
Assessing the Impact of Global Variables on

Program Dependence and Dependence

Clusters

David Binkley 1 Mark Harman, Youssef Hassoun, Syed Islam,
and Zheng Li

King’s College London, Centre for Research on Evolution, Search and Testing
(CREST) Strand, London, WC2R 2LS, UK

Abstract

This paper presents results of a study of the effect of global variables on the quantity
of dependence in general and on the presence of dependence clusters in particular.
The paper introduces a simple transformation–based analysis algorithm for mea-
suring the impact of globals on dependence. It reports on the application of this
approach to the detailed assessment of dependence in an empirical study of 21 pro-
grams consisting of just over 50K lines of code. The technique is used to identify
global variables that have a significant impact upon program dependence and to
identify and characterize the ways in which global variable dependence may lead to
dependence clusters. In the study, over half of the programs include such a global
variable and a quarter have one that is solely responsible for a dependence cluster.

Key words: Dependence Cluster, Program Slice, Global Variable

1 Introduction

Global variables are generally deprecated in advice to programmers, with
many authors arguing that they have negative effects [39,47,53]. The use of
global variables has been argued to have harmful effects on many aspects of
software engineering, including maintainability [54] and correctness [3]. Some
programming practitioners have gone so far as to suggest, perhaps only semi–
seriously, that programmers might be fired for using global variables [49]. Of
course, the introduction of global variables can produce potential efficiency
gains [45], but such global–introduction transformations are performed as a

1 On sabbatical leave from Loyola College in Maryland

Preprint submitted to Elsevier 25 March 2009

meaning–preserving compiler optimization, not as an approach to source-level
code improvement.

Though the typical view in programming language texts (for example Stroup-
trup’s C++ book [46]) is that global variables may often be a source of prob-
lems, this view is not universally held. Some authors have even suggested that
global variables should be used in place of local variables [24]. However, despite
much debate and advice on the use of global variables over several decades,
there remains little empirical study of the effects of global variables.

Program dependence, which captures the influence of one program compo-
nent on another, is important because it has a bearing on so many aspects
of software engineering. For example, program dependence has been linked to
the ease with which a program can be understood, in work on program com-
prehension [2,21]. The effect of program dependence is also felt in software
maintenance and re–engineering, where it delimits the changes that may be
performed [25,50] and captures the impact that such changes will have [19].

Dependence analysis forms the cornerstone for many software engineering
activities that rely upon program analysis, such as program comprehension
[2,21], impact analysis and reduction [19,50], reuse [20], software maintenance
[25], testing and debugging [11,30,41], virus detection [37], and restructuring
and reverse engineering [4,36].

This paper presents a technique used to study the effects of global variables
on dependence as well as results from empirical studies of these effects. The
impact of even a single global can be very far–reaching; in some of the programs
studied, a single global was found to account for most of the program’s overall
dependence connectivity.

The paper is also concerned with the effect that a global variable has on
the presence or absence of large dependence clusters. A dependence cluster is
a set of program statements, all of which are dependent upon one another.
Recent work [9] has shown that dependence clusters are surprisingly prevalent.
Therefore, one of the additional goals of the study reported herein is to explore
the ways in which global variables can lead to dependence clusters.

As this paper will show, global variables can be the cause of dependence clus-
ters. The ability to identify the causes of dependence clusters has implications
for work related to these analyses. For example, in program comprehension,
several authors have considered hierarchical decomposition as a navigation
mechanism that manages the cognitive complexity of program dependence
[2,21]. However, the presence of a dependence cluster will lead to a degenerate
collapsed hierarchy, in which such decomposition will be difficult. The ability
to identify causes of clusters may allow such navigation tools to either avoid

2

them or to treat them as special cases. Furthermore, the ability to break some
clusters will improve the applicability of these approaches.

The paper makes the following primary contributions:

(1) It introduces an algorithm for variable substitution that allows the de-
pendence due to a particular global variable to be ignored. This is used
to assess and measure the effects of the global variable on dependence.

(2) The paper presents quantitative results that assess the effect on depen-
dence of 849 global variables in 21 programs. The study reveals that more
than half the programs considered have individual global variables that
have a significant impact on overall program dependence.

(3) The paper presents further qualitative results of the effect these high
dependence globals have on large dependence clusters. In some cases, a
single global was found to be the sole cause of a cluster, establishing
evidence for a link between the use of globals and the presence of large
dependence clusters. The study also investigates the categories into which
these effects fall and the source code constructs that cause them.

(4) Finally, the paper presents a case study in which sets of global variables
collectively combine to cause dependence clusters.

The rest of the paper is organised as follows: Section 2 presents background
material on dependence clusters. Section 3 introduces the algorithm for elimi-
nating dependence due to a global variable and uses this to measure the effect
of each global has on overall program dependence. Sections 4 and 5 present
the five research questions addressed by the experiments and the experimental
design. Sections 6 and 7 present the results of the quantitative and qualitative
studies of global variable dependence effects, while Section 8 presents the case
study of multi-global variable dependence effects. Sections 9 and 10 consider
threats to validity and related work, and finally, Section 11 summarises the
paper.

2 Dependence Clusters

A dependence cluster is a maximal set of program points all of which are
mutually inter–dependent. Being maximal, a dependence cluster is not con-
tained within any other dependence cluster. One complexity in identifying
dependence clusters is the non-transitive nature of dependence for certain
language constructs such as threads [34] and procedures [31]. This means that
dependence clusters are not simply strongly connected components within a
dependence graph. Fortunately, context-sensitive interprocedural dependence
analysis captures the necessary calling-context information [31].

3

Fig. 1. Two kinds of reduced dependence. In the left chart, the dependence cluster
is broken. In the right chart, the cluster size is reduced, but the cluster remains
unbroken.

To visualize dependence clusters the Monotone Slice-size Graph (MSG) was
introduced [9]. A slice is a sub-program that captures a semantically mean-
ingful sub-computation from a program. Slices can be efficiently computed
using the System Dependence Graph (SDG) [31]. An MSG is a graph of all a
program’s slice sizes plotted in monotonically increasing order on the x-axis.
The y-axis measures slice size.

For ease of comparison the MSGs shown in this paper use the percentage of the
entire program on the y-axis. Thus, an MSG plots a landscape of monotonically
increasing slice sizes, in which dependence clusters correspond to sheer–drop
cliff faces followed by a long flat plateau (e.g., see the black line in Figure 1).

