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Abstract

This paper presents techniques to integrate boundary
overlap into concept assignment using Plausible Reason-
ing. Heuristic search techniques such as Hill climbing and
Genetic Algorithms are investigated. A new fitness mea-
sure appropriate for overlapping concept assignment is in-
troduced. The new algorithms are compared to randomly
generated results and the Genetic Algorithm is shown to
be the best of the proposed search algorithms in terms of
the quality of concept binding, as measured by the fitness
function. The fixed boundary Hypothesis Based Concept
Assignment technique is compared to the new algorithms.
The Genetic Algorithm and Hill climbing are found to con-
sistently produce stronger concepts than Hypothesis Based
Concept Assignment.

1. Introduction

Program comprehension is one of the most expensive ac-
tivities in software maintenance and many tools and tech-
niques have been created to reduce the time and expense
involved. Concept assignment techniques, such as Hypoth-
esis Based Concept Assignment (HBCA) have been suc-
cessfully employed to assign descriptive terms to source
code as a means for program comprehension [3, 6]. The re-
sulting concepts created by concept assignment techniques
such as HBCA are distinct, non overlapping segments of
code, which relate to computational intent. However, com-
plete distinct localisation of concept within code is perhaps
too rigid an assumption within real programs [17]. Con-
cepts created without this assumption may be a better rep-
resentation of computational intent in the code. Figure 1
contains an example of a concept overlap in a code frag-
ment of COBOL II [4]. In this example the first, third and
fifth lines indicate aPrint concept and the second, fourth
and sixth lines indicate aWrite concept. It is impossible to
determine where one concept ends and the other starts. It

MOVE  'EXAMPLE' TO PRINT-LL.
MOVE  POLICY-NUM TO OUT-PNUM.
MOVE  '13' TO PRINT-CC
MOVE  SCHEME-REF TO OUT-SERF.
CALL   'PRINT'  USING P-PRINTLINE
CALL   'WRITE' USING OUT-REC

Figure 1. Example of overlapping concepts

could also be reasoned that the last two lines indicate aCall
concept.

HBCA is a plausible reasoning technique with a linear
growth in computation cost, which merits its application for
large program studies [1]. This made it a suitable candi-
date for studying a large number of programs of varying
size within this experiment. In addition, the concept binding
mechanism (explained further in section 2) could be easily
adapted as a means to drive the concept binding process for
the new search based techniques.

This paper contains the details of an investigation into
using search based approaches for concept assignment that
allow overlap of concept bindings. Genetic Algorithms
(GA) and Hill Climbing (HC) search algorithms were used.
GA’s ability to tackle complex and fuzzy problems made it
a suitable candidate. HC was selected to determine if so-
lutions achieved by using a less complex and quicker local
search were able to compete with the more computationally
intensive results from the GA. The results, were compared
and analysed. They demonstrate the improvements gained
due to the use of overlapping concept assignment with the
GA and HC over the original HBCA algorithm. The overall
contributions of this paper can be summarised as:

• Formulating the overlapping concept boundaries as a
search problem.

• Devising search algorithms to allow overlapping con-
cept boundaries for concept assignment.

• Devising a Fitness Function suitable for evaluating



concepts with overlapping boundaries

• Devising a solution structure to allow search for con-
cepts with overlapping boundaries.

• Empirical study of the algorithms and analysis of the
results.

2. Hypothesis-Based Concept Assignment

This section contains a brief explanation of the HBCA
algorithm, since HBCA algorithms and its results are drawn
upon to explore the effect of allowing overlapping bound-
aries in concept assignment. HBCA requires a library or
knowledge base. This library is a semantic network, which
is composed ofConceptsandIndicators. Indicators are ev-
idence for concepts within the implementation. Concepts
are the terms nominated by the user to describe items or
activities in the domain. The library also includes relation-
ships between concepts, which are used to identify compos-
ite or specialised concept binding. A concept may take the
form of an Action or Object. Action concepts carry out op-
erations ,for exampleWrite is an Action concept. Object
concepts are concepts which can be acted upon by Action
concepts and their presence together may suggest the exis-
tence of a composite concept, for instance the Object con-
cept File and Write can create the compositeWrite File
concept. The more general forms of object concepts are
regarded as primary while the more specialised form are re-
garded as secondary. Composite concept may be created by
using identified relationships within the library between Ac-
tion and Object/Spesialised concepts. The HBCA algorithm
is summarised in three stages.Hypothesis Generation, Seg-
mentationandConcept Binding.

