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Context: Despite the large number of publications on Search-Based Software Testing (SBST), there remain
few publicly available tools. This paper introduces AUSTIN, a publicly available open source SBST tool for
the C language.1 The paper is an extension of previous work [1]. It includes a new hill climb algorithm
implemented in AUSTIN and an investigation into the effectiveness and efficiency of different pointer han-
dling techniques implemented by AUSTIN’s test data generation algorithms.
Objective: To evaluate the different search algorithms implemented within AUSTIN on open source sys-
tems with respect to effectiveness and efficiency in achieving branch coverage. Further, to compare AUS-
TIN against a non-publicly available, state-of-the-art Evolutionary Testing Framework (ETF).
Method: First, we use example functions from open source benchmarks as well as common data structure
implementations to check if the decision procedure for pointer inputs, introduced in this paper, differs in
terms of effectiveness and efficiency compared to a simpler alternative that generates random memory
graphs. A second empirical study formulates two alternate hypotheses regarding the effectiveness and
efficiency of AUSTIN compared to the ETF. These hypotheses are tested using a paired Wilcoxon test.
Results and Conclusion: The first study highlights some practical problems with the decision procedure for
pointer inputs described in this paper. In particular, if the code under test contains insufficient guard
statements to enforce constraints over pointers, then using a constraint solver for pointer inputs may
be suboptimal compared to a method that generates random memory graphs. The programs used in
the second study do not require any constraint solving for pointer inputs and consist of eight non-trivial,
real-world C functions drawn from three embedded automotive software modules. For these functions,
AUSTIN is competitive compared to the ETF, achieving an equal or higher branch coverage for six of
the functions. In addition, for functions where AUSTIN’s branch coverage is equal or higher, AUSTIN is
more efficient than the ETF.

� 2012 Elsevier B.V. All rights reserved.
1. Introduction

Search-Based Software Testing (SBST) was the first Software
Engineering problem to be attacked using optimization [2] and also
the first to which a search-based optimization technique was
applied [3]. Recent years have witnessed a dramatic rise in the
growth of work on SBST and in particular on techniques for gener-
ating test data that meets structural coverage criteria. Yet, despite
an increasing interest in SBST and, in particular, in structural cov-
erage using SBST, there remains a lack of publicly available tools
that provide researchers with facilities to perform search-based
structural testing.
ll rights reserved.

), mark.harman@ucl.ac.uk (M.
oss).
This paper introduces such a tool, AUSTIN, and reports our
experience with it. AUSTIN supports three search algorithms: A
random search, a hill climber, and a hill climb algorithm aug-
mented with symbolic execution. The hill climb algorithms are a
variant of Korel’s ‘Alternating Variable Method’ (AVM) [4].

AUSTIN can handle a large subset of C, though there are some
limitations. Most notably AUSTIN cannot generate meaningful
inputs for strings, void and function pointers, as well as union con-
structs. Despite these limitations, AUSTIN has been applied ‘out of
the box’ to real industrial code from the automotive industry [1] as
well as a number of open source programs [5].

This paper presents an evaluation of the different search algo-
rithms implemented within AUSTIN on functions taken from open
source programs as well as data structure implementations. Then,
the hill climb algorithms in AUSTIN are compared to a closed
source, state-of-the-art Evolutionary Testing Framework (ETF).
The ETF was developed as part of the EvoTest project [6] and has
itself been applied to case studies from the automotive and com-
munications industry.
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For the comparison we chose three case studies from the auto-
motive industry, provided by Berner & Mattner Systemtechnik
GmbH. They form the benchmark against which AUSTIN was com-
pared for effectiveness and efficiency when generating branch
adequate test data. Automotive code was chosen as the benchmark
because the automotive industry is subject to testing standards
that mandate structural coverage criteria [7] and so the developers
of production code for automotive systems are a natural target for
automated test data generation techniques, such as those provided
by AUSTIN.

The rest of the paper is organised as follows: Section 2 provides
background information on the field of search-based testing and
gives an overview of related work. Section 3 introduces AUSTIN
and describes the different test data generation techniques it
implements. These techniques are evaluated in Section 4. Section
5 then presents an empirical study that compares AUSTIN’s hill
climber against the ETF and discusses any threats to validity.
Section 6 concludes.
2. Background

Test data generation is a natural choice for Search-Based Soft-
ware Engineering (SBSE) researchers because the search space is
clearly defined (it is the space of inputs to the program) and tools
often provide existing infrastructures for representing candidate
inputs and for instrumenting and recording their effect. Similarly,
the test adequacy criterion is usually well defined and is also
widely accepted as a metric worthy of study by the testing com-
munity, making it an excellent candidate for a fitness function [8].

The role of the fitness function is to return a value that indicates
how ‘good’ a point in a search space (i.e., an input vector) is com-
pared to the best point (i.e., the required test data): The global opti-
mum. For example, if a condition a == b must be executed as true, a
possible objective function is ja � bj. When this function is 0, the
desired input values have been found. Different branch functions
exist for various relational operators in predicates [4].

McMinn [9] provides a detailed survey of work on SBST up to
approximately 2004. It shows that the most popular search tech-
nique applied to structural testing problems has been the Genetic
Algorithm. More recently other search-based algorithms have also
been applied, including parallel Evolutionary Algorithms [10],
Evolution Strategies [11], Estimation of Distribution Algorithms
[12], Scatter Search [13,14], Particle Swarm Optimization [15,16]
and Tabu Search [17].

Due to the large body of work on SBST, Ali et al. [18] performed
a systematic review of the literature in order to asses the quality
and adequacy of empirical studies used in evaluating SBST tech-
niques. One of their key findings is that empirical studies in SBST
need to include more statistical analysis, in the form of hypothesis
testing, in order to account for the randomness in any meta-heuris-
tic algorithm.

Outside the search-based testing community there has been a
growing number of publicly available tools for structural testing
problems, most notably from the field of Dynamic Symbolic Execu-
tion (DSE) [19–22]. DSE combines symbolic [23] and concrete exe-
cution. Concrete execution drives the symbolic exploration of a
program, and runtime values can be used to simplify path con-
straints produced by symbolic execution to make them more ame-
nable to constraint solving.