To illustrate cluster identification using an MSG, Figure 1 shows four example
MSGs. As explained below, each graph includes two MSGs: an original MSG
in black and a post reduction MSG in grey. For example, the MSG in black
in the left chart shows (reading along the horizontal axis) that approximately
the first 20% of slices are very small (containing about 10% of the program),
after which the MSG reveals a sharp increase to almost 80% of the program.
Most of the remaining slices are all of essentially the same size. This is visual
evidence of a dependence cluster in the program. The MSG for a program
devoid of clusters is shown in grey under this line.

3 Assessing the Impact of Global Variables on Dependence

The impact of global variable g is measured in terms of the area under the
MSG. That is, the difference in the area for the MSG constructed from the

4

program with and without the dependence due to g will be deemed to denote
the impact of g on overall program dependence.

Of course, reducing the quantity of overall program dependence may not mean
the breaking of a dependence cluster for which MSG area reduction is a neces-
sary, but not sufficient condition. This is illustrated in Figure 1 where the two
charts show the two kinds of reduction. Both original (black) MSGs include a
considerable cluster. The (lower) grey MSG in the left chart shows the result
of ignoring the dependence associated with the global variable encodings; this
clearly breaks the cluster. In the chart on the right the (lower) grey MSG
shows only a reduction in the size of the slices making up the cluster. In this
example the cluster itself is still present.

In order to measure the impact of ignoring the dependences associated with a
given global variable, the approach adopted in this paper transforms the pro-
gram to remove all such dependence. However, although this may be simple in
principle, it turns out that the program analysis task of ‘ignoring dependence’
is not entirely trivial in practice.

The goal is to ignore all dependence that can be caused by definitions and
references of the global variable. To achieve this, it is insufficient simply to
mark as untraversable dependences due a given global variable. The reason
for this is that such an edge-ignoring approach will not take into account the
secondary effects that a global variable has. For example, upon computations
that support the identification of dependence, such as dependencies due to
pointers and the summary edge computation used by CodeSurfer [27] to build
an SDG.

To illustrate, consider ignoring the dependence caused by global variable g2 in
the code fragment and partial SDG shown in Figure 2. Because p may point
to g1 or g2, the assignment *p = 23 does not definitely kill the assignment
g1 = 42. However, in the absence of g2, *p = 23 kills the assignment g1 = 42
because p only points to g1. This obviates the need for the data dependence
edge from g1 = 42 to local = g1.

As this example shows, simple edge marking is insufficient. To overcome this,
the paper introduces a simple transformation to syntactically delete the global
variable from the AST. Of course, such a transformation is not meaning pre-
serving. It is not intended to be. It merely serves the purpose of ignoring
all dependence due to the global variable under consideration. The resulting
SDG is used to analyse the impact of the global by comparison to the original
SDG (with all dependence due to the global included). In this way, the global
variable’s impact upon dependence can be fully assessed.

To study the impact of ignoring the dependences due to a global variable, it
is pragmatic to observe two principles:

5

local = g1;

p = ... ? &g1 : &g2;

g1 = 42;

*p = 23; // may kill the preceeding assignmnet

g1 = 42 *p = 23 local = g1

Fig. 2. Illustration were marking edges is insufficient.

(1) The size of the program should not be changed more than necessary.
(2) The effects of dependences not due to the global should remain unaffected

Taking these two concerns into account, the transformation rules replace each
occurrence of a global in such a way that dependence structure is otherwise un-
changed while having minimum impact on program size. For example, consider
the assignment a=g+b where only the dependencies associated with global
variable g is to be ignored. A minimum impact replacement, assuming that g
is an int variable, would be to replace g with a constant of the appropriate type
(e.g., 0). While this would clearly change the meaning of the program (unless
g happens to always have the value 0), the revised statement a=0+b preserves
the dependence of a on b and also the size of the program (in this case right
down to the character level); its sole effect is to removal the dependence of
the statement on global variable g.

In the general case, any type-appropriate constant will suffice. In the for-
malization of the replacement, the name ‘TAC’ is used to denote this type-

appropriate constant. For example, the constant ((int *)0) is used for a global
variable of type int *.

To further illustrate the transformation, consider the replacement of the ex-
pression “g++”. This is a two step process. The first replaces g++ with g and
then second replaces g with TAC. The resulting expression removes depen-
dencies associated with g, but does not change the number of SDG vertices
used to represent the code; thus, in terms of the analysis presented in the next
section, this change does not impact the program’s size.

A careful analysis of the grammar for C allows program size reduction to be
kept to a minimum. For example, C treats the array expression a[i] internally
as the pointer expression *(a+i), which is equivalent to *(i+a) and hence i[a].
This allows occurrences of a global array g to be replaced with a constant

6

and thus removes the dependence associated with the global array. For ex-
ample, global array[i++] is transformed into TAC[i++] where the resulting
program omits dependencies associated with global array, but maintains the
dependencies associated with i.

The formal rules for when a type-appropriate constant is suitable are given by
the function DL (which identifies expressions that denote a named location).
When this function returns bottom (⊥) then the use of TAC is permitted.
Otherwise, the expression involving the global, must be deleted from the pro-
gram. In the transformation rules, this latter case leads to the global being
rewritten to the empty string, λ. In most cases, such a replacement does not
impact the program’s (SDG’s) size. Its effect is primarily on the source repre-
sented by a given SDG vertex.

The remainder of the section formalizes the global variable dependence-elimination
transformation. The algorithm, which operates on C programs, is presented as
a set of transformation rules. Modification for other similar languages (e.g.,
C++) is straightforward.

Transformation rules are written as

constraint set

input source

output source

and make use of the following notation

• TAC denotes a type appropriate constant

• λ denotes the empty string
• [x|y] denotes the selection of x or y

• var(declarator) denotes the variable declared
For example, var(a[]) and var(*a) are both a.

• g denotes the global targeted by the transformation

The rules transform declarations and expressions that involve g. In general,
C language declarations involve storage class and type specifiers followed by
a list of declarators. The transformation, shown in the upper left of Figure 3
removes declarators that resolve to g (e.g., g, g[10], or **g). While syntactically
valid, if this leaves an otherwise empty declaration, the tool removes the entire
declaration.

For most expression occurrences of g it is sufficient to replace g with a TAC

using the rule at the upper right of Figure 3. However, there are four special
cases involving lvalues that require special treatment because an lvalue de-
notes a modifiable memory location [44]. Lvalues are defined by the following
production from the C grammar [44]:

7

lvalue → identifier
→ * expression
→ primary ’[’ expression ’]’
→ primary -> identifier
→ lvalue . identifier
→ (lvalue)

Only lvalues that denote (part of the) the location represented by g require
special treatment. Those that simply involve g in denoting some other location
do not. For example, no special treatment is needed for g[i], which is replaced
by TAC[i] to correctly retain the use of i. As noted above, this is legal in C
and thus a convenient method for achieving the minimum impact removal of
the dependence induced by the global. In the four special cases, the function
DL identifies those lvalues that denote a location directly associated with an
identifier:
fun DL identifier = identifier

| DL * expression = ⊥
| DL primary ’[’ expression ’]’ = ⊥
| DL primary -> identifier = ⊥
| DL lvalue . identifier = DL(lvalue)
| DL (lvalue) = DL(lvalue)

Thus, DL(a[i]++) = ⊥ because there is no identifier associated with the in-
cremented memory location, while DL(p.x) = p because part of the location
referred to by p is modified.