2.1. Hypothesis Generation

Hypothesis Generationdraws on source code as input.
The library is utilised to scan the source code for indica-
tors of various concepts. For each matching concept, a hy-
pothesis is generated and stored. The list of hypothesis is
ordered according to the position of the indicators in the
source code. Where all the further stages of Segmentation
and Concept Binding are carried out on this createdHypoth-
esis List. Figure 2 contains an example of a generatedhy-
pothesis list. The created Hypothesis List is also the input
for the search based algorithms.

2.2. Segmentation

Segmentationstage attempts to create distinct, disjoint
segments within a Hard Segment. Hard Segments are nat-
ural segment boundaries such as procedure divisions. A

Segment Start

Write
APSMasterFile

Write
APSMasterFile

File
CAF

PaymentFile
Call

Segment End

Figure 2. Example of a generated Hypothesis
List

Self Orgainsing Map (SOM) creates segments of high con-
ceptual focus according to the distribution of the the Action
concepts within a Hard Segment.

2.3. Concept Binding

Concept Bindingis carried out by the Concept Assigner.
The Concept Assigner evaluates each segment in term of
concept occurrence according to simple (Action concepts)
and composite (Action/Object/specialised object) concepts.
The library is used to determine the possible composite con-
cepts within each segment. The strength of evidence for a
concept is equivalent to the number of hypothesis that could
indicate the presence of that concept. The Concept Assigner
also requires the presence of at least one action concept
in addition to a user defined minimum number of hypoth-
esis (minimum evidence) to create aConcept Binding. As-
suming these conditions are satisfied, the concept with the
strongest evidence is selected as the winner. A set of dis-
ambiguation rules are applied to select a winner in case of
ties. An in depth analysis of these rules can be located in
Gold’s PhD thesis [6]. The segments are then bound to the
winning concepts and highlighted in code.

3. Defining the Search Problem

A Search Problem is the algorithmic identification of of a
solution from a solution space. As discussed in Subsection
2.1, the input for this search algorithms is the Hypothesis
List generated by the HBCA algorithm. The problem there-
fore can be defined as searching for Segments of Hypothesis
in each Hypothesis List according to predetermined fitness
criteria such that each Segment has the following attributes:

• Each Segment contains1 or more neighbouring Hy-
pothesis.

• There are no duplicate Segments.



The search fitness criteria’s aims are twofold:

• Guide the search to finding Segments of strongest evi-
dence.

• Binding as many of the Hypothesis within the Hypoth-
esis List without compromising the Segments strength
of evidence.

What follows in this Section is an investigation of the im-
plications of the above definitions on the size of the search
in Subsection 3.1. In addition, a Fitness Function based
on the above guidelines is proposed in Subsection 3.2. An
overview of GA and HC algorithms and their more specific
design with respect to this experiment are explained in Sub-
sections 3.3 and 3.4. Finally a solution structure for the
algorithms is presented in Subsection 3.5. This Subsection
also explores some of the design and implementation issues
raised and dealt with as a result of utilising the proposed
solution structure.

3.1. Size of the Search Landscape

In this section the size of the search (number of possi-
ble solutions) and its growth according to the number of
Hypothesis within within the Hypothesis List are analysed.
The number of possible Segments which can be created
within a Hypothesis List ,according to the definition in Sec-
tion 3, is given explicitly by the following:

s =
h(h + 1)

2

Wheres is the number of Segments andh represents the
number of Hypothesis. The size of the search (the number
of possible solutions) is the number of possible combina-
tions of these Segments:

c =
s∑

k=1

(
s

k
)

c is the number of possible Segment combinations.