For example, assume an input needs to satisfy the condition
(int) log (a) == b in order to execute a target branch. During
concrete execution, the values 38 and 100 were used for the inputs
a and b respectively. Further assume that a particular constraint
solver cannot handle the call to the log function because its source
code is unavailable. Now suppose during concrete execution, the
expression (int) log (38) evaluated to 3. DSE can simplify the
path condition to 3 == b and then use its constraint solver to pro-
vide a value for b. Assuming the program under test and the imple-
mentation of the log function are deterministic, DSE is thus able to
generate input values that exercise the branch in the program that
depends on the condition (int) log (a) == b being true. A more
detailed treatment of this approach can be found in the work of
Godefroid et al. [19].

AUSTIN draws together strands of research on search-based
testing for structural coverage and DSE so that it can generate
branch adequate test data for integers, floating point and pointer
type inputs. Currently, AUSTIN addresses a small, but important
part of testing: It generates input values that reach different parts
of a program. Whether these inputs reveal any faults is still left for
the user to decide. This is the so-called oracle problem.
3. AUSTIN

AUgmented Search-based TestINg (AUSTIN) is a structural test
data generation tool for unit testing C programs. AUSTIN considers
a unit to be a function under test and all the functions reachable
from within that function. It supports three test data generation
techniques: A random search, a hill climber (AVM) and a hill clim-
ber augmented with symbolic execution (AVM+).

AUSTIN can be used to generate a set of input data for a given
function which achieve (some level of) branch coverage for that
function. During the test data generation process, AUSTIN does
not attempt to execute specific paths through a function in order
to cover a target branch; the path taken up to a branch is an emer-
gent property of the search process.

When used with a guided search such as hill climbing, AUSTIN
uses the objective function that was introduced by Wegener et al.
[24] for the Daimler Evolutionary Testing System. It evaluates an
input against a target branch using two metrics: The approach level
and the branch distance. The approach level is a measure for how
many of the target branch’s control dependent nodes were not exe-
cuted by a particular input. The fewer control dependent nodes
executed, the ‘further away’ the input is from executing the target
in control flow terms.

The branch distance is computed using the condition of the
decision statement at which the flow of control diverted away
from the current target branch. It provides a quantification in the
range [0,1] of a boolean branch condition, such that the value zero
is obtained iff the condition evaluates to true. Values close to 1
indicate that the condition is far from being satisfied. Intermediate
values should be such as to smoothly guide the search toward
satisfying the condition. Arcuri [25] presents an evaluation of
different normalising functions for the branch distance metric.
3.1. Random search

AUSTIN’s random search generates random input values for all
arithmetic type inputs to a function, i.e., formal parameters and
global variables. Complex data types such as pointers are initial-
ized as follows: Every pointer input has a 0.5 probability of being
assigned the constant NULL, or a valid memory location. If a pointer
is assigned a value, another coin toss chooses between using an
existing address (e.g., that of an existing input parameter) and cre-
ating a new heap address (via malloc). This allows the random
search to construct possibly cyclic data structures. Whenever a
new memory location is created thru malloc, the random search
applies its initialization procedure to that new location; for exam-
ple, initializing the fields of a data structure or assigning a random
value in case of pointers to primitive data types. Fig. 1 shows what
kind of input graph (middle) the random search might construct



Fig. 1. Example illustrating how a random memory graph is built up for the code on the left. Pointer inputs will be set to NULL with a probability of 0.5 to ensure the graph
generation terminates within reasonable time. The boxes to the right of the graph show how a vector of arithmetic type inputs is constructed based in part on the shape of the
memory graph.
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for the code fragment on the left and how this translates to inputs
of a function (right).

The random search does not require any fitness function and
only uses simple code instrumentation to evaluate the level of
branch coverage achieved. If an input covers a new branch it is
saved as a test case in an archive. Otherwise the search continues
until either all branches have been covered, or, a stopping criterion
is reached. The stopping criterion limits the maximum number of
inputs that may be generated for a given function. It is typically
set to a value an order of magnitude larger than the number of
branches within the function under test.
2 So far this has not been observed in practice.
3.2. AVM

AUSTIN also contains a hill climb algorithm, based on Korel’s
Alternating Variable Method (AVM). The AVM works by continu-
ously changing each arithmetic type input in isolation. First, a vector
is constructed containing the arithmetic type inputs (e.g., integers,
floats) to the function under test. All variables in this vector are ini-
tialised with random values. Then, so called exploratory moves are
made for each element in turn. These consist of adding or subtract-
ing a delta from the value of an element. For integral types the delta
starts off at 1, i.e., the smallest increment (decrement).

When a change leads to an improved fitness value, the search
tries to accelerate towards an optimum by increasing the size of
the neighbourhood move with every step. These are known as
pattern moves. The formula used to calculate the delta added or sub-
tracted from an element is: d ¼ 2it � dir � 10�preci , where it is the re-
peat iteration of the current move, dir either �1 or 1, and preci the
precision of the ith input variable. The precision applies to floating
point variables only (i.e., it is 0 for integral types). It denotes a scale
factor for the size of a neighbourhood move. For example, setting
the precision (preci) of an input to 1 limits the smallest possible
move to ±0.1. Increasing the precision to 2 limits the smallest pos-
sible move to ±0.01, and so forth. For all experiments carried out in
this paper, the precision for floating point variables was set to 2.
This provides a reasonable trade-off between accuracy and speed
of exploring the search space. The larger the precision of a variable,
the bigger the search space for that variable.