The four special cases are shown as the bottom four rules in Figure 3; they
occur when (some part of) g’s address is taken, when it is modified by an as-
signment operator, and when an increment or decrement operator is involved.
In the first case, NULL is used rather than TAC. For the second, the assign-
ment portion of the assignment expression is removed. That is, “g += i++” is
transformed into “i++”. For the final two cases, the increment or decrement
operator is simply removed.

It is interesting to note that, for occurrences of g such as *g = 2, the general
rule is sufficient because g itself is not being modified. In practice this leaves
an anonymous location being updated (through TAC). Such locations do not
cause dependencies in the SDG, and thus the transformation retains only the
effect of the right-hand side of the assignment expression. There are other
similar cases when the transformation removes parts of statements that have
no effect on the program’s dependencies. For example, the transformation of
“g++” leaves “TAC”. Further examples are shown in Figure 4.

8

{ var(declarator) = g }

declarator

λ

{}

g

TAC

General Cases

{ DL(lvalue) = g }

& lvalue

NULL

{ DL(lvalue) = g }

lvalue assign op expression

expression

{ DL(lvalue) = g }

[−− | ++] lvalue

lvalue

{ DL(lvalue) = g }

lvalue [−− | ++]

lvalue

Special Cases

Fig. 3. Transformations for removing variable g.

Original Transformed Original Transformed

Code Code Code Code

int g λ int a,g int a

g *= a++ a++ g.x = a+b a+b

*g *TAC g → x *(TAC).x

g[i] TAC[i] A[g] A[TAC]

&g NULL &A[g] &A[TAC]

Fig. 4. Transformation examples showing the replacement of g with TAC.

4 Research Questions

The empirical analysis addresses three sets of research questions, concerning
the qualitative and quantitative effects of single globals and the combined
effects of sets of globals (multiple globals). The study reports results on the
quantitative effects that global variables have upon program dependence in
general and the specific qualitative effect that high dependence globals have
upon the program’s large dependence clusters.

The majority of the results concern the effects of single globals because these

9

potentially produce the most valuable information to the software engineer.
That is, if it is possible to identify a single global variable that can be deemed
to be responsible for a dependence cluster, then the engineer has a chance to
consider the meaning of this variable and ways in which it might be possible to
account for, ameliorate or otherwise reduce the impact of the dependence clus-
ter. Clearly, where clusters have multiple causes, such amelioration may also
be possible, but it is likely that dealing with single causes will be preferable.

Research Question RQ1.1:

Overall Quantitative Effect of Single Globals

Over all programs, what proportion of dependence is due to global variables
and how many globals have a significant impact (as defined in Section 5.2) to
total program dependence?

Research Question RQ1.2:

Quantitative Effect of Single Globals on Each Program

For each program considered separately, how many globals have a significant
impact (again using the statistical tests described in Section 5.2) on depen-
dence and what is the magnitude of their effect? (This question make more
sense knowing the results for RQ1.1.)

Research Question RQ2.1:

Qualitative Assessment of Effect of Single Global on Dependence

Clusters

What effects do global variables have upon dependence clusters?

Research Question RQ2.2:

Qualitative Assessment of the Causes in Source Code

What source code patterns are found that correspond to the effects of global
variables on dependence clusters?

The four research questions above concern the effects of single global variables.
Research Question RQ3 concerns the effects of multiple globals on dependence
clusters.

Research Question RQ3:

Qualitative and Quantitative Effect of Multiple Globals on Each

Program

What effects can be found where multiple global variables participate collec-
tively in causing dependence clusters?

10

5 Experimental Design

This section briefly describes the programs studied and the tests used to assess
whether a global variable has a significant impact upon dependence.

5.1 Programs Studied and their MSGs

The 21 programs used as subjects in the study are described in Figure 5.
They were taken from online repositories such as directory.fsf.org and planet-
source-code.com except for space which is code created for the European Space
Agency. For each program, the figure includes the name of the program, the
number of slices taken when analyzing it, its size in lines of code as counted by
the unix utility wc and the number of non-blank non-comment lines of code as
counted by sloc [52], and finally a brief description. These programs cover a va-
riety of application domains such as programming utilities, terminal software,
booking systems, simulations, games, interpreters, and code transformation
tools.

5.2 Statistical Tests Applied

The statistical tests used in this paper follow the well established approach
to measuring the significance of effects adopted in work on control limits the-
ory [42]. Two statistical tests are applied to determine those global variables
that have significant impact on overall program dependence. The first is based
on the notion of outliers, while the second is based on variance. A global vari-
able is taken to have a significant impact upon program dependence if it is
determined to be significant by both tests. The reason for considering both
tests is to reinforce each individual test. Furthermore, tests based upon out-
liers are more robust against non-normality in the data distribution. Finally,
note that most common statistical tests, such as a t-test, are not applicable in
this case. Many such tests assume that the data come from normal population
and compare population means but are not designed to test if a given value
is expected to lie outside a population.

Using the outlier approach [1], a point is significant if it lies three times the
interquartile range below (or above) the mean. Thus, using this approach, a
global variable has a significant impact upon program dependence if it causes
a reduction in the area under the MSG that is more than three times the

11

Slice

Program Count wc sloc Description

address book 1478 884 701 Diary management

barcode 5234 4192 2806 Barcode encoder

bc 4515 12113 7721 Calculator

compress 1201 1294 793 File compression

ctags 16716 15222 11387 C tag generator

ed 12261 9274 6202 Line editor

fass 1862 1155 990 8086 Assembler

file server 1229 792 632 HTTP server

indent 5263 6697 4773 Pretty printer

interpreter 1880 1553 1185 Expression evaluator

lottery 2020 1382 1251 Lottery Player

nascar 1992 1096 722 Nascar Racing

pc2c 3507 1246 945 Convert Pascal to C

protest 1201 756 512 String matching

replace 803 565 513 Rexp replacement

space 9367 11987 6180 Array preprocessor

sudoku 545 710 420 Sudoku solver

sudoku1 584 915 376 Sudoku solver

time 877 2243 1308 Time pretty printer

wdiff 1484 3378 1986 Word by word diff

which 1414 2982 1807 File look utility

Total 79123 81636 54148

Fig. 5. The 21 programs studied

interquartile range below the mean. In the variance approach [1], a point
more than two standard deviations below (or in general above) the mean is
significantly different, while a point three or more standard deviations below
the mean is taken as highly significantly different. Thus, using this approach, a
global variable has a significant impact upon program dependence if it causes a
reduction in the area under the MSG that is two standard deviations below the
mean. Furthermore, it has a highly significant impact if it causes a reduction
in the area under the MSG that is three standard deviations below the mean.