(
n

k
) represents binomial coefficient, which is the num-

ber of possible subsets of sizek within the set of segments
s. c is calculated explicitly by the powerset ofs minus the
empty set:

c = 2s
− 1

Figure 3 demonstrate the rapid resulting increase in the
search sizec from steady increase in the number of Hypoth-
esish. This rapid increase makes the use of a population
based search algorithm like a GA all the more appealing
due to their previous success in tackling large search spaces
examples of which can be found in [13, 21, 22].
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Figure 3. Search size increase against in-
creasing number of Hypothesis in the Hy-
pothesis List.

3.2. Fitness Function

For the Fitness Function to effectively guide the search,
it must be able to evaluate each solution according to the
strength of evidence and Hypothesis List coverage. The first
step involves the recognition of the strongest concept within
each Segment of a particular solution. This is achieved by
following the same process as the HBCA’sConcept Binding
previously discussed in Subsection 2.3.

The overall fitness is then evaluated in order to find the
Segmentation Strength in addition to the Hypothesis List
coverage. The Segmentation Strength is the combination of
Inner fitness and the Potential Fitness of each Segment. The
inner fitness of each Segment is assessed as:

fiti = signali − noisei

Wherefiti signifies the Inner Segment Fitness,signali
represents the Signal level or number of Hypothesis within
the Segment that contribute to the winner andnoisei rep-
resents the Noise level or the number of Hypothesis within
the Segment that do not contribute to the winner. The Inner
Segment Fitness results in recognition of higher Fitness for
Segments with more evidence indicating their winning con-
cept. In addition Each Segment is evaluated with respect to
the entire Segment Hypothesis List:

fitp = signali − signalp

The Potential Segment Fitness,fitp is evaluated by tak-
ing account ofsignalp, the number of Hypothesis outside
of the Segment that have could contribute to the Segment’s



winning concept if they were included in the Segment. This
facet of the Segment Fitness effectively guides the search
to creating Segments of larger size in order to incorporate
as much of the Signal as possible. The Overall Segment
Fitness is evaluated by combining these Inner and Potential
Segment Fitness into an Overall Segment Fitness:

segfit = fiti + fitp

The Overall Segment Fitness (segfit) attempts to guide
the search at a local Segment level to larger Segments ac-
cording to higher Signal Potential while preserving a low
Noise level. Finally the Total Segment Fitness is calculated
as:

totsegfit =
n∑

s=1

= segfit(s)

wheres is represents Segments within the solution.
Hypothesis List Coverage is the second facet of the Fit-

ness calculation. Increased coverage of the Hypothesis List
results in further coverage of the original program code,
which could potentially improve program comprehension.
Hypothesis List Coverage is defined as:

hc = h − hn

whereh is the number of Hypothesis within the Hypoth-
esis List andhn the number of Hypothesis not covered by
any Segments within the solution. For a just comparison
of solutions, given that solutions may have a varying num-
ber of Segments and Coverage, a normalised version of the
Fitness is evaluated:

totsegfit + hc

2totseglength + h

where

totseglength =
n∑

s=1

seglength(s)

andseglength(s) is the number of Hypothesis in Segment
s.

3.3. Genetic Algorithms

GAs are a collection of heuristic population based evo-
lutionary search techniques. Traditionally individual solu-
tions with a GA population are also referred to as Chromo-
somes and their constituent bits as Genes [11]. The Genes
represent a coding of the search parameters rather than di-
rectly used parameters. GA search starts with a random
population of potential solutions. It then employs evolution-
ary aspired operators whilst guided by a Fitness Function to
evolve fitter solutions. Amongst the many subtly varied def-
initions of a GA the following mechanisms are agreed upon
[8, 15, 19]:

Selection is the probability based sampling of the current
population , which is guided by a set of fitness objec-
tives (fitness function). The selected solutions partici-
pate in creating the next generation of solutions using
GA search operators.

