
the existing consensus. These seven myths are summarised
here.

Real Fault Representation Myth (RFR)

The RFR Myth states that FOMs denote faults that a
typical programmer might make. This myth is an incorrect
extrapolation from the Competent Programmer Hypothesis. It
is true that real programmers are generally competent and
that they write nearly correct programs. However, it is widely
known that many upstream mistakes and misunderstandings
in requirements and design can lead to very big errors [10],
[52]. Notwithstanding these, there is empirical evidence that
the majority of real faults are not denoted by first order mutants
[53], [20]. In order to capture more complex faults some form
of HOM Testing is thus unavoidable.

Unscalability of Mutation Testing Myth (UMT)
The Unscalability of Mutation Testing Myth states that Mu-
tation Testing cannot scale to larger programs because of the
large number of mutants created. This paper argues that SBSE
[23] can be used to search the limitless spaces of all mutants
in order to find those that are fit for purpose. In this way the
complexity of Mutation Testing (first order and higher order)
can be tamed.

All Mutants are Equal Myth (AME)
The AME Myth states that all mutants are created equal and
effort must be put into trying to kill them all. The AME myth is
more implicit in the literature than explicit; authors implicitly
treat all mutants as equals though they seldom state this view
explicitly. This paper argues that all mutants are definitely
not equal and that a search based approach can be defined
to provide the necessary discernment between them. Some
are trivial to kill and denote only the faults that a competent
programmer would most definitely not have made. That is, the
competent programmer hypothesis is a single implication not
a double implication: a competent programmer produces near
correct programs, but this does not mean that all near correct
programs are equally likely to emanate from a competent
programmer.
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Global Mutant Operator Myth (GMO)
The Global Mutant Operator Myth (GMO) assumes that the
best way to create mutants is to define a set of global
mutation operators before any programs under test have been
encountered and then to apply this same set of global mutation
operators to all programs. By contrast, this paper argues that
mutants should be tailored to the program under test. This can
be achieved using SBSE. The fitness function can be tailored
to the program under test in many ways. For instance, the
fitness function can use static analysis to guide the search
away from likely equivalent mutants, while fault histories can
be employed to help it guide the search towards likely realistic
faults.

Competent Programmer Hypothesis Myth (CPH)
The Competent Programmer Hypothesis states that program-
mers are generally within a few keystrokes of being correct.
This formulation of the Competent Programmer Hypothesis is
mythical because of from the role played by the crucial word
‘keystrokes’. Faulty programs may be close in their behaviour
to correct versions (if not their faults would already have been
revealed).

However, this does not mean that they are within a few
keystrokes of correctness. If a seldom used, but nonetheless
important requirement is omitted, this may lead to no be-
havioural differences on typical executions and its omission
may only manifest itself on very occasional executions. If
a data structure envisaged in the design turns out to be
impractical this may only be revealed by relatively infrequent
extreme cases. In both situations, the behaviour of the faulty
program and the correct version are similar. However, the
syntactic changes required to implement the correction are far
from a mere few keystrokes.

The well–documented observation that many faults arise
from incorrect and misunderstood requirements [10], [52], [57]
means that, at best, the CPH Myth can only be maintained if
we narrowly constrain correctness to ‘correctness with respect
to stated requirements’. However, even ignoring requirements,
design and other ‘upstream’ issues, there is empirical evidence
[53], [20] sufficiently syntactically proximate to justify the
First Order Restriction.

The Syntactic Semantic Size Myth (SSS)

The SSS is a direct consequence of the CPH myth. In this
paper we take the view that competent programmer produces
programs that are within a few logical steps of correctness,
but that this does not necessarily mean that they are within
a few keystrokes. There is a big difference between syntactic
proximity and semantic proximity. We argue that this can be
explored using a multi objective approach [36].

Coupling Hypothesis Extension Myth (CHE)

The CHE myth over extrapolates from the coupling effect
hypothesis to exclude all Higher Order Mutants from consid-
eration. There are several statements of the coupling effect in
the literature. One widely cited statement is due to Offutt [44]:

“Complex faults are coupled to simple ones in such

a way that test data which find all simple ones will
detect a high percentage of complex faults.”

Observe that, in this formulation, Offutt does not claim that
test data which finds all simple faults will find all complex
faults. This paper argues that the coupling effect hypothesis is
correct; only a small proportion of higher order mutants are
not coupled to their first order constituents. However, there are
exponentially many higher order mutants. A small proportion
of an exponentially large space can, nevertheless, encompass
a large number. Furthermore, even a coupled higher order
mutant may be more valuable than its first order constituents
when it subsumes its constituents. Therefore, the CHE myth
over extends the coupling effect hypothesis to create an
artificial restriction to first order mutants that wrongly excludes
higher order mutants.