In the data analysis the interquartile range and the standard deviation are
computed using two different samples. The first includes all the data from all
the programs collectively; a global variable is considered to be significant iff
it causes a significant impact on the quantity of dependence, relative to the
mean of all 849 variables considered in the whole study. The second approach
considers each program in isolation; thus, a global variable is considered to be
significant iff it causes a significant effect on dependence, relative to the mean

12

of all global variables in that program.

It turns out that, for all programs, the variance approach is a stricter test for
significance than the outlier approach: if a result is significant according to
the variance approach, then it is also significant with respect to the outlier
approach (though not necessarily vice versa). In the experiment while both
tests were applied and the resulting sets of global variables intersected, the
result was always the same as if only the more strict variance approach was
used.

6 Impact on Dependence Levels

The quantitative study is concerned with addressing Research Questions RQ1.1
and RQ1.2. It provides results of the assessment of the impact of each global
variable (of 849 in total) on the dependence in the programs in which these
globals reside.

6.1 RQ1.1: Overall effects of Single Global Causes

For each of the programs, the MSG was first computed using the unmodified
program. Then, it was re-computed 849 times. Each re-computation ignored
the dependence due to one of the global variables. Dependence effects were
then assessed by comparing the area under the MSGs.

Over all globals in the study, the average area remaining after a global vari-
able’s dependences are ignored was 97.4% with a standard deviation of 8.6%.
Figure 6 shows a histogram of results for the reduction due to globals. Clearly,
most globals cause little reduction: 800 of the 849 global variables no more
than a ten percent reduction. However, more importantly, as can be seen in
the right hand detailed histogram, there do exist some global variables that
have a considerable impact on the quantity of dependence in the programs in
which they reside.

Figure 7 shows the 30 of the 849 global variables that have a significant impact,
with those having a highly-significant impact shown in black. The y-axis shows
the remaining dependence for each global variable shown on the x-axis. This
represents 3.5% of all the global variables. Therefore, the answer to RQ1.1 is
that there are a few individual global variables that have a significant effect
on the quantity of program dependence, but most globals have little effect.

13

Fig. 6. Histogram showing the counts (on the y-axis) of globals leading to different
ranges of dependence reduction. As the left-hand histogram shows, most global
variables have little effect; they fall into the 0-10% range. The right-hand histogram
zooms in on the remaining data which shows reductions from 10-100%.

Fig. 7. Impact of ignoring dependencies for each global variable. The chart measures
the remaining dependence on the y-axis for the 3.5% of the global variables that have
a significant impact. Highlighted in black are those that have a highly significant
impact.

6.2 RQ1.2: Per Program Effects of Single Global Causes

The answer to Research Question RQ1.1 suggests that there are only a few
global variables that have a significant effect on dependence. A natural ques-
tion to ask is whether these are concentrated in a few programs that are in
some way ‘special cases’, or whether there are many programs that contain
a global that causes a significant effect on dependence. This is the question
raised by Research Question RQ1.2.

Over all 21 programs, twelve programs include at least one of the variables
identified in the previous section as causing an overall significant dependence
reduction. Figure 8 shows the reductions for the top four variables from each
of these twelve programs (the break down of the reduction kinds are discussed
in the next section). It is noticeable from this figure that the second and
subsequent global variables have considerably lower impact than that of the
first global variable. These results provide an intriguing answer to Research
Question RQ1.2: though there may be few significant global variables overall,
more than half the programs studied have only one of them.

14

Fig. 8. Impact of ignoring dependencies for each global variable. The chart shows the
four reduction causing global variables for programs where at least one significant
global variable exists.

Section 5.2 describes two statistical tests that are applied to determine if a
global variable causes a significant difference. These test can be applied to
the entire pool of global variables (as done above) or to the globals of each
programs independently. This second version asks not whether a variable, g

is significant among all variables studied, but whether g is significant among
only those globals that reside in the same program as g. The results serve to
strengthen confidence in the answer to RQ1.2.

Figure 9 shows a comparison of the two approaches to assessing significance.
Figure 10 shows the visual relationship between the two approaches to test-
ing for significance. As can be seen from Figure 9, apart from one case (the
program time), all those programs that contain global variables that are signif-
icant among all globals, also contain globals that are significant in the program
in which they reside. This lends additional evidence to support the belief that
many programs may contain globals with a significant effect on dependence.

7 Impact on Dependence Clusters

The previous section considered the quantitative impact of global variables on
dependence in general. This section focuses on the specific impact of global
variables on the dependence clusters of the programs studied.

15

Significant Impact
Counts

Program Mean Standard Cutoff Prog All
over all 97.4% 8.6% 80.2% 26 29
ed 99.8% 0.3% 99.1% 1 0
bc 99.7% 0.5% 98.7% 0 0
which 99.7% 0.5% 98.6% 0 0
indent 99.5% 1.6% 96.4% 5 0
address 98.5% 2.4% 93.8% 1 0
wdiff 98.6% 2.5% 93.6% 0 0
interpreter 98.5% 2.7% 93.2% 1 0
lottery 96.8% 4.6% 87.5% 2 1
compress 97.4% 4.7% 87.9% 3 2
ctags 98.9% 7.7% 83.4% 1 1
protest 94.3% 11.3% 71.6% 2 5
time 96.8% 11.3% 74.3% 0 1
barcode 98.2% 11.6% 74.9% 1 1
nascar 93.7% 11.8% 70.1% 1 2
sudoku1 91.5% 12.9% 65.6% 1 5
sudoku 91.5% 13.0% 65.4% 3 3
pc2c 94.6% 14.9% 64.8% 1 2
fass 92.5% 15.8% 60.9% 1 1
file server 89.1% 17.1% 54.9% 2 5
replace - - - 0 0
space 99.8% - - 0 0

Fig. 9. For each program, the mean reduction leading to the number of globals
causing a significant reduction (penultimate column). Each line of the table includes
the mean area when ignoring the dependence of each global, the standard deviation
of the mean, the cutoff for a significant impact, and the two counts. The final column
is the number of significant globals using the mean over the entire collection of
programs, which is shown in the first line. The program replace has no globals and
the program space has only one.