Crossover is the primary search operator. It involves the
recombination of pairs of solutions picked during Se-
lection as parents in order to create offsprings for the
next generation of solutions.

Mutation is the secondary search operator. It involves the
random selection and change of Genes in the a newly
created population with the aim of reducing population
stagnation.

Selection, Crossover and Mutation are used to create
subsequent generations of populations until the Stopping
Condition is met where the algorithm terminates. The Stop-
ping Condition maybe based heuristically according, where
after a predetermined number of generations the search ter-
minates or based deterministically.

Population size, Selection, Crossover and Mutation are
governed by a set of heuristics. Crossover Rate determines
the probability of recombination for a pair of selected indi-
viduals. Selected individuals which are not recombined due
to Crossover Rate are copied directly into the new popula-
tion. Tournament Selection is explained in this section as it
is used as the Crossover operator for the proposed GA. Ini-
tially a random pair of Chromosomes are selected for Tour-
nament Selection. The Chromosome with the higher fitness
may then be selected to participate in Crossover and Muta-
tion according to the Tournament Coefficient heuristic. The
Tournament Coefficient is the probability of the fitter Chro-
mosome being selected and is usually strongly set in favour
of the fitter Chromosome. Mutation Rate determines the
probability of a Mutation per Gene(bit) of a solution of the
new population. This probability is normally set to be very
small to avoid the search from deteriorating into a random
search. The Crossover and Mutation mechanisms are also
dependent on the defined structure of the chromosome, the
proposed structure in addition to its implications for these
operations are discussed further in Subsection 3.5.

3.4. Hill Climbing Algorithms

Hill Climbing is a local search technique. It stars from a
single randomly created solution. A predefined set of Mu-
tations are then used to define a set of potentially fitter solu-
tions. The set of solutions created by the Mutation operator
are referred to as the neighbouring solutions. The search
at each stage selects a fitter neighbouring solution and ex-
amines further neighbouring solutions from the newly dis-
covered solution. The number of considered neighbouring



solutions is a heuristic that determines the minimum num-
ber of examined before a selection decision is made. Due to
the local nature of the search, it is possible for the starting
solution to quickly find local Optimal solution of relatively
low fitness. The search attempts to reduce this effect by
restarting from a new random solution or by using the char-
acteristics of the current solution to create a new solution.
The search ends when no fitter neighbours can be found
and the Sopping Condition has been reached. The Stop-
ping Condition search may be determined heuristically by
limiting the number of allowed restarts or algorithmically
when no fitter solution for a restart can be found by using
the restart mechanism. The proposed HC for this experi-
ment uses characteristics of the final solution for the restart
operation and stop when it can not create better solutions
by using this restart method. The restart operation and per-
mitted Mutations are dependent on the defined structure of
the solution. The proposed solution structure and the exact
nature of the restart and Mutations are further discussed in
theSolution StructureSubsection (Subsection 3.5).

3.5. Solution Structure

The scope of resulting solutions are affected by what
constitutes a solution in the HC and chromosomes in the
GA population. In this case, each solution needs to repre-
sent all the discovered Segments and be flexible enough to
allow independent Segment boundaries and a variable num-
ber of Segments. The proposed solution defines a Segment
as a pair of values where each values represent the location
of start and end Hypothesis within the ordered Hypothesis
List. Since the number of Segments within a Hypothesis
List in not predetermined, the length of a potential solution
can also vary. A messy GA chromosome structure was cho-
sen as a suitable representation [9] since it allows the Chro-
mosome to have variable length. In the proposed solution a
Chromosomes is made up of a set of one or more Segments
representations. For future ease of reference, the Segment
representations will be referred to as Segment Pairs.