IV. A SINGLE OBJECTIVE APPROACH TO FINDING FIT
HOMS: REDUCING FRAGILITY

We summarize the results of our previous work on single
objective search based optimization techniques for locating
subsuming HOMs [28], [31], [29]. This previous work demon-
strated that subsuming (and strongly subsuming) HOMs can
be found, efficiently, in real programs (and even in the toy
triangle program).

A. Fitness as Fragility
In our experiments on single objective HOM Testing, fitness

was defined to capture a HOM’s reduced Fragility, as follows
[31]: Let T be a set of test cases, {M1,...,Mn} be a set of
mutants, and the kill({M1, ...,Mn}) function returns the set
of test cases which kill mutants M1, ...,Mn. We shall define
fragility for a set of mutants so that a single definition caters
for individual mutants (which may be either first order or
higher order), but also for sets of individual mutants. That
is, the fragility of a mutant shall be defined as follows:

Definition 1 (fragility):

fragility({M1, ...,Mn}) =
|

n⋃
i=1

kill(Mi)|

|T |
The value of fragility lies between 0 and 1. When it equals 0

this means that there is no test case that can kill this mutant,
which indicates that this mutant is potentially an equivalent
mutant. As the value of fragility increases from 0 to 1, the
mutant is assessed to be weaker, until the value equals 1, which
means that the mutant is so weak that it can be killed by any
of the test cases. In the following, we use M1...n to denote a
HOM consisting of the FOMs F1 to Fn. The fitness function
for a HOM is defined as follows.

Definition 2 (Fitness Function):

fitness(M1...n) =
fragility({M1...n})

fragility({F1, ..., Fn})
That is, the fitness of a HOM is defined to be the ratio of the

fragility of its HOM to the fragility of the constituent FOMs.
When the fitness value reaches 0, the mutant is considered to
be a potentially equivalent HOM, and so all such zero-valued
HOMs were discarded.
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B. The MILU Tool
In order to conduct experiments with the Single Objec-

tive formulation we implemented a tool called MILU [29].
MILU supports both first order and higher order mutation
testing for C. It uses the 77 C mutation operators of Agrawal
et al. [4] as its set of first order mutants. The tool is publicly
available. Further details can be found on the MILU website
at

www.dcs.kcl.ac.uk/pg/jiayue/milu/

MILU provides a flexible scripting language that supports
mutation operator customization. It also includes several en-
gineering features that reduce the cost of mutation testing
(both first order and higher order). The tool uses a novel ‘test
harness’ technique to invoke mutants efficiently using shared
libraries [29].

The name MILU (麋鹿) was chosen to capture our beliefs
about HOM Testing. MiLu is the Chinese name of a special
kind of deer that composed of four other animals. It has a
horse’s head, a deer’s antlers, a donkey’s body and a cow’s
hooves. In non-Chinese documents, it is sometimes referred
to as Père David’s Deer (Elaphurus Davidianus) [60]. MiLus
are a kind of 4th order mutant. The MiLu is a rare beast, but
a valuable one, just like a HOM. Unfortunately the analogy
stops there; MiLus are not hard to kill. In fact, the MiLu is
an endangered species.

C. Summary of Results Obtained
In our previous work [31] we report experiments using ten

benchmark C programs from the Software-artifact Infrastruc-
ture Repository (SIR) [19]. These range from the well-known
but trivial Triangle program to larger real world examples
such as Gzip (the open source compression utility) and
Space (the widely studied European Space Agency program).
The sizes of the subject programs range from 50 to 6,000 lines
of code. The SIR was used to provide test sets.

Experiments were performed with three algorithms: a Ge-
netic Algorithm, a Hill Climbing Algorithm and a Greedy
Algorithm, all of which out–performed a simple random
search. The best performing algorithm was found to be the
Genetic Algorithm which found more HOMs than any of the
others. However, although the Genetic Algorithm found more
of the subsuming HOMs, the Hill Climber and Greedy algo-
rithms were also found to have their own peculiar advantages,
indicating that all three algorithms may have a role to play
in the search for valuable HOMs. The Hill Climber tended
to find the fittest HOMs, while the Greedy Algorithm tended
to find the highest order HOMs. The fittest HOMs may be
interesting because they are the most stubborn. The highest
order mutants may find application in attempts to reduce
mutation effort because they subsume the largest number of
first order mutants.