Whenever a delta is assigned to a variable, the AVM checks for a
possible over- or underflow. For integral types this is done with a
set of custom macros that use gcc’s typeof operator [26]. For float-
ing point operations on the other hand, the AVM does not check for
over- or underflow errors per se. Instead, it looks for ±INF or ±NaN
values. Whenever a potential move leads to an overflow (under-
flow) of integral types or results in an input taking on the value
±INF or ±NaN, the AVM discards the move as invalid and explores
the next neighbour. As a consequence, code which explicitly checks
for ±INF or ±NaN cannot be covered by the AVM.2 To handle possible
overflow (underflow) in bit fields, the AVM sets a lower bound for
signed bit fields at �(2l/2) (0 for unsigned bit fields), and an upper
bound at (2l/2) � 1 (2l � 1 for unsigned bit fields), where l is the
length of the bit field. A user can also specify custom bounds for every
variable. Again, updates to an input which violate these bounds are
discarded as infeasible, forcing the search to move on. The main moti-
vation for including such ‘bounds checking’ in the AVM is to save
wasteful moves.

Once no further improvements can be found for an input, the
search continues exploring the next element in the vector, recom-
mencing with the first element if necessary, until no changes to an
input lead to further improvements. At this point the search re-
starts at another randomly chosen location in the search space.
This is known as a random restart strategy and is designed to over-
come local optima and enable the search to explore a wider region
of the input domain for the function under test.

Complex data types, such as pointers, are initialized in the same
way as with the random search. However memory graphs are not
part of the optimization process and their shape remains fixed
throughout each hill climbing phase. Once a random restart occurs,
complex data types are re-initialized with new values. If initializ-
ing a pointer adds a new primitive type to the input space, fields
in a dynamic data structure for example, they are added to the
AVM’s vector of arithmetic type inputs. Thus primitive type values
within the memory graph are optimised by the AVM.
3.3. AVM+

Constructing random memory graphs may not be efficient
when testing functions with pointer type inputs. It can easily result
in large graphs for functions with dynamic data structures. At the
same time the random search and AVM are unlikely to construct
inputs that would reach the target in Fig. 2.

Therefore, the AVM+ uses techniques borrowed from
Dynamic Symbolic Execution to lazily instantiate pointer type



Fig. 2. Example C code used to demonstrate the benefits of using a decision
procedure for pointer inputs as opposed to constructing random memory graphs.
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inputs instead. A high level description of the AVM+ algorithm
is shown in Algorithm 1. The source code of the unit under
test is instrumented to perform a pseudo-symbolic execution
in parallel to the concrete execution. Since the AVM+ does
not evaluate expressions symbolically it is not a classic
symbolic execution. It simply re-writes operations over local
variables as operations over input parameters (including
globals). This often suffices for the purpose of solving pointer
constraints and enables the AVM+ to use a very light-weight
‘symbolic engine’ that only performs symbolic assignments.
Constraints over input parameters can still be collected to form
a path condition describing the execution path taken by a con-
crete input.
3 The symbolic execution is inter-procedural for calls to functions whose source
code was available during the instrumentation process.

4 The same problem applies to branching conditions that contain boolean type
Algorithm 1. High level description of the AUSTIN-AVM+

currentSolution :¼ random
bestSolution :¼ currentSolution
doLocalRestart :¼ true
while not reached stopping criterion do

if solve pointer constraint then
if solvePC (currentSolution) = NULL then

currentSolution :¼ random
end if

else if trapped at local optimum then
if doLocalRestart then

for i :¼ 0 to currentSolution.length do
localRestart (currentSolution[i])

end for
doLocalRestart :¼ false

else
currentSolution :¼ random
doLocalRestart :¼ true

end if
else

improvement :¼ exploratoryMove (currentSolution)
restartExploration :¼ false
while improvement do

bestSolution :¼ currentSolution
if reached stopping criterion then

return bestSolution
end if
improvement :¼ patternMove (currentSolution)
restartExploration :¼ true

end while
if restartExploration then

reset search parameters
end if

end if
end while bestSolution
AUSTIN uses the CIL [27] infrastructure for ‘‘C program analysis
and transformation’’ to perform code instrumentation and its sym-

bolic analysis. CIL provides a number of pre-defined modules, such
as control and data flow analysis. It also offers an extensive API (in
Ocaml) to traverse and manipulate the Abstract Syntax Tree (AST)
of C code.

Whenever an input misses a target branch, the AVM+ first
identifies the critical branching node nc in the Control Flow Graph
(CFG) where execution took an infeasible path with respect to the
target. A critical branching node is a node in the CFG on which
the target branch is (transitively) control dependent. The AVM+
then executes the function under test symbolically along the path
taken by the concrete input, up to the last occurrence of nc within
the path (node nc might be executed more than once in case of
loops).3

During the symbolic execution, the AVM+ makes use of infor-
mation from the concrete execution to solve the aliasing prob-
lem associated with static analysis. It also uses concrete values
to replace symbolic values whenever an operation is beyond
the scope of its symbolic execution engine. The result of the
symbolic analysis is a (partial) path condition pc involving con-
straints over formal parameters of the function under test and
global variables. A path condition describes the circumstances
under which a CFG-path will be executed. The AVM+ uses the
path condition to decide whether it can use its hill climb
algorithm to solve the condition at node nc, or whether it
requires a constraint solver to instantiate pointer inputs
instead.

Recall that the fitness function used by the hill climb algorithms
is composed of a branch distance and approach level. However, the
branch distance function is not suitable for conditions that de-
scribe constraints over memory locations. Its value would either
be 0 (indicating that the condition has been satisfied) or 1 (indicat-
ing that the condition is not satisfied). This lack of gradient infor-
mation deteriorates a guided search like the AVM into a random
search.4

Therefore, the AVM+ uses a custom algorithm (shown in
Algorithm 2) to solve pointer constraints arising from branching
nodes in a CFG. Initially pc contains both, constraints over arith-
metic type inputs as well as pointer type inputs. The AVM+
reduces pc to a partial path condition ppc by dropping all con-
straints over arithmetic type inputs. This includes constraints
which contain a pointer dereference to a primitive type. Then,
ppc is further simplified by removing all constraints which orig-
inate from non-critical branching nodes with respect to the cur-
rent target branch.