7.1 RQ2.1: Overall Categorization of the Effects of Single Global Causes

From Section 2, a reduction in area under the MSG is a necessary, but not
sufficient condition for the breaking of a dependence cluster. Research Ques-
tion RQ2.1 asks if the reduction in area under the MSG is accompanied by a
corresponding breaking of clusters. This is a more subjective determination.

To address this question the 849 MSGs were examined. Four patterns emerge,
which will be denoted: break, partial break, sub-cluster break, and drop. Rep-
resentative examples of the four are shown in Figure 11 where each graph
shows two MSGs: the original MSG in black and the MSG after ignoring the

16

Fig. 10. Number of programs with various numbers of global variables having a
significant impact.

dependence of the given global variable in grey. For example, the MSGs for
barcode shown at the far left illustrate the break case where a large depen-
dence cluster disappears. Next to this is a partial break. Here the MSG (when
ignoring buffr of pc2c) shows a clear but partial breaking of the dependence
clusters of pc2c. In this case approximately three fifths of the cluster disap-
pears. Next to this, is a sub-cluster break where the one large cluster in the
MSG for ctags fractures into a collection of smaller clusters (evidenced by the
stair step pattern in the MSG). The final MSG illustrates the drop case where
no cluster breaking occurs; the size of the slices making up the cluster are
simply reduced, though the cluster remains. Thus, the characteristic cliff-face
and plateau is still present but with reduced height.

As shown in Section 6 using the data over all programs, 29 global variables are
significant, while using the per program data, 26 global variables are identified.
Those global variables identified by the per-program data that are not by the
all-program data are all drops of small magnitude.

Figure 12 summarizes the categorization of the effect of each significant global.
Numerically, the 16 global variables significant in both approaches produced
3 breaks, 6 partial breaks, 2 sub-cluster breaks, and 5 drops. Thus, in total,
ignoring the dependence associated with just over half of the significant global
variables and 1.3% of all globals (11 of the 849), led to the breaking of clusters.
Figure 8 includes the categorization for each program using the data over all
programs.

17

Break Partial Break

Sub-cluster Break Drop

Fig. 11. Examples from the classification of MSGs

Partial Sub-cluster

Break Break Break Drop

All Data 4 10 2 13

Per Program 3 6 2 15

Both 3 6 2 5

Fig. 12. Effect of global variables with a significant impact on dependence clusters.

Over half the global variables that are considered significant (either per pro-
gram or overall) play an important role in the formation of a dependence
cluster. Furthermore, as can be seen from Figure 8, all of the programs that
contain a global variable that has a significant effect on dependence also con-
tain a global variable with a non–trivial role to play in the formation of large
dependence clusters.

18

7.2 RQ2.2: Source Code Features that Appear to Cause Clusters

To answer Research Question RQ2.2 the source code of each program with
one or more significant global variable was inspected in an attempt to identify
source code patterns that cause the use of globals to lead to the presence
of dependence clusters. Four patterns emerge. These will be denoted: central

data structure, top-up, lazy programmer, and library. Each is now defined and
illustrated using case study examples from the code studied.

Examples of a central data structure include the board in a game, the memory

registers used by interpreter, the current instruction processed by the assembler
fass, and current state of the parser within the pretty printer indent. In most
cases, ignoring the dependence associated with such a global variable simply
causes a drop, but not a breaking of dependence clusters. This is primarily
because dependencies involving other variables continue to tie the disparate
parts of the cluster together.

However, in some cases, the central data structure is all that binds the clus-
ter; ignoring its dependencies breaks it. For example, in fass, the current in-
struction is held in a central data structure. Ignoring this global variable’s
dependencies disconnects the code for processing each kind of instruction.

The second pattern, top up, is caused by a variable that adds an often small
increment to a large collection of slices. The most common cause of this pat-
tern is an input buffer where the reading of the input is part of most slices
and gets ‘cut off’ from each of these slices when ignoring the input buffer’s
dependencies.

In four of the twelve occurrences of this pattern, the input was subsequently
used in sufficient decision logic to also lead to some evidence of cluster break-
ing. With three of the four, this applies to only a small number of slices. The
fourth is buffr from pc2c. As shown in the upper right chart of Figure 11,
approximately three fifths of the large cluster is broken up by ignoring the
(decision based) dependencies of buffr.

The third pattern, lazy programmer, occurs when a single global variable is
used in place of a collection of locals. Often this pattern is obvious from the
global variable’s name (e.g., temp or xxindex). This pattern causes needless
dependence connections between functions; thereby, linking together otherwise
unrelated parts of the program.

An example of this pattern is the global FRS (Function Return String) from
pc2c. Its dependencies’ impact on the MSG (a drop) can be seen in the lower
right of Figure 11. Other examples include (loop) counters and (input) file
pointers.

19

The final pattern, library, occurs in three of the programs. It is the only
one that was always associated with at least partial breaking of dependence
clusters in this study. This pattern is similar to the central data structure

pattern except that the data structure is read only. Instances include
struct encoding encodings[]; from barcode,
static parserDefinition** LanguageTable; from ctags, and
char *output format; from time.

For example, the array encodings holds a pointer to each of the kinds of barcode
that the barcode program is able to encode. Similarly, ctags can produce tags
for a variety of languages. The selection is achieved by indexing into the global
array LangaugeTable. Finally, output format is used by the output function of
time. The format is iterated over; thus, tying together the code for all the
various output formats.

Library variables cause dependence clusters primarily because static analysis
tools cannot determine that the particular element chosen will not change.
For example, from the static analysis point of view, it is possible for barcode
to switch encoding functions in the middle of an encoding. This serves to link
together the different encoders into one large cluster. The (external) insight
that only one encoder is ever used for any given encoding (execution of the
program) would allow a comprehension tool, for example, to break the cluster.
However, such a tool would require sophisticated domain knowledge, placing
this beyond the abilities of current dependence analysis technology.

8 Multiple Global Causes

This section considers the effects of ignoring the dependencies associated with
combinations of globals. Several of the programs shown in Figure 8 include
such sets of multiple significant global variables. Program pc2c is used as an
illustrative case study. Similar patterns exist in compress, file server, protest,
and sudoku. The case study considers the two significant global variables: FRS
and buffr and the ‘almost significant’ global variable buffw. The dependence
reductions achieved by ignoring various combinations are shown on the y-axis
of the chart at the top left of Figure 13.