The fitness function sought only to find subsuming HOMs, it
did not explicitly target Strongly Subsuming HOMs. Nonethe-
less, of all subsuming HOMs found in the experiments,
approximately 15% were strongly subsuming. This finding
indicates that strongly subsuming HOMs may not be too hard

1. Number of tests passed

2. Syntatic differenceEvolution

population.exe

source.c

Pareto

Grammar
BNF

Test Cases

GP 10000 mutants

gcc

NSGA−II

Fig. 2. High order Multi-objective mutation testing. The BNF grammar tells
GP [51] where it can insert mutations into the original program source.c.
Initially GP creates a population of random mutations, which are compiled
and run against the test suite providing two objectives to NSGA-II [13] which
selects the mutants to retain using a non-dominated Pareto approach [33,
Sec. 3.9] and instructs the GP which mutants to recombine or further change.

to find and that, therefore, there is reason to hope that HOMs
can be used to replace whole sets of constituent FOMs without
loss of test effectiveness.

V. A MULTI OBJECTIVE APPROACH TO FINDING FIT
HOMS: BALANCING SYNTACTIC AND SEMANTIC

DIFFERENCES

Figure 2 shows our recent work [36] where we use search
based techniques to look for higher order mutants according
to two simultaneous objectives: how easy are they to kill
and how different are they from the code under test. Each C
program is analysed and a context free grammar that describes
it and its mutation sites is automatically generated. This is
not the grammar of C but rather a very specific grammar for
the current code. However, it describes precisely each first
order mutation and how, by combining these, higher order
mutants are created. A strongly typed genetic programming
(GP) system uses the grammar [37] to generate high order
mutants. The grammar is set up to ensure every mutant can
be compiled. GP creates a population of mutants. The two
dimensional fitness of each is evaluated by running them
using the existing test suite. NSGA-II is a complete genetic
algorithm [13]. We have stripped out the fitness evaluation
and breeding steps and use the remainder to perform Pareto
ranking multi-objective selection. That is, NSGA-II does not
do fitness calculation or crossover, instead it simply selects
members of the current population of mutants according to
their multi-objective fitness and then instructs the GP to create
the next population of mutants.

Since we are dealing with many mutants at once there
are several economies of scale we can take advantage of.
Instead of compiling each mutant individually, we can place
them all in the same file and compile them all in one go.
Also functions which are known not to have been mutated,
need not be repeatedly compiled. By linking all the mutants
and the non-mutated code into a single image, a whole
generation of mutants can be tested in a single process. This
allows many one-off costs associated with creating processes,
including obtaining resources and opening files, to be shared
by the whole population. This can be an appreciable saving.
Depending upon the nature of the program and its test suite,
it may be more efficient to run all the mutants on a given
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individually passed all the tests. (Total of 5 first order, lower left.)

test before moving onto the next one. Having all the mutants
together makes it easy to invert the normal order in which tests
are run. (E.g. [34].) Other efficiencies and practical measures,
e.g. ensuring mutants can always be run and always terminate
in a reasonable time, and avoiding non-determinism, are listed
in Table I.

Figure 3 gives two counter examples to CHE. The coloured
arrows and * highlight three second order mutations found
in gzip by search which are easy to kill but are each made
from two first order mutants which make no difference to
the test cases. (i.e. they cannot be killed.) For completeness
Figure 3 shows all second order mutants of a specific class (i.e.
interchanging comparison operators, cf. GMO, in code which
is frequently tested). Of course one would not use them all.
Instead we use Figure 3 to illustrate interesting examples. The
second counter example to CHE in gzip, is that there is a
second order mutant which is significantly harder to kill than
either of its two components. (It is highlighted by the pair of
solid black arrows in Figure 3.) It is killed by 88 tests, less
than half the number that kill either of its component first
order mutants.

The vertical bars in Figure 3 are not accidental but indicate
structure. Analysis of high order mutants, even very high order,
has revealed structure which in turn gave insight into the test
suite.

VI. FUTURE DIRECTIONS FOR HIGHER ORDER MUTATION
TESTING

We set out some directions for the future development of
work on HOM Testing.

A. Automated Test Data Generation
Most work on Mutation Testing has been concerned with the

problem of constructing mutants and controlling the problems
of cost and uncertainty that derive from the large number of
mutants and the undecidability of program equivalence. There
has been some work on techniques for generating test data
to kill mutants, thereby using Mutation Testing and a test

data generation technique rather than merely as a test data
assessment technique. Previous authors have used constraint
satisfaction [17], [18], dynamic domain reduction [46], [47]
and search based techniques [8], [56].