A difficulty that was detected during implementation of
this representation is the potential for an unmanageable in-
crease in the size of solutions. Although the problem def-
inition as explained in Section 3 results in the elimination
of all duplicates Segment Pairs, this never the less leaves
a potentially large number of Segment Pairs. The Fitness
Function was exploited in this case to reduce this size even
further. In the proposed solution all Segments with the same
winning concept that overlap are compared and all but the
fittest Segment are removed from the solution.

Crossover and Mutation operations are also directly de-
pendent on the solution structure. The early GA experimen-
tations with the Crossover involved random selection and
recombination of parent’s Segment Pairs to create new Seg-

(4,7) (12,16)(8,10)

(6,9) (14,18) (17,21)

Parent A

Parent B

+ + +

Offspring (4,9) (6,7) (6,10) (8,9) (12,18)(14,16) (17,21)

Figure 4. Example Crossover operation on
GA chromosomes

ment Pairs in the offspring. This resulted in rapid deteriora-
tion of the search into almost randomly generated new so-
lutions, where a large amount of useful information was de-
stroyed in the recombination process. The proposed imple-
mented solution utilises the location of the segment pairs,
where only segment pairs of overlapping locations are re-
combined and the remaining are copied to the new chromo-
some. Figure 4 contains an example of the recombination
process on two chromosomes and the resulting offspring.

The GA Mutation operation on the proposed solution
structure is different from HC Mutation. The GA Mutation
operator is a secondary search operator, which is primarily
concerned with population stagnation. Therefore the Muta-
tion operator can randomly replace any Hypothesis location
within any Segment Pair with any other valid Hypothesis
location with the concern for causing the search to become
overly randomised. As a result this Mutation model is used
for the GA, where a Mutation can occur on each Hypothesis
location according to the Mutation Rate, where a Mutation
results in the replacement of a Hypothesis location value in
a Segment Pair with a random and valid Hypothesis loca-
tion value. Conversely such Mutations would cause a local
search technique such as Hill Climbing to become akin to a
random search. To reduce this effect, the proposed HC Mu-
tation operator generates new solutions by selecting a Seg-
ment Pair and increasing or decreasing one of the location
values by a single increment. The resulting Mutations are
a set of similar neighbouring solutions which can be used
to describe the local search landscape of the Hill Climbing
algorithm. Finally the proposed HC takes advantage of the
proposed GA Crossover operation GA for the Restart mech-
anism as discussed in Subsection 3.4. This entails recombi-
nation of all Segment Pairs in order to create new Segments
Pairs, which are then added to the current Solution if their
inclusion results in an improvement to the Fitness value.



GA

SIZE

2001000

F
IT

N
E

S
S

1.2

1.1

1.0

.9

.8

.7

.6

.5

.4

.3

.2

.1

-.0

-.1
-.2

HC

SIZE

200

190

180

170

160

150

140

130

120

110

100

90

80

70

60

50

40

30

20

10

0

F
IT

N
E

S
S

1.2

1.1

1.0

.9

.8

.7

.6

.5

.4

.3

.2

.1

0.0

-.1
-.2

Random based on GA

SIZE

2001000

F
IT

N
E

S
S

1.2

1.0

.8

.6

.4

.2

0.0

-.2

Random based on HC

SIZE

2001000

F
IT

N
E

S
S

1.2

1.0

.8

.6

.4

.2

0.0

-.2

Figure 5. Scatter graphs of fitness against hard segment size .

4. Empirical Study

An empirical study was carried out to identify the best of
the proposed algorithms for Concept Assignment that allow
overlapping Concept Boundaries based on the proposed Fit-
ness discussed in Subsection 3.2.21 COBOL II programs
were included in the study. A set of Hypothesis lists were
generated by using the HBCA Hypothesis Generator dis-
cussed in Subsection 2.1. The generated Hypothesis Lists
have a size ranging from1 to 191 Hypothesis. Due to the
probabilities involved in the generation of the initial pop-
ulation for the GA and initial solution for the HC and the
probabilities involved in the search operators, it is possible
to generate results of uncharacteristic low fitness for these
algorithms. In order to to better evaluate characteristic solu-
tions,10 GA and HC runs were carried out per Hypothesis
List.