The result is a path condition that only contains constraints
over memory locations. Further, by using CIL, the AVM+ also en-
sures that these constraints are of the form x = y and x – y, where
both x or y may be the constant NULL or a symbolic variable denot-
ing a pointer input. If the last constraint in ppc corresponds to the
critical branching node nc where execution diverged away from the
target, the AVM+ uses a constraint solver. Otherwise, the node nc

contains constraints over arithmetic types that can be solved using
a hill climber.

are Technology 55 (2013) 112–125 115
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Algorithm 2. High level description of solvePC

Test subjects used to evaluate the different test data generation algorithms within
AUSTIN. The LOC have been calculated using the sloccount tool [31] in its default
setting.

Test subject Num. of functions tested Num. branches tested LOC

binary tree 6 38 828
binheap 4 22 802
dllist 13 134 1244
gimp 28 292 867
spice 2 142 269
Inputs: Equivalence graph of symbolic variables EG and
candidate solution currentSolution

Compute path condition pc for currentSolution
Compute the approximate path condition ppc from pc by

dropping all constraints over arithmetic types from pc
Trim ppc by removing all non-critical branching nodes to

generate ppc0

Invert the binary operator (2{=, –}) of the last constraint in
ppc0

for all constraints ci in ppc0 do
left :¼ get lhs of ci

right :¼ get rhs of ci

Get node nleft from EG which contains left or create a new
node nleft if no such node exists
Get node nright from EG which contains right or create a new
node nright if no such node exists
if operator opi in ci is ‘=’ then

if nleft has an edge with nright in EG then
NULL {infeasible}

else
Merge nodes nleft and nright

Update EG
end if

else if operator opi in ci is ‘–’ then
if nleft = nright then

NULL {infeasible}
else

Add edge between nleft and nright

if nleft – null node then
Add edge between nleft and null node

end if
if nright – null node then

Add edge between nright and null node
end if
Update EG

end if
end if

end for
for all nodes ni in EG do

if ni has no edge to null node then
m :¼ NULL

else
if ni represents the address A of a variable then

m :¼ A
else

m :¼ malloc
end if

end if
for all symbolic variables si in ni do

Update corresponding element for si in currentSolution
with m
end for

end for currentSolution

Assume the AVM+ needs to use its pointer constraint solver. To
avoid following the same path in the next iteration, the AVM+ in-
verts the condition of the last constraint in ppc to generate ppc0.
Finding an input that satisfies this new path condition will thus
get ‘closer’ to the target branch in control flow terms. The proce-
dure for finding such an input is described in the remainder of this
section.
The AVM+ generates an equivalence graph of symbolic variables
from ppc0. The equivalence relationship between symbolic vari-
ables is defined by the ‘=’ operators in ppc0. The nodes of the graph
represent abstract pointer locations, with node labels representing
the set of symbolic variables which point to those locations. Edges
between nodes represent inequalities.

The graph is built up incrementally as the search proceeds (i.e.
with every invocation of the solvePC procedure from Algorithm
2), and always contains a special node to represent the constant
NULL. For each constraint ci in ppc0, the symbolic variables involved
in ci are extracted. The AVM+ then checks if the symbolic variables
are already contained within the nodes of the equivalence graph. If
they are not, a new node is added for each ‘missing’ symbolic
variable.

Given the node (s) representing the symbolic variables in ci, the
AVM+ checks for satisfiability of ci. If the symbolic variables in ci all
belong to the same node, and the binary operator in ci denotes an
inequality, the constraint is infeasible. Similarly, if the symbolic
variables belong to different nodes connected by an edge, and
the binary operator in ci denotes an equality, the constraint is also
infeasible. Given an infeasible constraint, the AVM+ is forced to
perform a global random restart, with the hope of traversing a dif-
ferent path through the program. The expectation is that a new
path will result in a solvable ppc0.

For each feasible constraint in ppc0, the AVM+ updates the
equivalence graph by either adding nodes, adding edges, or merg-
ing (unconnected) nodes. Whenever an edge is added between two
nodes where neither node labels contain the constant NULL, for
example to capture the constraint x – y, an edge is added from
each of the nodes to the node for NULL.

The final step of the algorithm is to derive concrete pointer in-
puts from the equivalence graph. For every node n in the graph, the
AVM+ checks if it has an edge to the node for the constant NULL. If
no edge exists, all concrete inputs represented by the symbolic
variables in n are assigned NULL. Otherwise the AVM+ does the fol-
lowing: If a node n represents the address of another symbolic var-
iable s, all concrete pointer inputs represented by the labels of n are
assigned the address of the concrete variable represented by s.
Otherwise, a new memory location is created via malloc, and each
concrete pointer input represented by the labels of n are assigned
that memory location.
4. Comparing AVM and AVM+

The aim of this section is to investigate what difference the con-
straint solver in the AVM+ makes in practice, compared to construct-
ing random memory graphs in the AVM. We therefore compared the
three search algorithms in AUSTIN, the random search, AVM and
AVM+, on a mix of open source programs. Table 1 summarizes the
programs and functions tested. The random search was simply used
as a sanity check.
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The experiments were performed on 628 branches, drawn from
two different C programs5 and common data structure implementa-
tions, taken amongst others from SGLIB [30]. gimp is an image editor
and spice an analogue circuit simulator. Both programs are open
source. binheap, dllist and tree are data structure implementa-
tions of a binary heap, doubly linked list and binary tree respectively.

Each search for test data was performed 30 times. For gimp and
spice, if test data was not found to cover a branch after 30,000 fit-
ness evaluations, the search was terminated. The fitness budget for
the three data structure implementations was set to 100 evalua-
tions per branch.

Serendipitous coverage, i.e., branches covered by accident dur-
ing the test data generation process, was ignored for the AVM
and AVM+, so that a distinct search was carried out for every
branch. The success or failure of each search was recorded, along
with the number of fitness evaluations required to find the test
data. The 30 runs were performed using an identical list of fixed
seeds for random number generation, so as to provide a basis for
assessment with tests for statistical significance. Such tests are
necessary to provide robust results in the presence of the inher-
ently stochastic behaviour of the search algorithms.