Next to the percent reduction bar chart, the top row of Figure 13 shows
pc2c’s original MSG and the MSG resulting from ignoring the dependence
of all three variables. The interesting thing to note in the final MSG is the
complete breaking of the clusters. The second row shows the MSGs for buffr,
FRS, and their combination, which is interesting because it shows more than
simply the combined effect. That is, in addition to the ‘break’ and ‘drop’, it
also shows evidence of a sub-cluster break. The final three charts show the

20

Fig. 13. MSGs for selected global variable of pc2c showing the impact of ignoring
dependences associated with combinations of global variables.

MSG produced when ignoring dependence associated with buffw, buffw and
FRS, and buffr and buffw.

9 Threats to Validity

This section considers threats to the external, internal, and construct validity
of the results presented. The main external threat arises from the possibil-
ity that the selected programs are not representative of programs in general,
with the result that the findings of the experiments do not apply to ‘typical’
programs. The programs studied include a wide variety of different tasks in-
cluding, applications, utilities, games, and system code. There is, therefore,
reasonable cause for confidence in the results obtained and the conclusions
drawn from them. However, all of the programs studied were C or C++ pro-
grams. Therefore, it would be premature to infer that the results necessarily
apply to other programming languages.

21

Internal validity is the degree to which conclusions can be drawn about the
causal effect of the independent variable on the dependent variable. In this
experiment, the primary threat comes from the potential for faults in the tools
used to gather the data. A mature and widely used slicing tool (CodeSurfer [27])
was used to mitigate the concern.

Construct validity assesses the degree to which the variables used in the study
accurately measure the concepts they purport to measure. Note that in the
presence of human judgments, construct validity is a more serious concern. In
this study the only measurement is of slice size, which can be done accurately.

10 Related Work

This paper considers the role global variables play in source-level dependence
in general and dependence clusters in particular. Though global variables have
long been regarded as a potential causes of problems [53], there has been no
previous work that has provided a quantitative assessment of their impact
on dependence. Previous work on dependence clusters in software engineer-
ing [22,38,40] has focused on higher levels of abstraction, such as models or
functions. Previous work on source-level dependence clusters has been primar-
ily carried out in support of compiler analysis where semantics preservation is
a key requirement [23,33,43].

Dependence analysis has been shown to be effective at reducing the computa-
tional effort required to automate the test-data generation process [29]. Using
dependence analysis, it is possible to reduce both the amount of code to be
tested and the size of the input domain. However, the presence of large depen-
dence clusters will mean that no such reduction can be achieved when testing
any part of the program that lies in a cluster. Identifying and busting these
clusters can therefore be thought of as a step towards improving testability.

In software maintenance, dependence analysis is used to protect a software
maintenance engineer against the potentially unforeseen side effects of a main-
tenance change. This can be achieved by measuring the impact of the proposed
change [19] or by attempting to identify portions of code for which a change
can be safely performed, free from side effects [25,50]. Unfortunately, all state-
ments in a dependence cluster transitively impact all other statements in the
cluster. Therefore, the ripple effect for these statements will be large and any
attempt to perform a modification will be challenging.

The transformation based approach to assessment of dependence due to glob-
als and the effects on dependence clusters is similar to Krinke’s barrier slicing
[35] and the ‘wedge’ transformation of Lakhotia and Deprez [36]. In barrier

22

slicing, barriers are used to prevent consideration of any dependence past the
barrier. In tucking, a wedge is inserted into the code to ‘cap off’ dependence
before the wedge so that the code may be split out and folded into smaller,
ideally more cohesive, sub units.

The work reported in this paper is part of a research agenda, currently being
pursued by two of the present authors (Harman and Binkley) and their col-
leagues and collaborators. For this agenda, dependence analysis is advocated
as a way to provide tools and techniques for empirical assessment of depen-
dence structures. The present paper is an invited submission to a special issue
of JSS and it was largely through this work that the invitation to submit the
present paper arose. The authors have been encouraged by the editor to in-
clude a brief overview of this previous work in this section. To achieve this,
the following paragraphs set out the results so far established in this on-going
‘empirical dependence analysis’ research agenda.

Binkley and Harman [14] presented the first study which aimed to answer
the question: ‘How big is a typical program slice?’. Though slicing had been
first proposed some 24 years previously by Mark Weiser [51], there had not
been any subsequent attempt to systematically slice a large code base using
every possible slicing criterion, thereby providing baseline data on slice size.
This paper aimed to do just that. The paper constructed slices for 43 pro-
grams containing just over one million lines of code. To date, this remains
the largest empirical study of slicing in the literature. It also considered the
impact that calling context and structure field expansion has on slice size.
In order to construct the large number of slices required, several novel slice
efficiency techniques were introduced [15,18]. The paper was later extended
[12] to provide a larger study that also considered the effects of dead code,
pointer analysis, and slice granularity on the size of slices produced.

Subsequently, Binkley and Harman noticed that, though forward and back-
ward slicing are dual notions of dependence, there is an interesting difference
in the distribution of size of slices. That is, because of the duality of forward
and backward dependence, the average size of a set of forward slices of proce-
dure or program p will be identical to the average size of the backward slices
of p. However the distributions of these slices are very different; the forward
slices tend to be smaller. This was demonstrated empirically, where it was
shown that the difference in slice–size distribution is entirely due to the ef-
fects of control dependence in structured languages [8]. This realization lends
to forward slicing a hitherto unrealized importance, making it all the more sur-
prising that forward slicing has been largely overlooked in the literature, by
comparison with its much more widely–studied counterpart: backward slicing.

Though forward slices have been demonstrated to be smaller than backward
slices, the sad fact remains that all static slices, forward or backward, tend to

23

be rather large. That is, a programmer faced with a million line program, is
unlikely to be consoled by a 300,000 line slice; though the slice may be smaller
than the original program, the threshold at which comprehension support
becomes realistic remains some way off. In order to address this slice size
problem, a new form of dependence analysis called Key Statement Analysis

was introduced [28] and recently empirically studied [6]. In Key Statement
Analysis, dependence computation is used to target those few statements upon
which the program’s dependence revolves. The empirical findings demonstrate
that key statement analysis can be used to identify the few statements in a
program that capture most of the impact of the whole program’s dependence.

A separate study presented the effects of formal parameters and global vari-
ables on levels of predicate dependence [13,16]. Predicate dependence was con-
sidered a subject worthy of study because the predicates of a program capture
its essential logical intention, the comprehension of which underpins so many
software engineering activities. The primary finding of this work was the ob-
servation that, as the number of formal parameters available to a predicate
increases, the proportion upon which it depends tends to decrease. This was
noticed in many of the programs studied and it was a trend that was borne out
by statistical analysis. No such trend was observed for backward slicing. This
result may indicate that as functions increase the number of formal parameters
available, they tend to become less cohesive.