The set of heuristic values for the GA and HC were de-
rived by trials and experimentation on some of the smaller
Hypothesis List. The GA population consist of100 Chro-
mosomes, which are created randomly for the initial pop-
ulation. This involves the creation of a random number of
Genes or Segment Pairs. The number of Genes is set be-
tween a minimum of 5 to a maximum based on the num-
ber of Hypothesis in the Hypothesis List. The Tournament
Selection’s Coefficient were set to 0.99 and Crossover and

Mutation Rates were set to 0.8 and 0.001 respectively. The
GA search terminates when the average fitness of the pop-
ulation does not 50 generations. The HC algorithm initial
solutions are produced by following the GA initial Chro-
mosome creation mechanism. The number of considered
neighbours are set to1 and the stopping condition is met
when no better solution can be achieved by using the restart
mechanism explained in Subsection 3.5.

The GA and HC results were also compared to sets
of randomly generated solutions for each Hypothesis List.
These solutions were created according to the solution
structure described in Subsection 3.5. Number of generated
Random solutions for each Hypothesis List was determined
by the number of evaluated solutions by the GA and HC al-
gorithms for each Hypothesis List. Comparison of the GA,
HC and Random results are discussed in Subsection 4.1.

HBCA was also used for Concept Assignment on the
21 COBOL II programs. The minimum evidence level for
Concept Binding was set at3 Hypothesis (details of HBCA
Concept Binding and evidence level have been discussed
in Subsection 2.3). Analysis was carried out on the re-
sults from the proposed GA and HC algorithms and the
HBCA results to find the best algorithm. Due to the dif-
ferent HBCA search criteria the comparison is based on a
different measure. This along with the results of the study
are discussed in Subsection 4.2.
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Figure 6. Boxplots of GA, HC and Random Fitness Results compa red across increasing Hypothesis
List size range.

The results are presented as scatter graphs and boxplots.
The scatter graph’s vertical axis represents the fitness value
and its horizontal axis represents increasing Hypothesis List
size. Similarly the boxplots vertical axis represents fitness
values, however to reduce clutter in the presentation of box-
plots, caused by the large variety in Hypothesis List sizes,
it was necessary for the boxplots to be drawn against in-
creasing ranges of Hypothesis List size. The5 increasing
ranges used are1 to 38, 39 to 76, 77 to 114, 115 to 152
and153 to 191. For example the range1 to 38 represents
all the fitness values resulting from Hypothesis List sizes of
between1 to 38 (inclusive) Hypothesis. Each boxplot rep-
resents the distribution of Fitness values for a particularHy-
pothesis List size range. The length of the box corresponds
to the interquartile range and contains50% of cases. The
line across the inside of the box indicates the median value.
The protruding lines (whiskers) represent the smallest and
largest fitness values that are not outliers, where outliersare
values which are1.5 box-lengths away from the edge of the
box.

4.1. GA, HC and Random Results

The results from the GA, HC and Random experiment
were compared based on their fitness values, which were
calculated by the Fitness Function described in Subsection
3.2. Scatter graphs labeled GA, HC, Random based on GA
and Random based on HC in Figure 5 contain the Fitness
distribution ordered by Hypothesis List size for GA, HC
and GA and HC random search respectively. The distrib-
ution of GA Fitness results according to Figure 5 is simi-
lar to the other distributions in that Figure but is present at
a higher Fitness level. On the other hand, the HC results
are clearly of inferior Fitness to all other results presented
by the scatter graphs in Figure 5. The boxplot of Fitness
values for paired algorithms against increasing Hypothesis

List size range are overlayed in Figure 6. The superior GA
results compared to HC and Random is also conveyed by
this Figure. The GA-HC and HC-Random graphs in this
Figure once again highlight the inferior HC Fitness results
compared to the other results. Not surprisingly the results
also demonstrate the increasing difficulty for all search al-
gorithms as the Hypothesis List size increases. This obser-
vation corresponds to the rapid increase in the search space
discussed in Subsection 3.1. The HC also has the small-
est distribution of results compared to the GA and Random
results. The implications of this observation are further dis-
cussed in Section 6.