4.1. Evaluation

Fig. 3 shows the average branch coverage achieved by the three
search algorithms for the open source functions from gimp and
spice. Compared to the random search, both the AVM and
AVM+ algorithms achieve a higher level of coverage. A branch
was counted as covered if it has been executed at least once during
the 30 repeat test data generation trials.

We will now explain why the AVM and AVM+ achieve identical
levels of branch coverage. For gimp and spice all formal parame-
ters of pointer type are either pointers to data structures or point-
ers to an integer. Many gimp data structures also contain one or
more fields that represent pointers to other data structures. How-
ever, all pointer operations in the code are limited to accessing data
by dereferencing a pointer. Subsequently, the code only contains
pointer constraints of the form p!= 0, where p denotes a pointer
input. Furthermore, these constraints are not explicitly captured
in guard statements, but one can view them as a form of precondi-
tion to the functions under test. For example, passing a NULL poin-
ter to these functions will cause a segmentation fault.

AUSTIN does not have the ability to analyse stack traces. There-
fore, any preconditions to a function have to be specified manually
by using auxiliary functions provided by AUSTIN. For example, to
specify that a pointer int⁄ p must not be NULL, one would write

Austin Assumeð1; p! ¼ ðvoid�Þ0Þ;

Since the functions tested for gimp and spice both assume all
pointers point to valid memory locations, we formulated these
assumptions as a list of preconditions. In effect this ‘fixes’ the
shape of any data structure, and thus the search algorithms simply
have to optimise arithmetic values. The random search, AVM and
AVM+ all satisfy preconditions in the same manner, hence there
cannot be any difference in performance between the AVM and
AVM+ for gimp and spice.

Fig. 4 shows the average branch coverage achieved by AUSTIN’s
algorithms for the data structure implementations. For these func-
tions the AVM and random search perform equal, and the AVM+
achieves a lower coverage than both.

Interestingly, for the data structure implementations, a decision
procedure-based approach to handling pointers appears to per-
form worse than generating random memory graphs. Examination
5 Programs were chosen arbitrarily. However, all branches used for this study have
been used to evaluate search-based testing techniques in the past [28,29].
of the results revealed that the problem again occurs in code that
does not contain explicit guard statements for pointers. Without
these, the approach described in Algorithm 2 is not able to con-
struct a complete path condition which, in turn, would be used
as a basis for instantiating pointer inputs.

Consider the example from Fig. 5. The function takes a pointer,
to a pointer, to a data structure (⁄⁄first) and another pointer to a
data structure (⁄second) as input. Further assume that no, or an
incomplete, precondition is specified. The AVM+ will not be able
to cover any branches in that function. By default the function will
be executed with all pointers set to NULL, causing a segmentation
fault. Since AUSTIN is not able to identify the cause of such errors,
it will never try to assign a value besides NULL to the input first.

A random memory graph generation technique on the other hand
is able to cover both branches with a high probability. Consequently,
in some cases it is able to achieve a higher branch coverage. Even
though care was taken to specify appropriate preconditions for the
functions, dereferencing non-initialized pointers was still a problem
and the cause for the low coverage achieved by the AVM+ method.

Finally, for the data structure implementations tested, there
appears to be no difference in using a guided search for arithmetic
types instead of a random search. Both achieve the same level of
coverage. This can be explained by the fact that branching condi-
tions mainly contain constraints over pointer inputs. Recall that
the AVM and random search initialize pointers in the same man-
ner. When conditions contain constraints over arithmetic inputs
these conditions are often easily satisfied, even by a random
search. An example of of such a condition can be seen in Fig. 6,
taken from the binary tree implementation.

Nevertheless, one would expect the guided search to be more effi-
cient than a random search, even for conditions such as the one
shown in Fig. 6. We use the number of fitness evaluations as a mea-
sure of efficiency. It reports how many different test data we had to
generate in order to achieve the reported branch coverage. Fig. 7
shows the average number of fitness evaluations required by the
random search, AVM and AVM+ for functions from the data struc-
ture implementations. The data has been normalised with respect
to the random search, as this serves as a baseline for comparison.

Let us first consider the efficiency of the AVM+. For functions
where the AVM+ can make use of its constraint solving algorithm
it is more efficient than either the random search or the AVM.
The AVM+ is only less efficient for functions that do not check
for NULL pointers and where no adequate precondition exists. Let
us now examine the figures for the AVM. Contrary to our expecta-
tion the AVM is overall less efficient than the random search. This
means conditions, such as the one shown in Fig. 6, are more easily
satisfied by a random search than a hill climber.

Generalizing this example, consider a condition of the form x < y
where both x and y are random variables denoting integers. Arcuri
[32] showed that the probability of x < y is

1
2
� 1

2n

where n is the problem size. In our case n represents the valid value
range of a 32-bit integer. Thus, the random search has a high chance

of satisfying this condition in two trials 1
1
2�

1
2n
� 2

� �
. For the AVM, either

the starting point satisfies the condition x < y, or, the search is guided
by the branch distance function. Arcuri [32] shows that the expected
time for the AVM to satisfy this condition is thus O(logn).

4.1.1. Statistical significance
To check if there is a statistically significant difference in the

branch coverage achieved by either the random search, AVM or
AVM+ we used a one-sided Wilcoxon test and specified a
confidence level of 99%. We grouped all the coverage data for the



Fig. 3. Branch coverage achieved by the random search, AVM and AVM+ in AUSTIN for the open source functions from gimp and spice. The horizontal axis denotes the
percentage of branches covered, averaged over 30 trials.
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subjects from Table 1 into two samples. Then we compared the
AVM against the random search, the AVM+ against the random
search, and finally the AVM against the AVM+. We chose the Wil-
coxon test over a t-test because the result of the Shapiro-Wilk nor-
mality test indicated that the data does not follow a normal
distribution (given a confidence level of 99%). For the AVM-AVM+
samples we obtained a p-value of 3.881 � 10�13, for the random-
AVM+ samples a p-value of 0.001003, and for the random-AVM
samples a p-value of 5.798 � 10�08. Each test was performed with
the statistical tool R [33].