Voas [59] characterised the problem of killing a mutant in
terms of the PIE framework. That is, the change in state caused
by the mutant’s execution needs to be propagated (the ‘P’ in
PIE) to some point at which it has an observable effect (e.g.
through output of an incorrect value). However, in order to
have a chance to do this the data state needs to be altered (or
infected: the ‘I’ in PIE) by the execution of the mutant. Of
course, none of this can occur unless the mutant is actually
executed by a test case (the ‘E’ in PIE).

In first order mutation testing, the attempt to execute a
mutant is essentially a reformulation of the problem of reach-
ability, so the ‘E’ in PIE can be addressed using techniques
for branch coverage. Infection can be assessed at the point
of mutation itself (and this would be sufficient for weak
mutation). For strong mutation we additionally require prop-
agation to some output. This is essentially a reformulation of
path sensitivity, since all paths from the mutation point to all
reaching uses in an output can be safely approximated using
a static analysis, such as slicing [25], [58].

For higher order mutants, the problem is a little more
complex. In order to kill an arbitrary HOM it may be sufficient
to execute at least one of its constituent FOMs. However,
for strongly subsuming HOMs, it is only possible to kill the
HOM if all the first order mutants are visited by the execution
of the killing test case. This makes the problem of killing
a HOM harder. However, this is only to be expected. The
whole idea of HOM Testing is to create mutants that are hard
to kill and therefore to simulate faults that may have gone
unnoticed up to that point. We are working on techniques
to extend and develop search based and constraint solving to
create techniques for killing higher order mutants.

B. Exploration of Types of Higher Order Mutant

As shown in Figure 1 there are many different classes of
higher order mutants. Each may be interesting in its own right.
Search based techniques can be used to target a particular
kind of HOM because the fitness function can be written
specifically to reward the search when it locates mutants that
more closely resemble the desired characteristics. It will be
interesting to explore the spaces of different classes of HOMs
using search based optimization to see whether they denote
particular types of fault of behaviour. It will also be interesting
to sample the space of HOMs to approximate the relative
proportion of HOMs in each mutant class. This will allow
us to answer research questions such as whether or not a
particular class is uniformly distributed across all programs
or whether certain types of programming style give rise to
certain characteristics in the distribution of classes of HOMs.

There are many more potentially valuable and interesting
types of HOM that those depicted in Figure 1. We are currently
developing a theory of Higher Order Mutation Testing which
will classify and explain each of the possible types of HOM in
terms of how it interacts with its constituent FOMS. The theory
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TABLE I
PRACTICAL TECHNIQUES TO MAKE MUTATION TESTING SCALE. CF. UMT. FROM [35].

Problems Solutions

Automatic comparison of the output of SIR programs Replace printf results and error messages by status codes (int)
Array indexing errors Automatic array index checking before all array accesses
Run out of memory or (corrupt the heap) Allocate heap memory large enough for all of the test cases
Read or write illegal memory Automatic pointer checking before it is used.
Non-terminated loops Loop counter technique to kill mutants
Harmful system calls and IO operations Record original program’s use of system calls and IO by instrumenting the code. Intercept and check

system & IO during mutation testing
Heavy disk usage Combine tests into a single file. A potential alternative might be to use RAM disk
Non-deterministic mutants Force the initialisation of all variables

will allow us to explore the relationship between HOMs, the
test cases that kill them and the sets of FOMs from which they
are constructed. We believe that this theory will shed more
light on the value and applicability of Higher Order Mutation
Testing.

C. Co-evolution of Mutants and Test Cases
Co-evolution is an approach to evolutionary optimization

in which two or more candidate populations evolve together,
with the fitness of one being determined by the other [11].
In this way the two populations simultaneously evolve. This
can be a cooperative process, simulating symbiotic behaviour
in natural evolution, or it can be competitive, simulating the
familiar predator/prey model of co-evolutionary adaption and
advancement.

For Mutation Testing, it has been argued [2] that the
predator/prey model of competitive co-evolution can be used
to develop sets of hard–to–kill higher order mutants and,
simultaneously, sets of very good quality test cases that are
adapted to reveal subtle and hard–to–detect faults. In this
approach, the two populations are the population of candidate
HOMs and the population of candidate test cases. The fitness
for the HOMs is measured in terms of their ability to evade the
test cases (how many test cases fail to kill them). The fitness
of the test cases is measured in terms of their ability to kill
the mutants.