Pair-wise comparison of the GA, HC and Random by the
Wilcoxen Signed Rank Testwas used to ascertain the statis-
tical significance in the observed strength of GA and the
weakness of the HC results in terms of Fitness values. The
Wilcoxen Signed Rank Testreported the level of significance
to be less that0.0005 when comparing GA results against
HC and GA results against Randomly created results. This
level of significance represents a statistically significant im-
provement to the Fitness for the GA compared to the HC
and Randomly generated solutions. TheWilcoxen Signed
Rank Testreported a level of significance of below0.0005
meaning a statistically signinficant worsening of HC results
compared to the Randomly generated solutions.

4.2. GA, HC and HBCA Results

As described in Section 2, The HBCA algorithm carries
out Segmentation based on a different set of criteria to GA
and HC algorithms. For a more impartial comparison be-
tween these algorithms, the results are evaluated based on
the Signal to Size ratio, where the Signal represents the
number of Hypothesis within a Segment that contribute to
the winning concept and Size represents the number of Hy-
pothesis within that Segment.
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Figure 7. Scatter graphs of Signal to Size ratio against hard segment size.

Scatter graphs in Figure 7 displays the distribution of
Signal to Size ratios of created Segments across increasing
Hypothesis List size for the GA, HC and HBCA algorithms.
Most noticeable from these graphs is the lack of solutions
with low Signal to Noise ratios for the scatter graphs of GA
and HC when compared to HBCA. The reasons for this ob-
servation are difficult to determine due to the different fit-
ness criteria that the GA and HC algorithms use compared
to the HBCA algorithm. The GA-HBCA boxplots in Figure
8 further illustrate characteristically better Signal to Noise
ratios achieved by the GA algorithm compared to HBCA
across the range of of Hypothesis Lists. The HC results in
the HC-HBCA boxplots in Figure 8, although not as clearly
improved as the GA results, are generally better when com-
pared to HBCA. The graphs in Figure 8 also display consis-
tently higher Signal to Noise ratio of GA results in compar-
ison to HC.

Pair-wise comparison of the GA, HC and HBCA was
carried out by using theWilcoxen Signed Rank Testto de-
termine if the strength of GA and HC results against HBCA
were significant in terms of Signal to Size ratio. The test
reported a significant difference of less than0.0005 for all
of these comparisons. This implies the GA and HC Sig-
nal to Size ratios were significantly better than HBCA. Fur-
ther Wilcoxen Signed Rank Testbetween GA and HC also
yielded a significance difference of below0.0005, meaning
in terms of Signal to Noise ratio, the GA results were also
significantly better than the HC.

5. Related Work

Concept assignment has been defined as “...a process of
recognising concepts within a computer program and build-
ing an ‘understanding’ of the program by relating recog-
nised concepts to portions of the program, its operational
context and to one other [1].”

The two major research issues of concept assignment
have been identifies by Tilly et al. asSegmentationandCon-

cept Binding[23]. Segmentation is the process of grouping
pieces of conceptual information generated from the source
code. Concept binding involves the analysis of segments in
order to determine the most plausible concept assignment
for each segment [5]. The segmentation and concept bind-
ing process are intricately and naturally linked. The location
and size of the segment determines the assigned concept.
The strength of the assigned concept on the other hand de-
termines the quality of segmentation. Another problem di-
rectly involved in segmentation of software is the presence
of overlapping concepts within the software.

Concept assignment techniques are carried out by intel-
legent agent tools. They traditionally fall within the follow-
ing categories [1].

1. Domain specific, rule based, model driven systems that
answer specific questions. These depend on manually
created databases which describe the software system.
This approach is exemplified by the LaSSIE System
[2].