In all cases our null hypothesis is that there is no difference in
branch coverage between the random search, AVM and AVM+.



Fig. 4. Branch coverage achieved by the random search, AVM and AVM+ in AUSTIN for the data structure implementations. The horizontal axis denotes the percentage of
branches covered, averaged over 30 trials.

Fig. 5. Example used to illustrate how Algorithm 2 might be outperformed by
random generation of memory graphs.

Fig. 6. Example illustrating a condition that is easily satisfiable with a random
search, but for which a hill climber might be less efficient.
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AVM vs Random: Our alternative hypothesis is that the AVM
achieves a higher branch coverage than the random search. For this
comparison we obtained a p-value of 0.001582 (p 6 0.01), indicat-
ing that we can reject the null hypothesis in favour of our alterna-
tive hypothesis.

AVM+ vs Random: Again, our alternative hypothesis is that the
AVM+ achieves a higher branch coverage than the random search.
Using the Wilcoxon test we obtain a p-value of 0.0836 (p > 0.01),
indicating that we cannot reject the null hypothesis (i.e., there is
no difference, on average, in branch coverage). Here the result is
clearly influenced by the low coverage achieved by the AVM+ for
the data structure implementations.

AVM vs AVM+: Finally, our alternative hypothesis is that the
AVM+ achieves a higher branch coverage than the AVM. We obtain
a p-value of 0.9395, indicating once more that we cannot reject the
null hypothesis.
4.2. Comments

Surprisingly we did not find any statistically significant differ-
ence in branch coverage between the AVM+ and random search,
or the AVM+ and the AVM implemented in AUSTIN. For the func-
tions from gimp and spice the hill climbers are, on average, better
than a random search. However for the data structures there is
either no difference (AVM) or the coverage is worse (AVM+).

Caution is required when interpreting the statistical evaluation
of the findings. One has to question whether it makes sense to
evaluate different techniques across the set of all possible func-
tions, or whether one should focus on comparisons within a certain
application domain. Clearly in some cases the AVM+ with its deci-
sion procedure for pointer inputs will outperform the AVM, both in



Fig. 7. Normalised average number of fitness evaluations required by the random search, AVM and AVM+ for the data structure implementations.

Table 2
Case studies. LOC refers to the total preprocessed lines of C source code contained
within the case studies. The LOC have been calculated using the CCCC tool [35] in its
default setting.

Case study LOC Functions tested Software module

B 18,200 02, 03, 06 Adaptive headlight control
C 7449 07, 08, 11 Door lock control
D 8811 12, 15 Electric window control
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terms of effectiveness and efficiency. It is easy to come up with
synthetic examples to prove this.

We already explained why the AVM and AVM+ perform equally
for the functions from gimp and spice. Since the shape of any
input data structure is fixed by preconditions, the AVM and
AVM+ end up only optimising arithmetic type values, for which
both techniques are identical. Where the AVM+ performed worse,
i.e. for the data structure implementations, the cause was a lack of
guard statements for pointer inputs. Without these, the decision
procedure within the AVM+ is not able to build up a path condition
and thus solve pointer constraints. Other tools using similar tech-
niques to deal with pointers, such as CUTE [21] and CREST [34],
suffer from the same problem.

A further threat to the validity of the findings arises from how
the data structure functions were tested. We generated test data
for each function in isolation. Thus, invalid input may be passed
to the functions that can cause segmentation faults or infinite
loops. When testing data structures it is recommended to either
test the code by generating sequences of method calls, or, by solv-
ing data structure invariants [21].

The first option was not feasible because AUSTIN is not able to
generate method call sequences. To use the second option one has
to rely on ‘helper’ functions, such as SGLIB’s check_consistency
methods to encapsulate data structure invariants. A limitation of
AUSTIN is that it is not able to use the return value of these func-
tions to guide the test data generation process towards producing
valid inputs. This is because the hill climbers and decision proce-
dures only consider constraints arising from critical branching
nodes; a general weakness in the underlying fitness function used
by the AVM and AVM+. Consequently the AVM+ cannot use func-
tions such as check_consistency to build up data structures. Fu-
ture work will consider how AUSTIN can be improved to make use
of such functions.
5. Comparing AUSTIN against state-of-the-art

The objective of this section is to investigate the effectiveness
and efficiency of AUSTIN’s hill climbers compared to a state-of-
the art Evolutionary Testing Framework (ETF). The ETF was devel-
oped as part of the multidisciplinary European Union-funded
research project EvoTest [6] (IST-33472), applying evolutionary
algorithms to the problem of testing software systems. It supports
both black-box and white-box testing and represents the state-of-
the-art for automated evolutionary structural testing.

The framework is specifically targeted for use within industry,
with much effort spent on scalability, usability and interface
design. It is provided as an Eclipse plug-in, and its white-box test-
ing component is capable of generating test cases for single ANSI C
functions. A full description of the system is beyond the scope of
this document and the interested reader is directed towards the
EvoTest web page located at http://evotest.iti.upv.es/.
5.1. Empirical study

In order to compare AUSTIN’s hill climbers against the ETF we
considered 8 C functions that are summarised in Table 2. They
were taken from three embedded software modules and had been

http://evotest.iti.upv.es/


Table 3
Test subjects. The LOC have been calculated using the CCCC tool [35] in its default
setting. The number of input variables counts the number of independent input
variables to the function, i.e., the member variables of data structures are all counted
individually.

Obfuscated function name LOC Branches Nesting level # Inputs

02 919 420 14 80
03 259 142 12 38
06 58 36 6 14
07 85 110 11 27
08 99 76 7 29
11 199 129 4 15
12 67 32 9 3
15 272 216 4 28
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selected by Berner & Mattner Systemtechnik GmbH to form part of
the evaluation of the ETF within the EvoTest [6] project. The func-
tions had been chosen to provide a representative sample of real
world automotive code, with particular attention paid to the num-
ber of branches and nesting level. Table 3 gives a breakdown of
relevant metrics for the selected functions.