We can also give a low fitness to mutants that evade all
test cases. These may be equivalent. Of course, they may also
merely be stubborn and our test cases are insufficiently good
to reveal them. Such stubborn (nearly equivalent) mutants are
precisely the kind we seek to find. However, evolution is a
mercifully robust process. The genes of such stubborn mutants
will be scattered through the population. If mutants which
initially appeared to be equivalent are, in fact, merely stubborn,
then it is likely that they will be re-discovered at a later stages
of the evolution, because they remain distributed through the
gene pool. As ever, this means that maintenance of population
diversity will be important for this form of co-evolution to
succeed.

The argument for mutation testing, developed over the thirty
years’ of its history can seem circular: the mutants are good
if they avoid being killed by the test cases, but how do we
know that the test cases are any good; they are good if they
kill the mutants. The Co-Evolutionary approach turns this
uncomfortable circularity from a problem into an advantage.

That is, the apparently circular nature of mutation testing
makes it an ideal candidate for a co-evolutionary approach.
The aim is to make this a virtuous circle of co-evolutionary
improvement.

D. Incorporation of Fault Models into HOM Testing

For systems developed over a longer period of time, there
is often fault data available. For systems developed in a
certain domain or by a certain team, there may also be fault
information available about the domain or team. In such
situations, we are effectively constructing a fault model. Rather
than simply constructing all possible faults, we can focus on
the faults characterised by the fault model. Furthermore, using
HOM Testing, we can seek combinations of these faults that
may have gone undetected because they partly mask each
other. By definition a subsuming HOM is one in which the
first order constituent mutants partly mask one another so that
the HOM so-constructed is harder to kill than its constituent
FOMs.

The search based approach is very well adapted to the
presence of a fault model. It can be used to search for faults
that are not only exemplars of the fault model, but also HOMs
which denote subtle combinations of known likely faults. The
search based approach can also be used to seek out near
neighbours of known faults, using the fault model as a guide.
In this way the search based approach can relax constraints so
that the fault model is not used ‘literally’. Rather, it is treated
as a guide to the kind of faults that may occur.

E. Cost Benefit Analysis of Selective HOM Testing

A strongly subsuming HOM subsumes the FOMs from
which it is constructed and so any test case that kills the HOM
is guaranteed to kill all of the FOMs. This means that it would
be pointless to retain any of the FOMs in the set of mutants; we
need only retain the single HOM. We can reduce the number
of mutants by focusing on strongly subsuming higher order
mutants. In this way, from a staring set of first order mutants,
we can seek a reduced set of mutants that has the same power
simply by allowing higher order mutants.

The reduced number of mutants may help to reduce the
number of test cases required to kill the mutants. This suggests
that there may be a rich space of cost–benefit trade offs
that can be captured by exploring the space of higher order
mutants.
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Search based optimization techniques are well adapted to
cost benefit analysis. All that is required is to capture both the
cost and benefit as a fitness function in order to quantify costs
and benefits. The search process can then seek to balance the
costs and benefits in a multi objective search.

VII. CONCLUSION

Higher order mutation testing (HOM Testing) can be prac-
tical when implemented as a search process that seeks fit
mutants (both first and higher order) from the space of all
possible mutants. The fitness function can be tailored to
the program under test and the specific goals of testing,
thereby reducing the number of mutants required (compared
to the traditional enumerative approach) and simultaneously
increasing the quality and fitness for purpose of the mutants
selected by the search.

The fitness function can take account of fault histories,
known problems and likely pitfalls and can thereby specifically
seek to simulate relevant potential faults that may have gone
unnoticed in preceding testing efforts. In this way the search
based approach can generate not only smaller sets of fitter mu-
tants, it can also seek to target more realistic sets of mutants.
It may even prove possible to use appropriately defined fitness
functions to guide the search away from likely equivalent
mutants, thereby reducing the impact of the equivalent mutant
problem.

For all these reasons, we argue that the Mutation Testing
community should de-couple itself from the belief that first
order mutants are the only set of worthwhile mutants. This
paper has presented a polemic against this ‘First Order Restric-
tion’ to which the community has been wedded for too long.
The First Order Restriction is holding back the development
of the field of Mutation Testing. This paper is an unapologetic
manifesto for Higher Order Mutation Testing (HOM Testing).
Armed with search based optimization, and bold enough to
explore the space of higher order mutants, the possibilities for
the development of Mutation Testing are, indeed, limitless.
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