2. Plan driven, algorithmic and based on a precise set
of understanding and recognition rules. Examples of
this method are Programmer’s Apprentice [20] and
GRASPR [25].

3. Model driven systems which use plausible reasoning.
Examples of this technique are DM-TAO [1], IRENE
[14] and HBCA [3, 6].

The tools which employ approaches in first and second
category are capable of completely deriving concept within
small scale programs but due to their overwhelming compu-
tational cost are not suitable for larger-scale programs [1].
Conversely, the third approach have a linear computational
growth for increased program size, but suffer from impreci-
sion in results [1].

HBCA [3, 6] plausible reasoning techniques has recently
been proposed as a means for more complex reveres engi-
neering and software testing. This involves the use of pro-
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Figure 8. Boxplots of HBCA, GA and HC Signal to Size ratio comp ared across increasing Hypothesis
List size range.

gram slicing [24] in conjunction with HBCA derived con-
cepts to create executable concept slices(ECS) [7, 10]. ECS
involves the slicing of concept bindings from the HBCA ac-
cording to the system dependence graph approach of Hor-
witz et al [12]. The resulting ECS are proposed to posses
the higher level abstraction of concepts alongside the useful
executability of a program slice [7, 10].

Another recent related technique involves the use of
Latent Semantic Analysis(LSA) for concept location [18].
“LSA is a fully automatic mathematical/statistical tech-
nique for extracting and inferring relations of expected con-
textual usage of words in passages of discourse [16]”. The
technique involves the analysis of user queries alongside the
parsing and analysis of code as text to identify concepts.

6. Conclusions and Future Work

An approach to permit overlapping Concept Boundaries
for Concept Assignment was presented in this paper. The
problem was defined, analysed and formulated as a search
problem in terms of search space, Fitness Function, GA and
HC algorithms and solution structure in Section 3. An em-
pirical study was carried out in two parts to determine the
best algorithm in Section 4. First study compared the pro-
posed GA, HC and Randomly generated solutions based on
the proposed Fitness Function. The second study compared
the GA and HC results with HBCA, based on Signal to Size
ratio. The results of these studies were discussed in Subsec-
tions 4.1 and 4.2 respectively.

The GA results produced significantly stronger Fitness
values according to the proposed Fitness Function. In ad-
dition, the GA results were significantly better than HC
and HBCA results according to the Signal to Size ratios,
as discussed in Subsection 4.2. This identified the GA as
the best of the proposed algorithms for Concept Assign-
ment which allow overlapping Concept Boundaries. On

the other hand the HC results were somewhat disappoint-
ing as they were found to be significantly worst than GA
and randomly generated solutions based on the proposed
Fitness Function. However HC produced stronger results
when compared to the HBCA on the Signal to Size mea-
sure. One possible explanation for this behaviour may be
the increase in complexity of the search due to the inclu-
sion of Hypothesis List Coverage as part of the fitness cri-
teria, where a local search algorithm such as Hill Climbing
is simply not adequate. Another explanation could be the
inadequacy of the current neighbourhood definition and the
need for examining alternative neighbourhood definitions.
Another observation made was on the comparatively small
range of HC Fitness values in Subsection 4.1 compared to
other search algorithms. The smaller Fitness distribution
implies that a set of similar Fitness values were achieved by
the HC from random starting points, which in turn may in-
dicate a large number of similar locally optimum solutions
within the search space. Since the shape of the landscape is
directly effected by the neighbourhood definition, this ob-
servation also strengthens the need for more suitable neigh-
bourhood definitions for the HC algorithm.

Further research is required to analyse the resulting Con-
cept Bindings as reflected in code. Useful future investiga-
tions may take the form of measuring the level of agreement
for the location of Concept Bindings, analysis of the size
and distributions of created Segments in the Hypothesis List
and the size and distribution of the resulting Concept Bind-
ings in program code. These investigation may also help to
demonstrate the potential offered in program comprehen-
sion by the proposed techniques and whether the inclusion,
extent and frequency of overlap could help or hinder pro-
gram comprehension.
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