Subsequent work [32,48], exploited this observation regarding cohesion to de-
velop Search Based Software Engineering techniques for automating the pro-
cess of slicing procedures, guided by fitness functions that capture dependence
interactions.

Previous work has also considered other potential harmful effects of depen-
dence structures that can be uncovered using static analysis. Chief among
these ‘dependence anti patterns’ [7] are dependence clusters [9]. This work
provided a definition of several forms of anti pattern and dependence–based
techniques for locating them. The empirical results indicated how these tech-
niques found examples of anti patterns in open source and production indus-
trial code. Other work illustrated the way in which the normally static nature
of these forms of dependence analysis could be brought to life in animations,
that provide a ‘fourth dimension’ to dependence visualization [10].

Previous work has also presented empirical results on the relationship between
high level program concepts (such as credit, undercarriage and holiday enti-
tlement) and low level dependence at the statement level [5,26]. This work
revealed that code which is conceptually similar also has a tighter, more co-
hesive dependence structure.

In 2004 Binkley and Harman provided a detailed survey of empirical results

24

on program slicing [17], to which the reader is referred for a more detailed
account of related work and results concerning program slicing and program
dependence.

11 Summary and Future Work

This paper is concerned with the effect of global variables on program depen-
dence. It introduces a technique for measuring the effect of a global variable
on the quantity of dependence present in a program and uses this to study the
effects of 849 global variables from 21 programs. The results show that, while
most global variables have essentially no impact on program dependence, there
are a few that have a large and significant effect. Moreover, though there may
be few such global variables, many programs (more than half those studied)
have at least one such significant variable.

The paper also studies the way in which dependencies due to some global vari-
ables hold together large dependence clusters. The results show that globals
can be the sole cause of such clusters. The paper presents a categorization of
these effects and examines the source code patterns behind the clusters.

The empirical results presented in the paper are findings from a study of C
and C++ programs. Future work will consider other programs and program-
ming paradigms to assess the degree to which these results generalize. It will
also investigate the opportunities for dependence cluster-breaking refactoring
suggested by the finding that global variables may be the sole cause of some
dependence clusters.

Future work will consider the relationships between the dependence clusters of
a program, techniques for helping the programmer to break them into smaller,
more manageable clusters, empirical assessment of their effects on program
comprehension and other potential causes of dependence clusters.

References

[1] P. Armitage, G. Berry, Statistical methods in medical research, Macmillan,
London, 1994.

[2] F. Balmas, Using dependence graphs as a support to document programs, in:
2nd IEEE International Workshop on Source Code Analysis and Manipulation,
IEEE Computer Society Press, Los Alamitos, California, USA, 2002, pp. 145–
154.

25

[3] J. Barnes, High Integrity Software: The SPARK Approach to Safety and
Security, Addison Wesley, New York, NY, 2003.

[4] J. Beck, D. Eichmann, Program and interface slicing for reverse engineering,
in: IEEE/ACM 15th Conference on Software Engineering (ICSE’93), IEEE
Computer Society Press, Los Alamitos, California, USA, 1993, pp. 509–518.

[5] D. Binkley, N. Gold, M. Harman, Z. Li, K. Mahdavi, An empirical study of the
relationship between the concepts expressed in source code and dependence,
Journal of Systems and SoftwareTo appear.

[6] D. Binkley, N. Gold, M. Harman, Z. Li, K. Mahdavi, Evaluating key statements
analysis, in: 8th International Working Conference on Source Code Analysis and
Manipulation (SCAM’08), IEEE Computer Society, Beijing, China, 2008, pp.
121–130.

[7] D. Binkley, N. Gold, M. Harman, Z. Li, K. Mahdavi, J. Wegener, Dependence
anti patterns, in: 4th International ERCIM Workshop on Software Evolution
and Evolvability (Evol’08), L’Aquila, Italy, 2008, pp. 25–34.

[8] D. Binkley, M. Harman, Forward slices are smaller than backward slices, in:
5th IEEE International Workshop on Source Code Analysis and Manipulation,
IEEE Computer Society Press, Los Alamitos, California, USA, 2005, pp. 15–24.

[9] D. Binkley, M. Harman, Locating dependence clusters and dependence
pollution, in: 21st IEEE International Conference on Software Maintenance,
IEEE Computer Society Press, Los Alamitos, California, USA, 2005, pp. 177–
186.

[10] D. Binkley, M. Harman, J. Krinke, Animated visualisation of static analysis:
Characterising, explaining and exploiting the approximate nature of static
analysis, in: 6th International Workshop on Source Code Analysis and
Manipulation (SCAM 06), Philadelphia, Pennsylvania, USA, 2006, pp. 43–52.

[11] D. W. Binkley, Semantics guided regression test cost reduction, IEEE
Transactions on Software Engineering 23 (8) (1997) 498–516.

[12] D. W. Binkley, N. Gold, M. Harman, An empirical study of static program
slice size, ACM Transactions on Software Engineering and Methodology 16 (2)
(2007) 1–32.

[13] D. W. Binkley, M. Harman, An empirical study of predicate dependence levels
and trends, in: 25th IEEE International Conference and Software Engineering
(ICSE 2003), IEEE Computer Society Press, Los Alamitos, California, USA,
2003, pp. 330–339.

[14] D. W. Binkley, M. Harman, A large-scale empirical study of forward and
backward static slice size and context sensitivity, in: IEEE International
Conference on Software Maintenance, IEEE Computer Society Press, Los
Alamitos, California, USA, 2003, pp. 44–53.

26

[15] D. W. Binkley, M. Harman, Results from a large–scale study of performance
optimization techniques for source code analyses based on graph reachability
algorithms, in: IEEE International Workshop on Source Code Analysis and
Manipulation (SCAM 2003), IEEE Computer Society Press, Los Alamitos,
California, USA, 2003, pp. 203–212.

[16] D. W. Binkley, M. Harman, Analysis and visualization of predicate dependence
on formal parameters and global variables, IEEE Transactions on Software
Engineering 30 (11) (2004) 715–735.

[17] D. W. Binkley, M. Harman, A survey of empirical results on program slicing,
Advances in Computers 62 (2004) 105–178.

[18] D. W. Binkley, M. Harman, J. Krinke, Empirical study of optimization
techniques for massive slicing, ACM Transactions on Programming Languages
and Systems 30 (2007) 3:1–3:33.

[19] S. E. Black, Computing ripple effect for software maintenance, Journal of
Software Maintenance and Evolution: Research and Practice 13 (2001) 263–
279.

[20] A. Cimitile, A. De Lucia, M. Munro, A specification driven slicing process for
identifying reusable functions, Software Maintenance: Research and Practice 8
(1996) 145–178.