As with gimp and spice, any functions that contain a pointer
input assume the pointer has been initialized. This constraint
was encoded in all functions for both, the ETF and AUSTIN. There-
fore there will be no difference in coverage between AUSTIN’s AVM
and AVM+. Furthermore, the study will not examine differences in
the way pointer inputs are treated within the ETF compared to
AUSTIN. Hence we chose to carry out the experiments using AUS-
TIN’s AVM+. In the interest of readability we will refer to AUSTIN’s
AVM+ simply as AUSTIN henceforth.

Effectiveness of AUSTIN
In order to investigate the effectiveness of AUSTIN compared to

the ETF we formulated the following null and alternate
hypotheses:

H0: AUSTIN is as effective as the ETF in achieving branch
coverage.

HA: AUSTIN is more effective than the ETF in achieving branch
coverage.

Efficiency of AUSTIN
Alongside coverage, efficiency is also of paramount importance

especially in an industrial setting. To compare the efficiency of
AUSTIN (in terms of fitness evaluations) to the ETF, we formulated
these null and alternative hypotheses:

H0: AUSTIN is equally as efficient as the ETF in achieving branch
coverage of a function.

HA: AUSTIN is more efficient than the ETF in achieving branch
coverage of a function.
5.2. Experimental setup

The data for the experiments with the ETF on the functions listed
in Table 3 had already been collected for the evaluation phase of the
EvoTest project [6]. This sub-section serves to describe how the ETF
had been configured and how AUSTIN was adapted to ensure as fair
a comparison as possible between AUSTIN and the ETF.

Every branch in the function under test was treated as a goal for
both the ETF and AUSTIN. The order in which branches are at-
tempted differs between the two tools. AUSTIN attempts to cover
branches in level-order of the Control Flow Graph (CFG), starting
from the exit node, while the ETF attempts branches in level-order
of the CFG starting from the entry node. In both tools, branches
that are covered serendipitously while attempting a goal are re-
moved from the list of goals. The fitness budget for each tool was
set to 10,000 evaluations per branch.
The ETF supports a variety of search algorithms. For the purpose
of this study, the ETF was configured to use a Genetic Algorithm
(GA) whose parameters were manually tuned to provide a good
set which was used for all eight functions. The GA was set up to
use a population size of 200, deploy strong elitism as its selection
strategy, use a mutation rate of 1% and a crossover rate of 100%.

The ETF also provides the option to reduce the size of the search
space for the GA by restricting the bounds of each input variable, or
even completely excluding variables from the search. Reducing the
size of the input domain will improve the efficiency of search-
based testing [28]. The input domain reduction in the ETF is a man-
ual process and was carried out by members of the EvoTest project
for each of the eight functions. AUSTIN was configured to apply the
same input domain reduction in order to ensure a fair comparison.
Finally, due to the stochastic nature of the algorithms used in both
tools, each tool was applied 30 times to each function.
5.3. Evaluation

Effectiveness of AUSTIN. Fig. 8 shows the level of coverage
achieved by both the ETF and AUSTIN with error bars in each col-
umn indicating the standard error of the mean. The results provide
evidence to support the claim that AUSTIN can be equally effective
in achieving branch coverage than the more complex search algo-
rithm used as part of the ETF. In order to test the first hypothesis, a
test for statistical significance was performed to compare the cov-
erage achieved by each tool for each function. This time we used a
two-sided Wilcoxon test so that we are able to detect reductions as
well as improvements in coverage. At a confidence level of 99% we
obtained a p-value of 0.9236, indicating that we cannot reject the
null hypothesis, and therefore conclude that AUSTIN and its
AVM+ are as effective as the ETF in achieving branch coverage.

Visually this is confirmed by Fig. 8, where for all except one
function AUSTIN is either better or equal to the ETF. Function 08
is interesting because it is the only function for which AUSTIN per-
forms worse than the ETF. Therefore the results were analysed in
more detail. The first point of interest was the constant number
of fitness evaluations AUSTIN used during the 30 runs of this func-
tion. This can only occur in one of two cases: (1) AUSTIN is able to
find a solution for each target branch from its initial starting point,
and the starting points are all equidistant from the global optima;
(2) for all targets which require AUSTIN to perform a random
restart, it fails to find a solution, i.e., the random restart has no ef-
fect on the success of AUSTIN. In this case it will continue until its
fixed limit of fitness evaluations has been reached. For function 08
the latter case was true.

Analysing AUSTIN’s coverage for function 08 revealed that it
was unable to cover thirteen branches. These branches were
guarded by a ‘hard to cover’ condition. Manual analysis showed
that the difficult condition becomes feasible when traversing only
two out of 63 branches prior to it. The other 61 branches lead to a
‘killing’ assignment to the input variable, whose value is checked in
the difficult guarding condition. The paths which contain one of the
two branches, which make the difficult condition feasible, are
themselves hard to cover. As a result the fitness landscape in which
AUSTIN’s hill climber operates contains both, large plateaus offer-
ing no guidance to the search, and local optima. A global search
algorithm, such as the GA used in the ETF is able to explore a wider
region of the search space in parallel. It is therefore better suited to
escape from plateaus (and local optima) than a hill climber.

To check if AUSTIN’s failure was due to the inherent difficulty of
the problem or, because not enough resources had been allocated,
we repeated 30 runs for AUSTIN for function 08, this time without
any input domain reduction, and a fitness budget of 100,000 eval-
uations per branch. The increased fitness budget gives the search



Fig. 8. Average branch coverage of the ETF versus AUSTIN. The vertical axis shows the coverage achieved by each tool in percent, for each of the functions shown on the
horizontal axis. The error bars show the standard error of the mean.
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more opportunity to explore a wider region of the search space in
case it gets trapped on plateaus or local optima.

The results show that, given this larger fitness budget, AUSTIN is
on average able to cover 97.60% of the branches. This is a marked
increase from the average coverage of 82.89% shown in Fig. 8.
We could not repeat the experiments for the ETF with the extended
fitness budget of 100,000 evaluations per branch, because the fit-
ness budget of 10,000 evaluations per branch is currently hard
coded in the ETF, and we do not have access to its source code.
Therefore it is not possible to say how the ETF would have per-
formed given a larger fitness budget.

Efficiency of AUSTIN. Fig. 9 shows the average number of fit-
ness evaluations used by both ETF and AUSTIN when trying to
achieve coverage of each function. Since the difference in achieved
Fig. 9. Average number of fitness evaluations (normalised) for ETF versus AUSTIN. The ve
relative to the ETF (shown as 100%) for each of the functions shown on the horizontal a
coverage between the two tools was generally very small, it was
neglected when comparing their efficiency. In order to test the
second hypothesis we also used a two-tailed Wilcoxon test. The
test reports a p-value of 0.218 (at a confidence level of 99%), indi-
cating that we cannot reject the null hypothesis.

Visual inspection of the results confirm that overall AUSTIN is as
efficient as the state-of-the-art ETF. AUSTIN only requires more fit-
ness evaluations for function 08, while it is more efficient for six of
the eight functions.

Comparison with random search. As a sanity check, the
efficiency and effectiveness of AUSTIN was also compared with a
random search. Since the random search was performed with the
ETF, we used the same input domain reduction as previously de-
scribed. For each branch the random search was allowed at most
rtical axis shows the normalised average number of fitness evaluations for each tool
xis. The error bars show the standard error of the mean.



Fig. 10. Average branch coverage of random search versus AUSTIN. The vertical axis shows the coverage achieved by each tool in percent, for each of the functions shown on
the horizontal axis. The error bars show the standard error of the mean.
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10,000 evaluations. Any branches covered serendipitously by the
random search during the testing process were counted as covered
and removed from the pool of target branches.

Since we expect AUSTIN to outperform a random search, we
used a one-sided Wilcoxon test. The test returned a p-value of
2.427 � 10�06 indicating that we can reject the null hypothesis that
AUSTIN (AVM+) is only equally effective as a random search. Again
this is visually confirmed by Fig. 10. Only function 08 stands out
where AUSTIN achieves less coverage than random. However, we
already explained why function 08 is difficult to test for a hill climb
algorithm. As with the GA, a random search is better at exploring
the search space, though it is not good at exploiting it once it is
in near an optimum. Because the hill climb search gets trapped
too often for function 08, even the random search achieves a higher
Fig. 11. Average number of fitness evaluations (normalised) for random versus AUSTIN. T
tool relative to the random search (shown as 100%) for each of the functions shown on
branch coverage. Recall though, that given a larger fitness budget
as mentioned previously, AUSTIN is able to improve its coverage
of function 08 to an equal level with the ETF and random search.

Comparing AUSTIN’s efficiency with that of a random search
using a one-sided Wilcoxon test we obtain a p-value of 2.2 �
10�16. This value also indicates that we can reject the null hypoth-
esis stating AUSTIN and the random search are equally efficient.
Visually this is confirmed by Fig. 11.

5.4. Threats to validity

Naturally there are threats to validity in any empirical study
such as this. This section provides a brief overview of the threats
to validity and how they have been addressed. The paper studied
he vertical axis shows the normalised average number of fitness evaluations for each
the horizontal axis. The error bars show the standard error of the mean.
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two hypotheses; (1) that AUSTIN is more effective than the ETF in
achieving branch coverage of the functions under test and (2) that
AUSTIN is more efficient than the ETF.

Whenever comparing two different techniques, it is important
to ensure that the comparison is as reliable as possible. Any bias
in the experimental design that could affect the obtained results
poses a threat to the internal validity of the experiments. One po-
tential source of bias comes from the settings used for each tool
in the experiments, and the possibility that the setup could have
favoured or harmed the performance of one or both tools.

The experiments with the ETF had already been completed as
part of the EvoTest project, thus it was not possible to influence
the ETF’s setup. It had been manually tuned to provide the best
consistent performance across the eight functions. Therefore, care
was taken to ensure AUSTIN was adjusted as best as possible to
use the same settings as the ETF.

Another potential source of bias comes from the inherent sto-
chastic behaviour of the meta-heuristic search algorithms used in
AUSTIN and the ETF. The most reliable (and widely used) technique
for overcoming this source of variability is to perform tests using a
sufficiently large sample of result data. In order to ensure a large
sample size, experiments were repeated at least 30 times. To check
if one technique is superior to the other a test for a statistically
significant difference in the mean of the samples was performed.

A further source of bias includes the selection of the functions
used in the empirical study, which could potentially affect its exter-
nal validity, i.e. the extent to which it is possible to generalise from
the results obtained.

The functions used in the study had been selected by Berner &
Mattner Systemtechnik GmbH on the basis that they provided
interesting and worthwhile candidates for automated test data
generation. This was a subjective choice made by the company
and therefore caution is required before making any claims as to
whether these results would be observed on other functions.
6. Conclusion

This paper has introduced and evaluated the open source,
search-based testing tool named AUSTIN. It supports a random
search, a hill climber in the form of the Alternating Variable
Method, and a hill climber augmented with symbolic execution
to handle constraints over pointer inputs to a function. Test data
is generated by AUSTIN to achieve branch coverage for C functions.

We first evaluated a decision procedure for dealing with pointer
inputs, introduced in this paper, on a set of functions taken from
open source programs. We hypothesised that this decision proce-
dure is more effective and efficient than randomly generating
memory graphs. A Wilcoxon test revealed that we cannot reject
the null hypothesis that both are equally effective and efficient.
This result is discussed in detail in the paper.

We also present a larger empirical study that compares the hill
climbers in AUSTIN with a closed source, state-of-the-art Evolu-
tionary Testing Framework. Here we hypothesised that AUSTIN is
at least as effective and more efficient than the ETF in generating
branch adequate test data. In both cases a Wilcoxon test was used
to asses our hypotheses. Results indicate that AUSTIN is equally
effective and efficient as the ETF.
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