[21] Y. Deng, S. Kothari, Y. Namara, Program slice browser, in: 9th IEEE
International Workshop on Program Comprenhesion, IEEE Computer Society
Press, Los Alamitos, California, USA, 2001, pp. 50–59.

[22] T. Eisenbarth, R. Koschke, D. Simon, Locating features in source code, IEEE
Transactions on Software Engineering 29 (3), special issue on ICSM 2001.

[23] C. N. Fischer, R. J. LeBlanc, Crafting a Compiler, Benjamin/Cummings Series
in Computer Science, Benjamin/Cummings Publishing Company, Menlo Park,
CA, 1988.

[24] D. L. Fisher, Global variables versus local variables, Software – Practice and
Experience 13 (5) (1983) 467–469.

[25] K. B. Gallagher, J. R. Lyle, Using program slicing in software maintenance,
IEEE Transactions on Software Engineering 17 (8) (1991) 751–761.

[26] N. Gold, M. Harman, Z. Li, K. Mahdavi, An empirical study of executable
concept slice size, in: 13th Working Conference on Reverse Engineering (WCRE
06), Benevento, Italy, 2006, pp. 103–114.

[27] Grammatech Inc., The codesurfer slicing system (2002).
URL www.grammatech.com

[28] M. Harman, N. Gold, R. M. Hierons, D. W. Binkley, Code extraction algorithms
which unify slicing and concept assignment, in: IEEE Working Conference
on Reverse Engineering (WCRE 2002), IEEE Computer Society Press, Los
Alamitos, California, USA, 2002, pp. 11 – 21.

27

[29] M. Harman, Y. Hassoun, K. Lakhotia, P. McMinn, J. Wegener, The impact
of input domain reduction on search-based test data generation, in: ACM
Symposium on the Foundations of Software Engineering (FSE ’07), Association
for Computer Machinery, Dubrovnik, Croatia, 2007, pp. 155–164.

[30] M. Harman, L. Hu, R. M. Hierons, J. Wegener, H. Sthamer, A. Baresel,
M. Roper, Testability transformation, IEEE Transactions on Software
Engineering 30 (1) (2004) 3–16.

[31] S. Horwitz, T. Reps, D. W. Binkley, Interprocedural slicing using dependence
graphs, ACM Transactions on Programming Languages and Systems 12 (1)
(1990) 26–61.

[32] T. Jiang, M. Harman, Y. Hassoun, Analysis of procedure splitability, in: 15th

Working Conference on Reverse Engineering (WCRE’08), Antwerp, Belgium,
2008, pp. 247–256.

[33] N. Jones, S. Muchnick (eds.), Program Flow Analysis: Theory and Applications,
Prentice-Hall, Englewood Cliffs, NJ, 1981.

[34] J. Krinke, Static slicing of threaded programs, in: ACM SIGPLAN-
SIGSOFT Workshop on Program Analysis for Software Tools and Engineering
(PASTE’98), 1998, pp. 35–42.

[35] J. Krinke, Barrier slicing and chopping, in: IEEE International Workshop on
Source Code Analysis and Manipulation (SCAM 2003), IEEE Computer Society
Press, Los Alamitos, California, USA, 2003, pp. 81–87.

[36] A. Lakhotia, J.-C. Deprez, Restructuring programs by tucking statements into
functions, Information and Software Technology Special Issue on Program
Slicing 40 (11 and 12) (1998) 677–689.

[37] A. Lakhotia, P. Singh, Challenges in getting formal with viruses, Virus Bulletin.

[38] K. Mahdavi, M. Harman, R. M. Hierons, A multiple hill climbing approach
to software module clustering, in: IEEE International Conference on Software
Maintenance, IEEE Computer Society Press, Los Alamitos, California, USA,
2003, pp. 315–324.

[39] L. F. Marshall, J. Webber, Gotos considered harmful and other programmers
taboos, in: A. Blackwell, E. Bilotta (eds.), 12th Psychology of Programmers
Interest Group Annual Workshop (PPIG 12), 2000, pp. 171–180.

[40] B. S. Mitchell, S. Mancoridis, On the automatic modularization of software
systems using the bunch tool, IEEE Transactions on Software Engineering 32 (3)
(2006) 193–208.

[41] A. Podgurski, L. Clarke, A formal model of program dependences and
its implications for software testing, debugging, and maintenance, IEEE
Transactions on Software Engineering 16 (9) (1990) 965–79.

[42] D. Reid, N. R. Sanders, Operations Management: An Integrated Approach, 3rd
ed., Wiley, 2007.

28

[43] T. W. Reps, Solving demand versions of interprocedural analysis problems, in:
P. Fritzon (ed.), Compiler Construction, 5th International Conference, vol. 786
of Lecture Notes in Computer Science, Springer, Edinburgh, U.K., 1994, pp.
389–403.

[44] D. Ritchie, The c reference manual (1975).
URL cm.bell-labs.com/cm/cs/who/dmr/cman.pdf

[45] P. Sestoft, Replacing function parameters by global variables, in: Fourth
International Conference on Functional Programming Languages and Computer
Architecture, Imperial College, London, IFIP and ACM, ACM Press and
Addison-Wesley, 1989, pp. 39–53.

[46] B. Stroustrup, The C++ Programming Language, 3rd ed., Addison-Wesley,
2000.

[47] R. E. Sward, A. T. Chamillard, Re-engineering global variables in Ada, ACM
SIGADA Ada Letters 24 (4) (2004) 29–34.

[48] J. Tao, N. Gold, M. Harman, Z. Li, Locating dependence structures using search
based slicing, Information and Software TechnologyTo appear.

[49] P. Tennberg, Refactoring global objects in multithreaded applications, C/C++
Users Journal 20 (5) (2002) 20–24.

[50] P. Tonella, Using a concept lattice of decomposition slices for program
understanding and impact analysis, IEEE Transactions on Software Engineering
29 (6) (2003) 495–509.

[51] M. Weiser, Program slices: Formal, psychological, and practical investigations
of an automatic program abstraction method, Ph.D. thesis, University of
Michigan, Ann Arbor, MI (1979).

[52] D. A. Wheeler, SLOC count user’s guide,
http://www.dwheeler.com/sloccount/sloccount.html (2005).

[53] W. Wulf, M. Shaw, Global variables considered harmful, ACM SIGPLAN
Notices 8 (2) (1973) 28–34.

[54] L. Yu, S. R. Schach, K. Chen, A. J. Offutt, Categorization of common coupling
and its application to the maintainability of the linux kernel, IEEE Transactions
on Software Eng 30 (10) (2004) 694–706.

29

